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A one-dimensional flow procedure for analytical study of centrifugal pump performance is done applying the principle theories of
turbomachines. Euler equation and energy equation are manipulated to find pump performance parameters at different discharge
coefficients. Fluid slippage loss at impeller exit and volute loss are estimated. The fluid slippage is modeled by the slip factor
approach using Wiesner empirical expression. The volute loss model counts friction loss associated with the volute throw flow
velocity, diffusion friction loss due to circulation associated with volute flow, loss due to vanishing of radial flow at volute outlet,
and loss inside pump volute throat. Models for impeller hydraulic friction power loss, disk friction power loss, internal flow leakage
power loss, and inlet shock circulation power loss are considered by suitable models. Pump internal volumetric flow leakage and
volumetric efficiency are related to pump geometry and flow properties.The procedure adopted in this paper is capable of obtaining
performance characteristic curves of centrifugal pump in a dimensionless form. Pump head coefficient, manometric efficiency,
power coefficient, and required NPSH are characterized.The predicted coefficients and obtained performance curves are consistent
with experimental characteristics of centrifugal pump.

1. Introduction

Centrifugal pumps are used in various applications and are
integral to many industries. Yet, in spite of their prevalence
and relatively simple configurations compared to other turbo-
machines, designing an efficient and durable pump remains
a challenge.

The design of centrifugal pumps is still determined
empirically because it relies on the use of a number of
experimental and statistical rules. However, during the last
few years, the design and performance analysis of turbo-
machinery have experienced great progress due to the joint
evolution of computer power and the accuracy of numerical
methods.

The one-dimensional performance analysis has proved
to be an effective and important approach on pump design
[1]. Analytical calculations of pump characteristics depend
on geometrical dimensions of pump and losses models in
different parts of pump. A series of formulae for calculating
losses exist [2–5], but they lack accuracy when applied to
centrifugal pumps.

In this work, suggested models for calculating several
losses in pump are introduced to examine its validity in
evaluating pump performance.This paper is an effort towards
theoretically obtaining accurate centrifugal pump perfor-
mance characteristics. Pump characteristics and parameters
are presented in dimensionless forms. It presents a one-
dimensional flow analysis procedure towards obtaining opti-
mum centrifugal pump design parameters.

2. Theoretical Analysis

Thepumpflow coefficient𝜓 and pump speed coefficient𝜑 are
defined as

𝜓 =
𝑉
𝑟
2

√2𝑔𝐻
, 𝜑 =

𝑢
2

√2𝑔𝐻
, (1)

where𝐻 is the pump manometric head, 𝑉
𝑟
2

is the flow radial
velocity at impeller outlet, and 𝑢

2
is the tangential velocity at

outlet of impeller.



2 International Journal of Rotating Machinery

QQL

yc

D
ey

e
Q

D
1

Vs

Veye

D
2

b1

b2

D1

D2

t

N

d 2

d1L

u2

V2W2

u
1

V1

W1

Q
+
Q
L

𝜋
D
2
/Z

𝛽b2

𝛽
b
1

t/s
in
𝛽 b2

𝛽b2

Figure 1: Pump impeller notations.

2.1. Pump Leakage. Due to the difference between the outlet
pressure and the inlet pressure of the impeller, a portion of
impeller outlet flow rate,𝑄

𝐿
, returns to the impeller inlet from

the existing clearances between the impeller and the casing,
Figure 1. This internal discharge leakage, 𝑄

𝐿
, causes some

losses as the flow rate through the impeller (𝑄+𝑄
𝐿
) is greater

than the pump useful outlet discharge 𝑄.
The volumetric efficiency 𝜂vol of pump is defined as the

ratio of pump outlet discharge to the impeller discharge:

