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In the field of rotor fault pattern recognition,most of classical pattern recognitionmethods generally operate in feature vector spaces
where different feature values are stacked into one-dimensional (1D) vector and then processed by the classifiers. In this paper, time-
frequency image of rotor vibration signal is represented as a texture feature tensor for the pattern recognition of rotor fault states
with the linear support higher-tensormachine (SHTM). Firstly, the adaptive optimal-kernel time-frequency spectrogram visualizes
the unique characteristics of rotor fault vibration signal; thus the rotor fault identification is converted into the corresponding time-
frequency image (TFI) pattern recognition. Secondly, in order to highlight and preserve the TFI local features, the TFI is divided
into some TFI subzones for extracting the hierarchical texture features. Afterwards, to avoid the information loss and distortion
caused by stacking multidimensional features into vector, the multidimensional features from the subzones are transformed into a
feature tensor which preserves the inherent structure characteristic of TFI. Finally, the feature tensor is input into the SHTM for
rotor fault pattern recognition and the corresponding recognition performance is evaluated. The experimental results showed that
themethod of classifying time-frequency texture feature tensor can achieve higher recognition rate and better robustness compared
to the conventional vector-based classifiers, especially in the case of small sample size.

1. Introduction

Rotor system as an important asset exists in a wide range of
industry applications and its fault identification is crucial to
its design and usage. Its vibration signals are generally used to
detect its healthy state to reduce the catastrophic damage and
the down-time of machinery. Disk unbalance and resonance
are the two main sources of rotating machinery vibration.
The vibrations due to such sources will affect the system
critical parts, such as bearings, gears, motor, seals, and
coupling. Disk unbalance is a condition in which the center
of mass of a rotating disk is not coincident with the center
of rotation. Unbalance in rotor system is unavoidable and
cannot be completely eliminated. Jalan and Mohanty [1]
stated that, due to some reasons such as porosity in casting,
nonuniform density of material, manufacturing tolerances,
and gain or loss ofmaterial during operation, rotors can never
be perfectly balanced in the practical applications. Oil film
instability is a common nonlinear fault in a rotor-bearing

system, whichmay bring a serious hazard to rotarymachines.
Liu et al. [2] also have been devoted to study the instability
behaviors of rotor-bearing systems with asymmetric inertia,
which are usually caused by the coupled effects of the
nonlinear oil film force, unbalanced centrifugal force, journal
whirl inertia force, rotor gravity, and other external load.
In the compound fault of oil film instability and unbalance,
the vibration signal collected from a rotor-bearing system
exhibits phase/frequency coupling features which cannot be
directly used to identify rotor healthy state based on the
traditional data analysis methods, such as orbit portrait, FFT
spectra, cepstra and time-frequency, or time-scale analysis
[3].

For the improvement of reliability, safety, and efficiency
of technical processes, fault pattern recognition is used as
advanced supervision tools in present industries, which not
only can liberate human experience evaluation but also
can achieve accurate and timely fault warning. Generally
speaking, there are two main steps in the fault pattern
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recognition: the first step is the feature extraction with some
signal processing methods, and the second step is the fault
state identificationwith artificial intelligence technique based
on the extracted features. It is well known that time-frequency
spectrogram can visualize the unique characteristics of vibra-
tion signal, based onwhich the fault state can be automatically
identified with the time-frequency image (TFI) recognition
technology. Owing to the fact that the time-frequency matrix
of vibration signal has a big randomness and strong irregular-
ity, it is not suitable to do the direct identification of fault state
with the general image recognitionmethods such as syntactic
recognition method [4], template matching method [5], and
geometrical transformation method [6] in the practical fault
diagnosis. Artificial intelligence technique is a good choice
to realize the automatic identification of fault condition and
prevents the subjective error in the operator observation.
The intelligent TFI identification usually focuses on how to
extract the useful features to characterize the spectrogram
image. Many types of image features, such as moment
invariants [7], gray statistical characteristics, textural features
[8], and differential box-counting fractal dimension [9], are
usually extracted for TFI autorecognition. Most of these
extracted features represent the global information of TFI.
But for the vibration signals of the rotor system in fault states,
the characteristic signal components concentrating in some
local zone of TFI would lead to nonuniform distribution
of TFI characteristics. The global feature extraction of TFI
would provide some unreliable identification results since
the real fault characteristics are averaged out. The useful
information gets lost so as to decrease the accuracy of fault
identification.

