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Numerous studies on fault diagnosis have been conducted in recent years because the timely and correct detection of machine
fault effectively minimizes the damage resulting in the unexpected breakdown of machineries. The mathematical morphological
analysis has been performed to denoise raw signal. However, the improper choice of the length of the structure element (SE) will
substantially influence the effectiveness of fault feature extraction. Moreover, the classification of fault type is a significant step
in intelligent fault diagnosis, and many techniques have already been developed, such as support vector machine (SVM). This
study proposes an intelligent fault diagnosis strategy that combines the extraction of morphological feature and support vector
regression (SVR) classifier. The vibration signal is first processed using various scales of morphological analysis, where the length
of SE is determined adaptively. Thereafter, nine statistical features are extracted from the processed signal. Lastly, an SVR classifier
is used to identify the health condition of the machinery. The effectiveness of the proposed scheme is validated using the data set

from a bearing test rig. Results show the high accuracy of the proposed method despite the influence of noise.

1. Introduction

Given the rapid development of industrial technology,
numerous multifunctional machineries have been employed
to replace humans, particularly in dangerous environments.
High production efficiency considerably relies on the con-
tinuous operation of machineries. However, unexpected
machine breakdowns often occur due to mechanical faults,
thereby resulting in huge economic losses and even threat-
ening human safety. Researchers have determined that most
machine failures are caused by faults in key components,
such as bearings and gearboxes [1, 2]. Hence, the demand to
inspect the health condition of these crucial components is
increasing, and an efficient and intelligent machine fault diag-
nosis method should be developed to improve the reliability,
safety, and effectiveness of operating systems [3, 4].
Extensive studies have been conducted in recent years to
improve the effectiveness of fault diagnosis methods. Signal
processing- and pattern recognition-based methods are the
two main categories of data-driven techniques. Fault signal

processing refers to the extraction of fault-related features
from raw signals, in which faulty impulses are whelmed with
noise. Consequently, a few related theories or methods have
been developed. Ben Ali et al. [5] conducted a mathemat-
ical analysis to select the most significant intrinsic mode
functions after an empirical mode decomposition of the
bearing fault signal and evaluated the bearing condition and
defect severity. Seshadrinath et al. [6] introduced complex
wavelets in multiple fault diagnoses and proved the appli-
cability of this scheme for industrial drives under variable
frequencies and load conditions. Cong et al. [7] proposed
the slip matrix construction method based on singular value
decomposition. Given that the bearing runs from normal
state to failure, the initial fault signal component can be
selected from the entire life vibration data, thereby achieving
an excellent performance in fault detection. Tiwari et al.
[8] extracted the bearing fault features based on multiscale
permutation entropy, which proved to be a reliable and
automated fault diagnosis approach. Wang et al. [9] used the
kurtosis extracted from the signal processed by short-time
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Fourier transform to establish the kurtogram; the enhanced
kurtogram was effective in detecting various bearing faults.
Zhang et al. [10] improved the Hilbert-Huang transform
spectrum, which was constructed with the relevant and
nearly monochromatic IMFs. A substantially accurate time-
frequency distribution was produced for the inspected signal.