𝜂vol =
𝑄

𝑄
𝑖

=
𝑄

𝑄 + 𝑄
𝐿

or 𝑄
𝐿

𝑄
=

1

𝜂vol
− 1, (2)

in which
𝑄
𝑖
= 𝑄 + 𝑄

𝐿
= 𝑉
𝑟
2

⋅ 𝜋𝐷
2
𝑏
2
𝜀
2
= 𝑉
𝑟
1

⋅ 𝜋𝐷
1
𝑏
1
𝜀
1
, (3)

where 𝑏
1
is the bladewidth at inlet,𝐷

1
is the impeller diameter

at inlet, 𝜀
1
is the blade thickness coefficient at impeller inlet,

𝜀
1
= 1−(𝑍/𝜋)((𝑡/ sin𝛽

𝑏
1

)/𝐷
1
), 𝑏
2
is the blade width at outlet,

𝐷
2
is the impeller diameter at outlet, 𝜀

2
is the blade thickness

coefficient at impeller outlet, 𝜀
2
= 1−(𝑍/𝜋)((𝑡/ sin𝛽

𝑏
2

)/𝐷
2
), 𝑡

is the blade thickness, 𝑍 is the number of blades, 𝛽
𝑏
2

is the
blade angle at impeller outlet, and 𝛽

𝑏
1

is the blade angle
at impeller inlet. The value of 𝜀

2
is about 0.95 [6]. The

relationship between 𝜀
1
and 𝜀
2
with constant blade thickness

is given as

𝜀
1
= 1 −

(1 − 𝜀
2
)

(𝐷
1
/𝐷
2
) (sin𝛽

𝑏
1

/ sin𝛽
𝑏
2

)
. (4)

The impeller inlet flow velocity coefficient 𝐶
𝑉
1

=

𝑉
1
/√2𝑔𝐻 is calculated from (3) dividing both sides by√2𝑔𝐻

and assuming that the flow enters the impeller without swirl
(𝑉
1
= 𝑉
𝑟
1

):

𝐶
𝑉
1

=
𝜓

(𝐷
1
/𝐷
2
) (𝑏
1
/𝑏
2
) (𝜀
1
/𝜀
2
)
. (5)

The pump discharge coefficient is 𝐶
𝑄
= 𝑄/((𝑁/60)𝐷

3

2
),

and substituting for 𝑄 from (2) and (3);

𝐶
𝑄
= 𝜂vol𝜀2𝜋

2
𝑏
2

𝐷
2

⋅
𝜓

𝜑
. (6)
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Figure 2: Velocity diagram at impeller outlet.

2.2. Outlet Velocity Diagram. A fluid slippage occurs at
impeller exit due to the relative rotation of fluid in a direction
opposite to that of impeller. A slip factor 𝜎 defined as 𝜎 =

𝑉
𝑢
2 act/𝑉𝑢2 could be estimated later in Section 2.3.
From the velocity diagram at the impeller outlet, Figure 2,

the tangential component of the outlet flow absolute velocity
is given as

𝑉
𝑢
2

= 𝑉
𝑟
2

cot𝛼
2
= 𝑢
2
+ 𝑉
𝑟
2

cot𝛽
𝑏
2

. (7)

The ratio of outlet swirl velocity to outlet tangential velocity
is

𝑉
𝑢
2

𝑢
2

= 1 +
𝑉
𝑟
2

𝑢
2

cot𝛽
𝑏
2

= 1 +
𝜓

𝜑
cot𝛽
𝑏
2

, (8)

and thus,
𝑉
𝑢
2act

𝑢
2

=
𝜎 ⋅ 𝑉
𝑢
2

𝑢
2

= 𝜎(1 +
𝜓

𝜑
cot𝛽
𝑏
2

) . (9)

The outlet tangential velocity (from (7)) and the pump
speed coefficient 𝜑 = 𝑢

2
/√2𝑔𝐻 are given as

𝑢
2
= 𝑉
𝑟
2

(cot𝛼
2
− cot𝛽

𝑏
2

) , (10)

𝜑 = 𝜓 (cot𝛼
2
− cot𝛽

𝑏
2

) . (11)
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Figure 3: Flow model for Stodola slip factor.