In order tomake up the information loss in the global fea-
ture extraction, it is necessary to segment TFI segmentation
and carry out the feature extraction in different frequency
bands. That is, each frequency band regions are separately
processed to extract their corresponding features. In the
field of fault state pattern recognition, the multidimensional
features in machine learning are generally transformed to
a vector representation and then processed by the classical
learning algorithms operating with vectors. Although there
aremanyways to vectorizemultidimensional data, it has been
observed that such operation usually leads to significant loss
of important information, since some values which were in
local vicinity become differently arranged if data are arbitrar-
ily linearized into a vector [10]. And it is necessary to reduce
the dimension of time-frequency features to appropriate
size with some dimensionality reduction techniques such as
factor analysis, principal component analysis, independent
component analysis, and singular value decomposition [11–
13]. But these dimensionality reduction techniques suffer the
problem of overdecomposition or incomplete decomposition
which might distort the feature correlations, increase archi-
tectural complexity and malfunction of classifier, and even
lead to the false classification results. In a word, despite these
feasiblemethods in vectors operating space, they do notmake
a full exploitation of the TFI characteristics.

In this paper, the feature tensor is introduced to charac-
terize the TFI of rotor vibration signal, which can keep the
correlation information between different frequency bands

and the integrality of the TFI. However, due to the so-called
curse of dimensionality and small size problems, SVMcannot
handle the tensor objects effectively. For the feature tensors
of TFIs, the linear support higher-tensor machine (SHTM) is
used as a tensor classifier for the rotor fault identification.The
SHTM is a multilinear construct learning model constructed
by extending the support vectormachine learning framework
to tensor patterns [14]. The approach presents the supervised
tensor learning framework by applying a combination of
the convex optimization and multilinear operators [15]. The
experimental results showed that the approach of classifying
time-frequency image feature tensor can identify the rotor
faults more accurately compared to the conventional feature
vector classifiers.The rest of this paper is organized as follows.
Section 2 provides the introduction of adaptive optimal-
kernel distribution. Section 3 gives texture analysis carried
out on gray level cooccurrence matrix (GLCM) of TFI.
Section 4 provides the theory of linear Support higher-Order
tensor machine for multiclassification. Section 5 explains
the flowchart of proposed method. The experimental results,
discussions, and analysis are presented in Section 6. The
conclusions are given in Section 7.

2. Adaptive Optimal-Kernel Time-Frequency
Distribution and TFI Segmentation

Adaptive optimal-kernel (AOK) time-frequency transform
is a suitable tool to obtain the time-frequency images of
vibration signals of rotarymachine.TheAOK time-frequency
distribution can preserve simultaneously good resolutions in
time and frequency with less cross-term interferences. It is
expressed as

AOK (𝑡, 𝑓)
= ∬+∞
−∞

𝐴 (𝜏, V) 𝜙 (𝜏, V) exp [−2𝜋 (V𝑡 + 𝑓𝜏)] 𝑑V 𝑑𝜏, (1)

where the analyzed signal is noted as𝑥(𝑡),𝐴(𝜏, V) = ∫+∞
−∞

𝑥(𝑡+𝜏/2)𝑥∗(𝑡−𝜏/2) exp(−𝑗2𝜋V𝑡)𝑑𝑡 is the ambiguity function, and𝜙(𝜏, V) is a 2D radially Gaussian kernel function performed
as a low-pass filter in the ambiguity domain. The optimal-
kernel function can be obtained by minimizing autoterm
distortion by passing autoterm energy as much as possible
for a kernel of fixed volume so as to suppress cross-terms.
AOK(𝑡, 𝑓) is used to analyze the rotor vibration signals and
the analysis results are expressed in the TFI with 256 gray
levels. Based on the TFIs, how to classify the vibration signals
correctly corresponding to the rotor states is a typical pattern
recognition problem. In the view of too many pixels in TFI,
it is necessary to transform the TFI into the expected low-
dimension feature space and keep the information of TFI as
much as possible.

The global statistics for the whole TFI cannot describe the
local details of the signal.The fault characteristic components
generally concentrate in some frequency bands of TFI, not
like the noises distributed in the whole plane of TFI. In order
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to get more details about fault characteristic components, the
TFI is divided into some frequency band regions, as shown in

AOK (𝑡, 𝑓) = 𝐼∑
𝑖=1

𝑅𝑖 (𝑡, 𝑓) , (2)

where 𝐼 is the number of TFI segmented blocks and 𝑅𝑖(𝑡, 𝑓)
is the 𝑖th frequency band block. The textural descriptors are
extracted in each block instead of from the whole TFI.