Morphological analysis has also been extensively per-
formed to evaluate the satisfactory performance of signal
processing in noise reduction. This process is an originally
developed nonlinear method that uses structure elements
(SEs) to measure and extract the corresponding shape of
a given image [11]. Morphological analysis is also effective
in many aspects, such as surface chemistry [12]. Moreover,
machine fault diagnosis extracts the fault-related impacts
with specific shapes, which are obtained using the component
mechanism. Therefore, morphological analysis is applicable
in extracting or enhancing the fault features. Dong et al.
[13] effectively identified the rotating machinery fault by
using a morphological filter, which is optimized by the par-
ticle swarm optimization algorithm and nonlinear manifold
learning algorithm local tangent space alignment. Rajabi et
al. [14] proposed a novel approach by combining mathe-
matical morphology and multioutput adaptive neurofuzzy
inference system classifier. Li et al. [15] established a mul-
tiscale morphological filtering of the vehicle system model,
which displays considerable noise reduction performance.
The results demonstrated that the proposed method can
extract the influential characteristics of axle box vibration
signals and effectively diagnose real-time wheel flat faults.
Hong et al. [16] designed a gear fault diagnosis method based
on the morphological mean wavelet transform, which has a
simple structure, easy realization, sensitive local extremum
signal, and high denoising ability, to determine the position
of the impact signal. Raj and Murali [17] introduced a new
method for the selection of SEs that depends on kurtosis,
which is effective and robust in bringing out the impulses
from bearing fault signals. Li et al. [18] calculated the general
mathematical morphology particle from the normal state to
failure; the calculated index was proven to be a valuable
indicator of the degradation of the bearing performance. Yu
et al. [19] applied an improved morphological component
analysis to separate the meshing and periodic impulse com-
ponents. Several case studies validated the effectiveness of
diagnosing the compound fault of gearboxes. Bhateja et al.
[20] introduced a scheme that combines the wavelet analysis
and morphological filtering in the ECG field. The previous
study has completed a few accomplishments in processing
and extracting the features of machinery fault. However, the
selection of the length of SE is crucial to properly measure
and extract such features. Most of them are selected based
on the experience or complicated indicators, which is time
consuming and inapplicable to online processing.

Expertise is necessary to implement a signal processing-
based method to correctly diagnose the machine fault using
the resulting signal. However, the acquired signal is often
obtained from multiple sources due to the environment
where the machine works; the extraction of the machine
fault-related component becomes difficult as well. Conse-
quently, after the denoising process and fault characteristic
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extraction, an appropriate pattern recognition method is
selected to map the features of the fault type. In recent
years, several machine learning algorithms, such as support
vector machine (SVM), deep neural network, and clustering
algorithm, have been employed for this objective [21]. Vapnik
[22] proposed SVM, which is regarded as a promising tool
for classification with well-defined formulation and performs
well in a few sample circumstances. SVM is a binary classifier.
However, the condition of the bearing often contains the
inner race fault, outer race fault, ball fault, and health status.
A few strategies, such as the direct acyclic graph, one against
all, and one against one, can be applied to solve this problem
[23]. The one against one strategy is the recommended
and preferred strategy for the actual application because
of its rapid training speed and satisfactory accuracy in
classification. However, this strategy is a voting approach.
Multiple binary classifiers should be constructed and the
samples should be fed into these classifiers to obtain the vote
for each class. The class with the highest votes is the output
class of the related sample, thereby suffering from equal
votes problem. These strategies have drawbacks and increase
the computational burden. Support vector regression (SVR),
which was developed from SVM, can address the problem
with continuous output or target value. Hence, SVR is
commonly applied for time series analysis. Gu et al. [24]
developed an incremental v-SVR based on v-SVC. The case
study on benchmark data sets proved that the incremental
SVR learning algorithm can avoid the infeasible updating
paths by converging to the optimal solution. Kazem et al. [25]
proposed a stock market price predicting method based on
SVR. The SVR hyperparameters were optimized using the
firefly algorithm and chaos theory. The phase space dynamics
were reconstructed using a delay coordinate embedding
method and eventually reached high prediction accuracy.
Kavousi-Fard et al. [26] used SVR to obtain the accurate
electrical load estimate, which outperformed the traditional
techniques. Wei et al. [27] selected the parameters of SVR
that were estimated through particle filtering and applied
thereafter in reliability prediction. Chen and Yu [28] used
SVR on the basis of an unscented Kalman filter to precisely
update the short-term estimation of wind speed sequence.

This study presents a novel intelligent machine fault
diagnosis procedure. The signals are first preprocessed using
the improved morphology analysis, which selects the SE
length adaptively. Thereafter, a feature vector with nine
statistical values is calculated from the processed vibration
signal for each sample. SVR theory is used as basis to develop
a regressive classifier to overcome the SVM problems. Lastly,
one case study for bearing is conducted to verify the satisfac-
tory performance of the proposed procedure. Moreover, SVR
exhibits an improved accuracy compared with other fault
diagnosis schemes.