From the outlet velocity diagram (Figure 2) and (7), the outlet
velocity and the outlet velocity coefficient defined as 𝐶

𝑉
2

=

𝑉
2
/√2𝑔𝐻 are

𝑉
2

2
= 𝑉
2

𝑟
2

+ 𝑉
2

𝑢
2

= 𝑉
2

𝑟
2

+ (𝑢
2
+ 𝑉
𝑟
2

cot𝛽
𝑏
2

)
2

,

𝐶
2

𝑉
2

= 𝜓
2

+ (𝜑 + 𝜓cot𝛽
𝑏
2

)
2

.

(12)

2.3. Slip Factor

2.3.1. The Relative Eddy (Eddy Circulation). A simple expla-
nation for the slip effect in an impeller is obtained from
the idea of a relative eddy. Suppose that an irrotational and
frictionless fluid flow is possible which passes through an
impeller. If the absolute flow enters the impeller without spin,
then at outlet the spin of the absolute flow must still be zero.
The impeller itself has an angular velocity 𝜔 so that, relative
to the impeller, the fluid has an angular velocity of −𝜔; this
is termed the relative eddy. At outlet of impeller, the relative
flow,𝑊

2
, can be regarded as a through flowonwhich a relative

eddy is superimposed. The net effect of these two motions
is that the average relative flow emerging from the impeller
passages is at an angle to the vanes and in a direction opposite
to the blade motion.

One of the earliest and simplest expressions for the slip
factor was obtained by Stodola, cited in [7]. Referring to
Figure 3, the slip velocity due to relative eddy,Δ𝑊

𝑢
2

= Δ𝑉
𝑢
2

=

𝑉
𝑢
2

−𝑉
𝑢
2 act, is considered to be the product of the relative eddy

and the radius (𝑑
2
/2) of a circle which can be inscribedwithin

the channel.
Thus,

Δ𝑊
𝑢
2

= 𝜔
𝑑
2

2
. (13)

An approximate expression for 𝑑
2
can be written if the

number of blades 𝑍 is not small:

𝑑
2
=
𝜋𝐷
2

𝑍
sin𝛽
𝑏
2

− 𝑡 = 𝜀
2

𝜋𝐷
2

𝑍
sin𝛽
𝑏
2

, (14)

𝑑
2

𝐷
2

= 𝜀
2

𝜋

𝑍
sin𝛽
𝑏
2

. (15)

Since the relative eddy angular velocity = 2𝑢
2
/𝐷
2
, then

Δ𝑊
𝑢
2

= 𝜀
2

𝜋𝑢
2

𝑍
sin𝛽
𝑏
2

, or
Δ𝑊
𝑢
2

𝑢
2

= 𝜀
2

𝜋

𝑍
sin𝛽
𝑏
2

. (16)

The slip factor is given by

𝜎 =
𝑉
𝑢
2act

𝑉
𝑢
2

= 1 −
Δ𝑉
𝑢
2

𝑉
𝑢
2

= 1 −
Δ𝑊
𝑢
2

/𝑢
2

𝑉
𝑢
2

/𝑢
2

. (17)

Substituting for Δ𝑊
𝑢
2

/𝑢
2
from (16) and for 𝑉

𝑢
2

/𝑢
2
from

(8), the formulae proposed by Stodola, cited in [7] for the
calculation of slip factor, 𝜎, are obtained which are

𝜎 = 1 −
𝜀
2
(𝜋/𝑍) sin𝛽

𝑏
2

1 + (𝑉
𝑟
2

/𝑢
2
) cot𝛽

𝑏
2

= 1 −
𝜀
2
(𝜋/𝑍) sin𝛽

𝑏
2

1 + (𝜓/𝜑) cot𝛽
𝑏
2

. (18)

At 𝜓 = 0 (𝜎 = 𝜎
0
)