3. Texture Features Extraction

For the intelligent pattern recognition of TFIs, the key point is
to extract the effective features which can accurately capture
the fault information of rotor system. Texture as one of
the basic feature of TFI has clear meaning representing
the fault information in the rotor vibration signal and can
be easily calculated. Texture feature can steadily describe
the spatial changes situation of the color, the gradation or
the fine structure, and shape of the image with favorable
rotation invariance and anti-interference capability [16, 17].
Texture is analyzed using a statistical technique based on
GLCM, which use the gray level spatial correlation, firstly to
construct a cooccurrence matrix according to the direction
and distance between image pixels and then to extract from
cooccurrence matrix meaningful statistical data as the image
texture features.

For the matrix image with gray level 𝑁𝑔, its horizontal
and vertical direction have 𝑁𝑥 and 𝑁𝑦 pixels, respectively.
Given 𝐿𝑥 = {1, 2, . . . , 𝑁𝑥}, 𝐿𝑦 = {1, 2, . . . , 𝑁𝑦}, and 𝐺 ={0, 1, . . . , 𝑁𝑔 − 1} as quantitative gray level set, the image can
be expressed as 𝐼 : 𝐿 𝑥 × 𝐿𝑦 → 𝐺. Gray level cooccurrence
matrix presents a pair of pixels which is on the (Δ 𝑥, Δ 𝑦)
direction, horizontal distance has Δ 𝑥 pixels, vertical distance
has Δ 𝑦 pixels, and each has gray value probability is of 𝑖 and𝑗, respectively. It can be expressed as 𝑃(𝑖, 𝑗, Δ 𝑥, Δ 𝑦), which is
the element of gray level cooccurrence matrix. 𝑃(𝑖, 𝑗, Δ 𝑥, Δ 𝑦)
is written as follows:

𝑃 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦)
= #

{{{
((𝑘, 𝑙) , (𝑚, 𝑛)) ∈ (𝐿𝑥 × 𝐿𝑦) × (𝐿𝑥 × 𝐿𝑦)
𝐼 (𝑘, 𝑙) = 𝑖, 𝐼 (𝑚 + Δ 𝑦, 𝑛 + Δ 𝑥) = 𝑗

}}}
, (3)

where #{𝑋} is the elements number of set 𝑋. When𝑃(𝑖, 𝑗, Δ 𝑥, Δ 𝑦) is normalized

𝑝 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦) = 𝑃 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦)𝐺 , (4)

where 𝐺 is normalized constant which is sum of all𝑃(𝑖, 𝑗, Δ 𝑥, Δ 𝑦) elements. Six typical texture features can be
extracted from gray level cooccurrence matrix as follows and
noted as𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6, respectively.

(1) Angular second moment (ASM) or called energy is
used to measure the uniformity of image gray level, it
can be written as follows:

𝑚1 = ASM (Δ 𝑥, Δ 𝑦) = ∑
𝑖,𝑗

𝑝 ((𝑖, 𝑗, Δ 𝑥, Δ 𝑦))2 . (5)

(2) Inverse difference moment (IDM) is

𝑚2 = IDM = ∑𝑖,𝑗 𝑝 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦)
1 + (𝑖 − 𝑗)2 . (6)

(3) Contrast (CON) reflects the clear degree of image
texture; rough texture has small inertial and fine
texture has large inertial; it is represented as follows:

𝑚3 = CON (Δ 𝑥, Δ 𝑦) = ∑
𝑖,𝑗

(𝑖 − 𝑗)2 𝑝 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦) . (7)

(4) Correlation (COR) is used to describe the matrix
similarity degree between the row element or the
column elements. It is a measurement for gray linear.

𝑚4 = COR (Δ 𝑥, Δ 𝑦)
= [∑𝑖,𝑗 (𝑖 × 𝑗 × 𝑝 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦)) − 𝜇𝑥𝜇𝑦]𝜎𝑥𝜎𝑦 , (8)

where, 𝜇𝑥, 𝜇𝑦 and 𝜎𝑥, 𝜎𝑦 are the mean value and
standard deviation of 𝑝𝑥 (𝑝𝑥 = ∑𝑖 𝑝(𝑖, 𝑗, Δ 𝑥, Δ 𝑦)) and𝑝𝑦 (𝑝𝑦 = ∑𝑖 𝑝(𝑖, 𝑗, Δ 𝑥, Δ 𝑦)).