The rest of this paper is organized as follows. Section 2
provides a brief description of the principal theory of a
morphological analysis and SVR. Section 3 introduces the
proposed intelligent fault diagnosis procedure. Section 4
discusses the case study that validates the performance of
the proposed method. Lastly, Section 5 presents the conclu-
sion.
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2. Theoretical Background

2.1. Morphological Analysis. Serra [29] first introduced mor-
phological analysis in 1982 and used SEs to collect informa-
tion or deform the shape of an image. Morphological analysis
has been verified to exhibit an outstanding performance in
denoising. This method functions with two basic operators
as follows:

Erosion

(f©g) (n) = min [f (n+m) - g (m)], "
m=0,1,2...,M-1,n=0,1,2,...,N-1

Dilation
(f®g) () = max [f (n—m)+g(m)],
m=0)1)2:'~-;M_1, n=0,1,2,...,N—1,

)

where f(n) is the original one-dimensional vibration signal,
g(m) is the SE, and ® and & are the operators of erosion and
dilation, respectively. Erosion calculation is used to suppress
and smooth the positive and negative impacts, respectively.
By contrast, dilation calculation is used to flatten and suppress
the positive and negative impacts, respectively. Another two
operators are created on the basis of two basic operators as
follows:

Opening

(fog)n) =(fOg®g)(m), n=0,1,2,..,N-1 (3)

Closing
(f=9) () = (f ® g0g) (),

where o and e represent the opening and closing functions,
respectively. The opening operator suppresses and preserves
the positive and negative impacts, respectively. By contrast,
the closing operator suppresses and preserves the negative
and positive impacts, respectively.

The preceding four operators only calculate the feature
information from one aspect and may lose a few geometric
characteristics of the signal, which is meaningful in fault diag-
nosis. To detect the impulsive components, the closing and
opening operators are combined to establish the difference
operator, which can extract the positive and negative fault
impacts.

n=0,1,2,....,N-1, (4)

Difference
(fegi=fog)m)=(f@gOg- fOgeg)n). ()

The performance of morphological analysis depends on
the operators and SEs; therefore, selecting an appropriate
SE is significant. SEs are mainly determined by the length,
height, and shape. SEs with a straight line shape have
been determined to perform well [30]; hence, considerable
attention should be focused to determine the length of SEs.

2.2. Support Vector Regression. SVR is a type of machine
learning algorithm that uses support vector to realize the

function of regression [31]. Let {x;, y;}-, denote the training
set, where x; denotes the ith input feature vector and y;
denotes the ith output pattern (i.e., its label). e-insensitive
SVR aims to find the function f(x):

fx)=wex+b, (6)

where w is the coefficient vector that is used to represent the
place of function in the space and b is a constant quantity.
The question is to find the proper w and b. Moreover, ¢ is
introduced when considering the error-tolerant rate; hence,
the question has changed as follows:

R
min - |w|,
2
st. y—wex;—b<eg @)

wex;+b-y,<s¢

where ¢ denotes the fitting precision. To reduce the influence
of the outlier, the slack variables &; are introduced:

1 : .
min §||w||2+CZ(E,-+Ei),
i=1

st y—w-x;—b<e+§, (8)
w-x;+b-y <e+&

Ei) Ez* > 0’

where C is the penalty factor. &; and &;" are slack variables that
denote the deviation from the functional margin.

The application of the Lagrange multipliers «; and ;" can
change the formula as follows:

W (a,a”)

L
= _%-21 (0 —a) (‘xj - “;) (xi y xj)
i, j=

L L

t ) (=) =) (o +af)e ©)

i=1 i=1

0<a,o <C,i=12,...,L.
To efficiently address the nonlinear regression question, the
kernel function K(x;, x) is introduced and the nonlinear
regression function fitting is obtained as follows:

L

F0-F @)K s o)

i=1
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FIGURE 1: Flowchart of the proposed scheme.