1 − 𝜎
0
= 𝜀
2

𝜋

𝑍
sin𝛽
𝑏
2

. (19)

Therefore,

1 − 𝜎 =
1 − 𝜎
0

𝑦
, (20)

where

𝑦 = 1 +
𝜓

𝜑
cot𝛽
𝑏
2

. (21)

Wiesner [8] introduced an empirical expression which
extremely well fits the experimental results of slip factor for
wide range of practical blade angles and number of blades. It
is used in this work and given as

1 − 𝜎
0
=

√sin𝛽
𝑏
2

𝑍0.7
for 𝐷

1

𝐷
2

≤ 𝜀limit,
(22)

where 𝜀limit is the limiting diameter ratio,

𝜀limit = 𝑒
−(8.16 sin𝛽

𝑏2
/𝑍)

. (23)

It is assumed that the water entering the pump impeller
is purely in the radial direction. Relative to the impeller, the
fluid has an angular velocity of −𝜔, relative eddy, and thus the
relative flow at blade inlet acquires an additional component
Δ


𝑊
𝑢
1

opposite to rotational direction, as seen in Figure 4,
which is

Δ


𝑊
𝑢
1

= 𝜔
𝑑
1

2
, (24)

where

𝑑
1
= 𝜀
1

𝜋𝐷
1

𝑍
sin𝛽
𝑏
1

, (25)

𝑑
1

𝐷
2

= 𝜀
1

𝜋

𝑍

𝐷
1

𝐷
2

sin𝛽
𝑏
1

. (26)

Hence,

Δ


𝑊
𝑢
1

= 𝜀
1

𝜋

𝑍
𝑢
1
sin 𝛽
𝑏
1

. (27)
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Figure 4: Velocity diagram at impeller inlet without shock.

When the pump that operates at a discharge 𝑄 differs
from that at designed condition 𝑄∗, the relative flow velocity
at blade inlet tends to acquire an additional component in
counter of the rotational direction,Δ𝑊

𝑢
1

. So, the flow enters
the blade passage tangent to the blade surface, and a shock
eddy or a shock circulation exists prior to the blade leading
edge inside pump eye. As could be noticed from Figure 5,
the relative velocity additional rotational speed at blade inlet
equals

Δ


𝑊
𝑢
1

= 𝑢
1
(1 − 𝜀

1

𝜋

𝑍
sin 𝛽
𝑏
1

) − 𝑉
𝑟
1

cot (180 − 𝛽
𝑏
1

) . (28)

2.4. Euler Equation of Turbomachines. In the case that the
fluid entering the pump impeller is purely in the radial
direction without swirl, the pump Euler head is given as [6, 7]

𝐻
∞
=
𝑢
2
𝑉
𝑢
2

𝑔
. (29)

Due to the fluid slippage at impeller exit, the actual head given
to fluid by the impeller,𝐻

0
, is calculated from [6, 7]:

𝐻
0
=
𝑢
2
⋅ 𝑉
𝑢
2 act

𝑔
=
𝑢
2
⋅ 𝜎𝑉
𝑢
2

𝑔
= 𝜎 ⋅ 𝐻

∞
. (30)

And so, the slippage head loss is

ℎ
𝑙slp

= 𝐻
∞
− 𝐻
0
= (1 − 𝜎)𝐻

∞
. (31)

2.5. Pump Volute. The flow that discharges from the impeller
requires careful handling in order to preserve the gains in
energy imparted to the fluid. This requires the conversion of
velocity head to pressure head by means of a diffuser, and
this inevitably implies hydraulic losses. The application of
mass conservation to a volute element, [9], reveals that the
discharge flow from impeller is matched to the flow in the
volute if 𝑑𝐴

𝑉
/𝑑𝜃 = 𝑉

𝑟
3

/𝑉
𝑢
3

𝑟
3
𝑏
3
. This requires a circumferen-

tially uniform rate of increase of the volute area 𝐴
𝑉
over the

entire development of the spiral (𝜃). Consequently, for a given
impeller, there exist a specific volute angle 𝛼