(5) Variance (VAR) of sum of squares is

𝑚5 = VAR (Δ 𝑥, Δ 𝑦) = ∑
𝑖,𝑗

(𝑖 − 𝜇)2 𝑝 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦) , (9)

where 𝜇 is the mean value of 𝑝(𝑖, 𝑗, Δ 𝑥, Δ 𝑦).
(6) Entropy (ENT) shows the clutter degree of image

texture. The higher the image texture consistency, the
greater the entropy; otherwise, the higher the image
texture disorderly degree, the smaller the entropy

ENT (Δ 𝑥, Δ 𝑦)
= ∑
𝑖,𝑗

− 𝑝 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦) × log (𝑝 (𝑖, 𝑗, Δ 𝑥, Δ 𝑦)) . (10)

4. Linear Support Higher-Order Tensor
Machine for Multiclassification

Tensor presentation has the advantage of preserving intrin-
sic structure of dataset, such as the relationships between
dimensions within the same order and the relationships of
dimensions in the different orders. Due to the so-called curse
of dimensionality and the small sample size problem, the
SVM model based on vector space cannot directly deal with
tensor patterns. So the SHTM based on the SVM and tensor
rank-order decomposition TVM is applied to classify the
multidimensional features in rotor fault states. The SHTM
overcomes the disadvantages of local minimal problem and
nonconvex optimization problem in conventional supervised
tensor learning framework.

Given a training set of 𝑀 pairs of samples {𝑋𝑚, 𝑦𝑚}𝑀𝑚=1,
where 𝑋𝑚 = R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is the input data and 𝑦𝑚 ∈ {−1, 1}



4 International Journal of Rotating Machinery

is the corresponding class labels of𝑋𝑚, the SHTMmodel for
binary classification is in the following:

min
W,𝑏,𝜉

𝐽 (W, 𝑏, 𝜉) = 12 ‖W‖2𝐹 + 𝐶 𝑀∑
𝑚=1

𝜉𝑚
s.t. 𝑦𝑚 (⟨W, 𝑋𝑚⟩ + 𝑏) ≥ 1 − 𝜉𝑚, 𝑚 = 1, . . . ,𝑀

𝜉𝑚 ≥ 0,
𝑚 = 1, . . . ,𝑀,

(11)

whereW is the weight tensor of the hyperplane, 𝑏 is the bias,𝜉𝑚 is the error of the𝑚th training sample, and𝐶 is the tradeoff
between the classification margin and misclassification error.
For the Lagrangian function of the optimization problem (11),
noted as 𝐿(𝑊, 𝑏, 𝑎, 𝛽, 𝜉), let the partial derivative operations
on 𝐿(𝑊, 𝑏, 𝑎, 𝛽, 𝜉) with respect to 𝑊, 𝑏, and 𝜉𝑚 be zeroes,
respectively; we have the optimization problem of (11) as
follows:

min
𝛼

12
𝑀∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 ⟨𝑋𝑖, 𝑋𝑗⟩ − 𝑀∑
𝑚=1

𝛼𝑚 (12)

Subject to
𝑀∑
𝑚=1

𝛼𝑚𝑦𝑚 = 0
0 ≤ 𝛼𝑚 ≤ 𝐶, 𝑚 = 1, . . . ,𝑀,

(13)

where 𝛼𝑚 are the Lagrange multipliers and ⟨𝑋𝑖, 𝑋𝑗⟩ are the
inner products of𝑋𝑖 and𝑋𝑗.

Let the rank-one decomposition of 𝑋𝑖 and 𝑋𝑗 be 𝑋𝑖 ≈∑𝑅𝑟=1 x(1)𝑖𝑟 ∘ x(2)𝑖𝑟 ∘ ⋅ ⋅ ⋅ ∘ x(𝑁)𝑖𝑟 and𝑋𝑗 ≈ ∑𝑅𝑟=1 x(1)𝑗𝑟 ∘ x(2)𝑗𝑟 ∘ ⋅ ⋅ ⋅ ∘ x(𝑁)𝑗𝑟 ,
respectively; then the inner product of𝑋𝑖 and𝑋𝑗 is calculated
as follows:

⟨𝑋𝑖, 𝑋𝑗⟩
≈ 𝑅∑
𝑝=1

𝑅∑
𝑞=1

⟨x(1)𝑖𝑝 , x(1)𝑗𝑞 ⟩ ⟨x(2)𝑖𝑝 , x(2)𝑗𝑞 ⟩ ⋅ ⋅ ⋅ ⟨x(𝑁)𝑖𝑝 , x(𝑁)𝑗𝑞 ⟩ . (14)

Substituting (14) into (12), then the class label of a testing
example𝑋 is predicted as follows:

𝑦 (𝑋) = sign( 𝑀∑
𝑚=1

𝑅∑
𝑝=1

𝑅∑
𝑞=1

𝛼𝑚𝑦𝑚 𝑁∏
𝑛=1

⟨x(𝑛)𝑚𝑝, x(𝑛)𝑞 ⟩ + 𝑏) , (15)

where x(𝑛)𝑚𝑝 and x(𝑛)𝑞 are the elements of the rand-one decom-
position of𝑋𝑚 and𝑋, respectively. So the normal hyperplane
can be expressed as a linear combination of training samples
in tensor space.