3. Proposed Fault Identification Scheme

The proposed intelligent fault diagnosis procedure (see Fig-
ure 1) is based on the extraction of an adaptive morpho-
logical feature and support vector regressive classifier. The
proposed procedure mainly comprises three steps: varying-
scale morphological analysis, feature extraction, and SVR
classification. The following subsections depict the details.

3.1. The Varying-Scale Morphological Analysis. Different from
the traditional morphological analysis, the proposed varying-
scale morphological analysis considers noise distribution. In
various moments, the fault features are whelmed in varying
degrees under the complicated environment. Hence, a fixed
SE length may be unable to suppress the noise and properly
enhance the fault feature. This study proposes a varying-
scale morphological analysis to overcome the shortcomings
of traditional methods. The lengths of SEs are determined
dynamically using the intervals between the two adjoining
local peaks, that is, by considering the dynamic effect of noise.

Hence, the SE g(m) changes with time point and new
SE g,(m) is proposed as a substitute to g(m). The difference
operator can be changed as follows:

Difference
(f*gu=fog,) )
= (f®9,09,- f0g,®g,) ().

Accordingly, the SE g(m) in the erosion, dilation, open-
ing, and closing transforms is replaced by the redefined SE
().

(11)
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When the surface of a mechanical component suf-
fers a defect during its interaction with other surfaces,
a fault-related impact is generated in the captured vibra-
tion waveforms. Meanwhile, the obtained signal is polluted
in the environment with additional useless impacts. Both
fault features and noise impulses exist in the raw signal
(see Figure 2). Therefore, the local peak values involve fault-
related information and also reflect noise distribution with
time. Consequently, for time ¢ in the signal, the temporal
intervals between the two contiguous peaks are selected as
the length of SE at that moment.

For a temporal signal of Ny, local peaks, T denotes the
moment where the kth local maximum value appears and
Ay denotes the kth time interval between the two relevant
contiguous local peaks. They can be formulated as follows:

T={T 1 k=123,...,N,},
(12)
A = {Ak | Ak = Tk+1 _Tk’ k = 1,2,3,...,N1p - 1}
Let B(n) denote the local peak nearest to the nth discrete
signal in set T'.

B(n):max{T:llTr’lET, T;Sn}, )
13
n=0,1,2,...,N-1.

Let I(n) denote the index of B(n) in set T. The length of
the SE g,(m) for the nth discrete sample can be defined as
follows:

L(g,) = Ay n=01,2,...,N-1 (14)

3.2. Features Extraction. The difference between the mor-
phological operator and a variable SE length is adopted
to process the original signals to effectively suppress the
noise and enhance the fault-related feature. Thereafter, nine
features will be extracted from the enhanced signal: skewness,
kurtosis, clearance factor, shape factor, crest factor, impulse
indicator, variance, square root amplitude value, and absolute
mean amplitude value. The following list shows the nine
statistical features and with their formulations.
Kurtosis: (1/N) ZN sk

i=17i
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Skewness: (1/N) ZN s

i=15i
Clearance factor: max(|s;[)/((1/N) Zfil \/Is_il)2
Impulse factor: max(|s;|)/((1/N) Zfil Is;])
Square root amplitude value: ((1/N) Zf\il \/m )2

Crest factor: max(|s;|)//(1/N) 221 s;

Shape factor: \/(1/N) ¥, s2/(1/N) ¥, Is:)

Variance: (1/N) ZN $?

i=1"i

Absolute mean amplitude value: (1/N) Zf\il Is;]

3.3. SVR Classification. After the utilization of morphological
analysis and feature extraction, training sets {x;, yi}{;l are
generated, where x; denotes the input feature vector, y; is
the label that denotes the fault type, and L is the number
of samples. In practice, machinery fault type is constantly
characterized by features in a nonlinear manner. SVR has
been proven to exhibit immense potential in describing the
nonlinear relationship between the input features and their
output labels. Furthermore, for the samples under the same
healthy state of the machinery, the extracted feature vectors
are correlative to a certain extent. Thus, when these feature
vectors are fed to the trained SVR model, their output values
should be similar. From this point of view, a classification
function based on the regression function in (10) can be
derived. For a vector x; with an unknown label, y; can be
achieved by using the following formula:

y; = argm_xlnzi?M‘m - <Z (o — o] ) K (x; X) + b>‘ , (15)

i=1

where m denotes the label of x;.