𝑉
and a specific

volute throat inlet area 𝐴
𝑉th

for the volute geometry.
The volute angle𝛼

𝑉
, Figure 6, is chosen tomatch the angle

of flow entering the volute 𝛼
3eq at a certain pump operating

V∗
1 = V∗

r1

V1 = Vr1

W∗
1b

ΔWu1

W1

𝛽f1

𝛽b1

u1

ΔWu1

W∗
1

W1b =
Vr1
sin 𝛽b1

ΔWu1

(1 − 𝜀1
𝜋

Z
sin 𝛽b1)u1

Figure 5: Velocity diagram at blade inlet with shock eddy.

point. With a uniform rate of increase of the volute area, the
volute angle is

tan𝛼
𝑉
=

𝐴
𝑉th

𝜋𝐷
3
𝑏
3

=
𝐴
𝑉th

𝜋𝐷
2
𝑏
2
(𝐷
3
/𝐷
2
) (𝑏
3
/𝑏
2
)
. (32)

The volute outlet flow velocity 𝑉
4
= 𝑄/𝐴

𝑉th
and the volute

outlet flow velocity coefficient 𝐶
𝑉
4

= 𝑉
4
/√2𝑔𝐻 are

𝑉
4
=
𝜂vol ⋅ 𝑉𝑟

2

𝜋𝐷
2
𝑏
2
𝜀
2

𝜋𝐷
3
𝑏
3
⋅ tan 𝛼

𝑉

=
𝜂vol𝜀2
tan 𝛼
𝑉

𝐷
2

𝐷
3

𝑏
2

𝑏
3

⋅ 𝑉
𝑟
2

,

𝐶
𝑉
4

=
𝜀
2
𝜂vol

(𝐷
3
/𝐷
2
) (𝑏
3
/𝑏
2
) tan 𝛼

𝑉

⋅ 𝜓.

(33)

The throat is assumed to have an expanding angle 𝛼th, and
hence the throat diameter equals

𝐷th = 𝜋𝐷
3
tan 𝛼
𝑉
+ 𝐿 th tan𝛼th. (34)

With the assumption that the throat height 𝐿 th = 𝐷
3
, thus

𝐷th
𝐷
3

= 𝜋 tan𝛼
𝑉
+ tan𝛼th. (35)

The throat outlet flow velocity𝑉
5
= 𝑄/𝐴 th, and using (2) and

(3), then

𝑉
5
= 4𝜀
2
𝜂vol

𝐷
2

2

𝐷2th

𝑏
2

𝐷
2

⋅ 𝑉
𝑟
2

. (36)

The throat outlet flow velocity coefficient 𝐶
𝑉
5

(= 𝑉
5
/√2𝑔𝐻)

equals

𝐶
𝑉
5

=
4𝜀
2
𝜂vol (𝑏2/𝐷2)

(𝐷th/𝐷3)
2

(𝐷
3
/𝐷
2
)
2
⋅ 𝜓. (37)

It is assumed that the throat diameter 𝐷th equals the eye
diameter𝐷eye; that is,𝐷eye/𝐷th = 1, which equals the suction
pipe diameter 𝐷

𝑠
. Thus, the throat outlet flow velocity, 𝑉

5
,

equals the flow velocity at suction pipe, 𝑉
𝑠
. Therefore,

𝑉
5
= 𝑉
𝑠
= 𝜂vol ⋅ 𝑉eye. (38)

And the eye velocity coefficient is

𝐶
𝑉eye

=
𝑉eye

√2𝑔𝐻
=
𝐶
𝑉
5

𝜂vol
=

4𝜀
2
(𝑏
2
/𝐷
2
)

(𝐷th/𝐷3)
2

(𝐷
3
/𝐷
2
)
2
⋅ 𝜓. (39)
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The eye diameter relative to the impeller inlet diameter is
therefore

𝐷eye

𝐷
1

=
𝐷eye

𝐷th

𝐷th
𝐷
3

𝐷
3

𝐷
2

𝐷
2

𝐷
1

=
(𝐷
3
/𝐷
2
) (𝜋 tan 𝛼

𝑉
+ tan 𝛼th)

(𝐷
1
/𝐷
2
)

.