Like the 𝐿-class classification problem of SVM, the one-
against-one support tensor machine needs to construct 𝐿(𝐿−1)/2 binary classification SHTM models where each one is
trained on data points from two classes. The class label of
a testing example 𝑋 can be predicted by applying majority
voting strategy; that is, the vote counting takes into account
the outputs of all binary classifiers. If 𝑋 belongs to the 𝑖th

class, then the 𝑖th class gets one vote; otherwise the 𝑗th class
gets one vote; 𝑋 is labeled by the class with the most votes.
The differences of SHTM versus SVM are as follows:

(1) SVM forces a tensor into vectors as input, while
SHTM adopts a more compact tensor representa-
tions, that is, 𝑅 rank-one tensor as input, which not
only has the capability for capturing structural infor-
mation of features, but also avoids the so-called curse
of dimensionality and small size sample problems in
vector classification of SVM.

(2) Thedecision function of vector-based SVMalgorithm
is in the linear form and determined by weight vector
and the bias in hyperplane of vector space, while
the decision function of SHTM algorithm is in the
multilinear form and determined by weight tensorW
and the bias in the hyperplane of tensor space. It is
more convenient to construct a maximal separable
classifier between two classes or transform tensor
data into the separable feature space with the tensor
decomposition and transform.

(3) When the number of training points is relatively
small, it is easy to show the overfitting phenomenon
in the processing of SVM learning, because it is
difficult to reduce the parameter vectors in vector-
basedmachine learningmethods. But, for the SHTM,
the number of parameters can be reduced by the
decomposition of the parameter tensor and the low
rank replacement techniques, so as to avoid the
overfitting phenomenon in high dimension and small
size sample.

(4) For a set of tensor samples {𝑋𝑚 ∈ 𝑅𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 , 𝑦𝑚}𝑀𝑚=1,
SVM requires 𝑂((𝑀 + 1)∏𝑁𝑛=1𝐼𝑛 + 1)memory space,
while SHTM only requires 𝑂((𝑀 + 1)𝑅∑𝑁𝑛=1 𝐼𝑛 +1) memory space, where 𝑅 is the rank of ten-
sor input. The computational complexity of SVM
is 𝑂(𝑀2∏𝑁𝑛=1𝐼𝑛); the computational complexity of
SHTM is𝑂(𝑀2𝑅2∑𝑁𝑛=1 𝐼𝑛). It is clear that that SHTM
is more efficient than SVM.

5. Proposed Method

Asmentioned previously, some useful characteristic informa-
tion about rotor fault might be lost in the uniform calculation
of global TFT texture features. The texture features are
extracted in each subregion of TFI by segmenting frequency
band. These features in the different frequency band region
form a multidimensional array. The multidimensional fea-
tures inmachine learning are generally are firstly transformed
to a vector representation and then processed by the classical
learning algorithms operating with vectors. However, such
multi-to-one-dimensional transformations usually lead to
loss of important information. So the features are formed to a
tensor preserving data dimensionality complex structure.The
feature tensor can capture structural information relations
among the texture feature values in different frequency bands.
It has been clarified in Section 3 that the SHTM is the
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generalization of the standard linear SVM to tensor patterns
into tensor space and efficient for the classification of feature
tensors. Therefore, the tensor rank-one decomposition is
performed on the feature tensors which are processed by the
SHTM for the classification of rotor fault states.The proposed
method is explained with the following steps.

Step 1. Collect the vibration signal of the rotor-bearing system
in normal and fault conditions.

Step 2. Perform the time-frequency transform for each vibra-
tion signal sample, and their time-frequency distributions
can be obtained and expressed as the corresponding TFIs.

Step 3. Optimally segment each TFI is into 𝐼 frequency band
zones which are taken as 𝐼 subimages 𝑅𝑖(𝑡, 𝑓), 𝑖 = 1, 2, . . . , 𝐼.
Step 4. Process TFI zone 𝑅𝑖(𝑡, 𝑓) with gray level, and its
GLCM is calculated as GLCM𝑅𝑖 , 𝑖 = 1, 2, . . . , 𝐼. The texture
features are calculated in each GLCM, which forms the
feature vector x𝑅𝑖 = [𝑥𝑅𝑖1 , 𝑥𝑅𝑖2 , . . . , 𝑥𝑅𝑖𝐽 ], 𝑗 = 1, 2, . . . , 𝐽. 𝑥𝑅𝑖𝑗
represents the 𝑗th texture feature of GLCM𝑅𝑖 .