Kernel function and penalty factor C are two key com-
ponents of the SVR model. The radial basis function (RBF)
kernel is introduced in this research to easily apply nonlinear
mapping and rapidly optimize the parameters. RBF kernel is

shown as follows:
2
b))

K (x;,x) = exp (
where o is a positive real number and denotes the width
parameter of the function. Hence, the optimization of ¢
and C is necessary to establish an accurate SVR model. The
procedures for parameter optimization are shown in Figure 3.
The search scope of ¢ and search range of C are 0.01 to
0.09 with step 0.01 and 1 to 32 with step 1, respectively.
Thereafter, various o and C are selected in a linear order of the
searching set. Meanwhile, the training samples are randomly
divided into five groups, and the selected o and C are used
to establish the five training models. The average accuracy of
the five models is defined as the accuracy of the SVR model.
Lastly, when all o and C had been evaluated, the accuracy of
each SVR model is compared. Accordingly, the SVR model
with the highest accuracy is used as the final model and its
parameter would be the optimal o and C.

Determine the range and
the step of 0 and C

l

Select 0 and C in linear order

K-CV validation

Have all 0 and C been tested?

Establish SVR model
with best 0 and C

FIGURE 3: Flow diagram for the optimization of SVR model.

To avoid the states of overlearning and insufficient learn-
ing, increasing the credibility of classification result, K-fold
cross-validation (K-CV) [32, 33] is adopted to train the
optimal SVR model; that is, the training samples are divided
into K groups (K is often over 3; in this study, K is set as
5). Each subset is used as a validation set, whereas the other
K -1 groups are used as training sets. Hence, K regression
models exist, and the accuracy of the K-CV regression model
is defined as the average performance of these K regression
models.

4. Experimental Validations

The bearing vibration signals supplied by the Case Western
Reserve University are used to verify the effectiveness of the
intelligent fault diagnosis scheme. The test rig comprises a
2hp motor, test bearing, and accelerometers (see Figure 4).
The acceleration data was measured in the 12 oclock position
of both the fan and drive ends. The digital data used in
this analysis were collected at 12,000 samples per second.
The horsepower and speed data were also collected using
an encoder and torque transducer. The tested bearing is
6205-2RS JEM SKF and the detailed information is presented
in Table 1. The data set used in this study was collected under
four conditions: inner race fault, ball fault, outer race fault,
and healthy state. A total of 58 signal samples were obtained
under each state; 29 of these samples are used for training and
the rest are used for testing. These four conditions are labeled
as 1,2, 3,and 4 in sequence.

The original one-dimension signal is shown in Figure 5.
The proposed varying-scale morphological analysis method
is employed to process the raw signal. The local peaks
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TABLE 1: Geometry information of the test bearing.
Outer race Inner race Pitch Roller
. . . . The number
diameter diameter diameter diameter of rollers
(inch) (inch) (inch) (inch)
2.0472 0.9843 1.537 0.3126 9
TABLE 2: Diagnosis results of processed and raw signals.
Healthy Inner race fault Roller fault Outer race fault Overall
Processed signal
Accuracy of training 100% 100% 100% 100% 100%
Accuracy of testing 96.6% 100% 100% 100% 99.1%
Raw signal
Accuracy of training 100% 100% 100% 100% 100%
Accuracy of testing 100% 100% 89.65% 100% 97.41%

FIGURE 4: Experimental facility.

are determined first based on the procedures depicted in
Section 3, and their time intervals are calculated thereafter.
At various time points, the length of SE is defined dynami-
cally, following ((12)-(14)). Lastly, the difference between the
morphological operator and variable SE length is adopted
to process the raw vibration signals to effectively suppress
the noise and enhance the fault-related feature. The morpho-
logically filtered signal is shown in Figure 6. Evidently, the
processed signals have been well denoised with the aid of
adaptive morphological analysis.

Statistical features are extracted from the filtered vibra-
tion signal thereafter. Kurtosis is known to measure the
degree of steepness, and the variance value reflects the
fluctuation to the mean value of the signal. The absolute mean
amplitude and square root amplitude values are decided by
the signal energy. The nine statistical features evidently focus
considerable attention on various aspects of the machine
fault signals. When various faults occur, the signal amplitude
distribution, energy, and impact intervals will change promi-
nently. Hence, the feature vector formed by the nine indica-
tors can substantially present the healthy state of a machine
due to the combination of sensitive features. Consequently,
each sample is represented by a feature vector with nine
elements after signal processing and feature extraction.

Thereafter, 29 feature vectors under each bearing fault
pattern are extracted from the training set. A total of 116
training samples exist in four conditions. Thus, the size of the
training and testing matrices is 116 x 9. K-CV is performed

during the training process. This strategy can avoid the states
of overlearning and insufficient learning, as well as eventually
increasing the classification credibility of the optimal SVR
model. The training results are shown in Figure 7. When
the output of the model is below 1.5, the fault type is inner
race fault; between 1.5 and 2.5, the fault type is ball fault;
between 2.5 and 3.5, the fault type is outer race fault; and over
3.5, the state is healthy. Thus, all samples shown in Figure 7
are correctly identified based on (15), thereby validating the
optimal SVR model. The 29 testing samples under each
bearing fault pattern are also preprocessed following the same
procedure, and a total of 116 feature vectors are extracted.
Thereafter, they are fed to the optimal SVR model and their
fault patterns are derived using the proposed support vector
regressive classification method.

The testing results are presented in Figure 8. Similarly,
only one sample from the healthy state is misclassified to
ball fault, whereas the other testing samples are classified
properly. Table 2 summarizes the results in Figures 7-9. Upon
following the proposed intelligent machinery fault diagnosis
method, each step exhibits its satisfactory performance with
a testing accuracy of up to 99.1%. This result is higher than
that obtained by the raw signal (Figure 9).

Furthermore, a comparative study as shown in Table 3 is
conducted between the proposed method and those in [34,
35]. Vakharia et al. [34] proposed the permutation entropy
to perform a proper wavelet analysis and conduct fault
classification using the artificial neural network and SVM.
Abbasion et al. [35] introduced a method that optimized
the signal decomposition levels and recognized the bearing
fault by using wavelet analysis and SVM, respectively. The
misclassified sample may be a bad sample because the SVR
model output showed a large error from its reference value.
By contrast, the outputs of the other samples were within a
small range away from their reference values. Although the
testing accuracy achieved by the proposed method is slightly
lower than 100%, only one sample was misclassified (see the
results shown in Figure 8). Moreover, the sample number is
58 for each state, whereas these values are 40 and 9 in [34]
and [35], respectively.
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TaBLE 3: Comparative study between the proposed method and the previous work.

Methods Proposed method ANN method SVM method SVM and wavelet denoising

Accuracy of training 100% 97.5% 97.5% 100%

Accuracy of testing 99.1% 97.5% 97.5% 100%
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FIGURE 8: Results of the processed testing samples.
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FIGURE 9: Results of unprocessed testing samples.

5. Conclusion

This study presents a novel intelligent machinery fault
diagnosis method. This method includes the extraction of
morphological features and SVR classifier. Morphological
analysis is a nonlinear method that can measure and extract

the mechanical fault impact-related component from the
vibration signals using SEs. The performance is subjected to
the proper selection of SEs. First, an adaptive morphological
analysis that dynamically varies the scales of SEs is proposed
to effectively reduce the effect of noise and enhance the
fault-related feature. Thereafter, nine features are extracted
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from the processed signal as feature vectors. SVR theory is
used as basis to develop a regressive decision function to
overcome the shortcomings of the traditional SVM method.
The SVR model is optimized through K-CV, and the optimal
model is further used for testing. The results obtained in the
investigation of the bearing data set show that the proposed
scheme reaches a high degree of accuracy in machinery fault
diagnosis and good generalizability compared with previous
methods.
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