Step 5. In order to preserve data dimensionality and allow
for processing of complex structures, the texture features
are represented as a synthetic feature tensor shown in (16)
according to the sequence of frequency band blocks.

𝑋𝐼×𝐽 =
[[[[[[[[[[[
[

x𝑅1...
x𝑅𝑖...
x𝑅𝐼

]]]]]]]]]]]
]

=
[[[[[[[[[[[[
[

𝑥𝑅11 ⋅ ⋅ ⋅ 𝑥𝑅1𝑗 ⋅ ⋅ ⋅ 𝑥𝑅1𝐽... d
...

𝑥𝑅𝑖1 𝑥𝑅𝑖𝑗 𝑥𝑅𝑖𝐽... d
...

𝑥𝑅𝐼1 𝑥𝑅𝐼𝑗 𝑥𝑅𝐼𝐽

]]]]]]]]]]]]
]

,

𝑖 = 1, 2, . . . 𝐼, 𝑗 = 1, 2, . . . , 𝐽.

(16)

Here𝑋𝐼×𝐽 is the second-order tensor for the SHTM input.

Step 6. In view of the spatial distribution characteristics of
frequency components, the absolute values of texture feature
cannot reflect effectively the differences between the TFI
blocks. To facilitate a fair comparison, each column value
of 𝑋𝐼×𝐽 is normalized; that is, 𝑥𝑅󸀠𝑖𝑗 = 𝑥𝑅𝑖𝑗 /∑𝐼𝑖=1 𝑥𝑅𝑖𝑗 ; then the

normalized feature tensor 𝑋̂𝐼×𝐽 is gotten.
Step 7. The normalized feature tensor 𝑋̂𝐼×𝐽 (noted as is𝑋𝑝) is decomposed into 𝑅 rank-1 tensor. The 𝑅 rank-1
decomposition for 𝑋𝑝 is to find the output vector u𝑟 and k𝑟
(1 ≤ 𝑟 ≤ 𝑅) make 𝑋𝑝 ≈ ∑𝑅𝑟=1 u𝑟 ∘ k𝑟. u𝑟 and k𝑟 (1 ≤ 𝑟 ≤ 𝑅)
make𝑋𝑝 ≈ ∑𝑅𝑟=1 u𝑟 ∘k𝑟.With the initial values of 𝑟, u0𝑟 , and k0𝑟 ,
set u𝑡+1𝑟 = 𝑋𝑝×2k𝑡𝑟, k𝑡+1𝑟 = 𝑋𝑝×2u𝑡𝑟 and normalize u𝑡+1𝑟 , k𝑡+1𝑟 .
Supposing

󵄩󵄩󵄩󵄩󵄩(u𝑡+1𝑟 , k𝑡+1𝑟 ) − (u𝑡𝑟, k𝑡𝑟)󵄩󵄩󵄩󵄩󵄩2𝐹 ≤ 𝜀, (17)

where 𝜀 is the decomposing control threshold, u𝑟 and k𝑟
would be the outputs of the 𝑅 rank-1 decomposition. Oth-
erwise,𝑋𝑝 = 𝑋𝑝 − u𝑡+1𝑟 ∘ k𝑡+1𝑟 , 𝑟 = 𝑟 + 1, and repeat (17).

Step 8. In the sameway, the𝑅 rank-1 tensor of training sample𝑋𝑚 is obtained𝑋𝑚 ≈ ∑𝑅𝑟=1 s𝑟∘t𝑟.The inner product of𝑋𝑝 and𝑋𝑚 is calculated as

⟨𝑋𝑝, 𝑋𝑚⟩ = ⟨ 𝑅∑
𝑟=1

u𝑟 ∘ k𝑟, 𝑅∑
𝑟=1

s𝑟 ∘ t𝑟⟩

= 𝑅∑
𝑙=1

𝑅∑
𝑛=1

⟨u𝑙, s𝑛⟩ ⟨k𝑙, t𝑛⟩ .
(18)

Substituting (18) into (12), the sequential minimal optimiza-
tion algorithm is used to find the optimal tradeoff parameter
in the SHTM.

Step 9. Based on the inner product in (18), the rotor states
classification result is obtained according to (15) and its
classification accuracy is evaluated and compared.

6. Applications in the Rotor System
Fault Identification

Figure 1 shows the experiment set-up used in this work.
The test rig consists of motor, shown on the right of the
photograph, driving a rigid cylindrical shaft supported by
two cylindrical journal bearings, with a supporting journal
bearing on the right end near the driving motor and an oil
film journal bearing at the left end for simulating oil film
instability faults. Twodiscs aremounted on the shaft,with one
at themid-plane between the two bearings and the other near
the left oil film bearing. The shaft is not of uniform diameter
throughout but has two portions with different diameters.
One short portion of diameter 24mm rotates in the left oil
film journal bearing and has a length of 40mm, just slightly
longer than the length of the bearing. The remainder of the
shaft has a diameter of 12mm and a length of 480mm and
has its other end rotating in the right supporting bearing.
Two proximity eddy current sensors are mounted, as shown
in the figure, just to the right of the center disc, tomeasure the
horizontal and vertical vibrations of the rotor at that position.
In the experiment, a small mass is attached in the rotating
disc to simulate an unbalance condition. Using the test bench
described, the experiments under different rotational speeds
with various artificially simulated faults are conducted to
verify the practical validity of the proposedmethod.The data
sampling frequency is 2048Hz. The experiment details are
listed in Table 1.

Considering the different rotor-bearing states, there are
totally 8 running states. Moreover, the data corresponding
to each rotor state is equally divided into two parts: one
for reference data and the other for test data. Furthermore,
for each rotor state, the reference and test data are again
partitioned into some equal time-interval subsignals with the
time duration 0.8 s. There are totally 400 vibration data for 8
bearing train states, about 50 vibration signals for each state.
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Sha�

Oil �lm journal bearing pedestal 
and oil cup

Journal bearing pedestal 
and oil cup�e overall test apparatus

Vibration sensor for obtaining
the acceleration signals

Figure 1: Test rig and its main components.

Table 1: System operation states at different operation speeds.

Experiment 1 2 3 4 5 6 7 8
Class code (a) (b) (c) (d) (e) (f) (g) (h)
Operating
speed/rpm 2000 3000 5500 6200 2000 3000 5500 6200

Observed state
of operation Normal Resonance at first

critical frequency Oil whirl Oil whip Unbalance Resonance with
unbalance mass

Oil whirl with
unbalance mass

Oil whip with
unbalance

After time-frequency analysis, about 50 TFIs for each state are
obtained.

Firstly, AOK time-frequency transform is performed on
every sample. Figure 2 depicts the AOK distributions of the
rotor vibration signals in different states. The TFIs at 3000
rotating speed with and without unbalance mass are very
similar, as shown in Figures 2(b) and 2(f) where the main
frequency components are almost the same. The same case
occurs in Figures 2(a), 2(e), 2(c), and 2(g). Therefore, it is
not easy to identify the rotor states directly according to the
TFIs. It is very important to perform a quantitative analysis
for accurate TFI pattern classification.

Each TFI is partitioned into 5 regions (𝑅𝑖(𝑡, 𝑓), 𝑖 =1, 2, . . . , 5) with equal frequency band 200Hz. The GLCM is
calculated for each region 𝑅𝑖. Based on 𝑅𝑖 the corresponding
texture feature vectors are obtained and noted as 𝑀𝑖 =[𝑚𝑅𝑖1 , 𝑚𝑅𝑖2 , . . . , 𝑚𝑅𝑖6 ], (𝑖 = 1, 2, . . . , 5), where 𝑚𝑅𝑖1 , 𝑚𝑅𝑖2 , . . . , 𝑚𝑅𝑖6 ,
respectively, presents ASM, IDM,CON,COR,VAR, and ENT
of TFI region 𝑅𝑖 in the 𝑖th frequency band. To present the
differences between the frequency components under each
conditions, 𝑀𝑖 is arranged in the sequence of frequency
bands to construct the tensor 𝑀 = [𝑀1,𝑀2,𝑀3,𝑀4,𝑀5]𝑇.
To a fair comparison, the column vectors for each texture
feature are normalized, respectively. In order to clearly display
the difference of features in eight rotor states, the texture
feature tensors are mapped into the color lattices. Figure 3
provides the feature tensors of four individual signals selected
from each state sample set texture tensors. It is clear that the

feature tensors for the same type of rotor state are very similar,
but for different fault types the obvious differences exist in
the color lattices. Therefore, the feature tensors have good
clustering and classifying, which can effectively represent
rotor working conditions and be used to do fault states
recognition.

The normalized feature tensors are put into the SHTM for
classification.The classification results of the 8 rotor states are
shown in Table 2. Table 2 illustrates that, when the feature
tensors are used as input for the SHTM, 8 types of rotor
state samples can be effectively distinguished.With the tensor
features in the states “(b)”; “(c)”; “(g)”; and “(h)” (noted
as in Table 1) the SHTM exhibits the best results and the
recognition rate reach 100%. The recognition rates of “(a),”
“(b),” “(e),” and “(f)” state are 99.48%, 97.81, 99.73%, and
98.95%, respectively. The total recognition rate is 99.5%. The
classification results indicate that the rotor condition can be
effectively described using the texture tensors and accurately
identified with the SHTM.

In order to investigate the robustness of the proposed
method to the selection of TF transform, the classification
accuracies based on short-time Fourier transform (STFT), S-
transform (S-T), continuous wavelet transform (CWT), and
AOK in the case of different segment number are compared
in Figure 4. It is clear in Figure 4, whatever the segment num-
ber is, the recognition rates with different time-frequency
distributions are very close with enough training samples.
Comparatively speaking, AOK time-frequency transformhas
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(b) Resonance at first critical frequency
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(f) Resonance with unbalance
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(g) Oil whirl with unbalance
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(h) Oil whip with unbalance

Figure 2: AOK time-frequency spectrogram for each sample vibration.

a good stability in the classification even with small sample
data. That is, the proposed method has a good robustness to
the selection of time-frequency distribution.

At the same time, in order to investigate the effect of
segment number on the classification preciseness, the state
recognition rates in the cases of different segmentations are
compared with each other, as shown in Figure 5. According
to Figure 5, with enough training samples, the recognition

rates are nearly approaches to the same value 100% in all the
cases of segmentations. In the case of the big size sample, the
proposed method is robust to the segment number of TFI.
In the case of the small size sample below 60, the optimal
segment number is 5, and the corresponding recognition
rate reaches 99.96% with 30 training samples. In general, the
segment number of TFI has a good robustness to the fault
pattern recognition of rotor system.
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Figure 3: Texture feature tensors of TFI under 8 rotor states.

Table 2: Recognition results of rotor states.

State Test sample number Right recognized results Wrong recognized results Recognition rate
(a) 387 385 2 99.48%
(b) 382 374 8 97.91%
(c) 362 362 0 100%
(d) 375 375 0 100%
(e) 377 376 1 99.73%
(f) 381 377 4 98.95%
(g) 369 369 0 100%
(h) 367 367 0 100%
Total number 3000 2985 15 99.50%
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Figure 4: Recognition rate comparison between different time-frequency methods.
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Figure 5: Comparison of recognition rates with different segment number.

To further evaluate the performance of proposedmethod,
we also used the same training and test samples to carry out
the SVM and BP neural network identification test in the
case of different TF segmentation. For the classifiers SVM
andBP under themultiple segments, the input feature vectors
are constructed by stacking the texture features of each TFI
subregion. The performances of each classifier are compared
in Figure 6, where the number (1, 4, 5) denotes the number
of segment and “Number & classifier” denotes the classifier
in the case of the corresponding segment number. When
the segment number is set as 1, the global texture features
of TFI are extracted. From the Figure 6, the accuracy curve
of “𝑁 = 5 and STM” is completely above the other curves
and very close to the curve of “𝑁 = 4 and STM.” It is clear
that the feature tensor-based SHTM performs better than the
vectors-based BP or SVM.The curves of “𝑁 = 1 and BP” and
“1 and SVM” are totally below the other curves. It is verified
that using the hierarchical texture tensor greatly enhances the
classification accuracy compared to using the global features.

7. Conclusions

In this paper, a novel approach for rotor system fault pattern
recognition is proposed based on the SHTM and the time-
frequency hierarchical texture feature tensor. The contribu-
tions of this paper include the following:

(1) In order to keep the correlation and interdependence
between the TF characteristics in different frequency
bands, hierarchical feature extraction is performed
on the TFI fragment in different frequency bands.
The features in each frequency band are extracted
separately and treated differently. The hierarchical
feature extraction can effectively decrease the negative
interference effects from other harmonic components

or strong noises and make the fault characteristics be
predominant.

(2) To avoid the information loss anddistortion in vector-
izing the hierarchical texture features of TFT, the fea-
ture vectors fromeachTFI blocks are constructed into
a feature tensor according the sequence of frequency
band segmentation. The representation of feature
tensormakes full use of abundant information on TFI
and solves the “curse of dimensionality” problem in
the stacking vector classification

(3) The SHTM as a tensor classifier is introduced into
the pattern recognition of bearing fault states, which
can effectively exploit the characteristics of features
among multiple modes and the redundancy from
interband correlation.The experiment results showed
that the tensor classifier performs greatly better than
the conventional vector-based classifiers in the rotor
fault pattern recognition, especially in the case of the
small size sample.

In a word, for the state identification of rotor system the
proposed method can obtain high fault pattern recognition
rate, good robustness to the selection of time-frequency
transform, and the number of TFT segments. This promis-
ing method will contribute to machine working conditions
monitoring and fault diagnosis.
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Figure 6: Comparison of recognition rate between hierarchical texture algorithms and traditional texture algorithms.
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