(40)

The ratio (𝐷eye/𝐷1)must not exceed 1, and thus anupper limit
is imposed on the volute angle:

tan𝛼
𝑉
<

(𝐷
1
/𝐷
2
)

𝜋 (𝐷
3
/𝐷
2
)
−
tan𝛼th
𝜋

. (41)

The throat has a cone angle 𝜃th, where

tan(
𝜃th
2
) =

(𝐷th − 𝑏3) /2

𝐿 th
. (42)

Substituting from (35),

tan(
𝜃th
2
) =

1

2
[𝜋 tan𝛼

𝑉
+ tan𝛼th −

(𝑏
3
/𝑏
2
) (𝑏
2
/𝐷
2
)

(𝐷
3
/𝐷
2
)

] .

(43)

2.6. Volute Loss Model. Prediction models that account for
the main features of the swirling flow in volutes, reviewed in
[4], do not account for the circulatory flow initiated in volute
at off-design discharge operation of pump. In this work, a
model is proposed to account the volute head loss at off-
design pump operation.

The flow enters the volute with a through-velocity 𝑉
3

at an angle 𝛼
3
(which may differ from that of the volute

angle 𝛼
𝑉
) on which an eddy of a tangential velocity Δ𝑉

𝑢
3

=

Δ𝑉
𝑢
2

is superimposed opposite to impeller motion.This inlet

volute velocity 𝑉
3
is decomposed into a velocity parallel to

the direction of volute,𝑉
3𝑝
, and another one in the tangential

direction of impeller,𝑉
3𝑑
(Figure 6). The velocity component

𝑉


3𝑑
is the motive of a second circulatory motion given to

the volute flow in direction of impeller motion. Thus, the net
circulation velocity of flow in volute is 𝑉

3𝑑
= 𝑉


3𝑑
− Δ𝑉
𝑢
3

in
direction of impeller motion. The component of the velocity
𝑉
3𝑝

in the tangential direction denoted as 𝑉
3𝑝𝑢

equals the
volute outlet velocity 𝑉

4
.

The volute loss model counts friction loss associated with
the volute throw flow velocity, diffusion friction loss due to
circulation associated with volute flow, loss due to vanishing
of radial flow at volute outlet, and loss inside pump volute
throat. Consequently, the volute head loss and the volute head
loss relative to the pump head are written, respectively, as

ℎ
𝑙
𝑉

= 𝐶
𝑓
𝑉

𝑉
2

3𝑝

2𝑔
+ 𝐶
𝑑
𝑉

𝑉
2

3𝑑

2𝑔
+
𝑉
2

3𝑟

2𝑔
+ ℎ
𝑙th
, (44)

ℎ
𝑙
𝑉

𝐻
= 𝐶
𝑓
𝑉

⋅ 𝐶
2

𝑉
3𝑝

+ 𝐶
𝑑
𝑉

⋅ 𝐶
2

𝑉
3𝑑

+ 𝐶
2

𝑉
3𝑟

+ 𝐶
𝑓th
⋅ 𝐶
2

𝑉
4

, (45)

where 𝐶
𝑓
𝑉

is the volute friction loss coefficient:

𝐶
𝑓
𝑉

= 𝑓
𝑉

𝐿
𝑉

𝐷
ℎ
𝑉

= 𝑓
𝑉
(
𝐿
𝑉

𝐷
2

)(
1

𝐷
ℎ
𝑉

/𝐷
2

) , (46)

where 𝑓
𝑉
is the volute friction coefficient, 𝐷

ℎ
𝑉

is the volute
hydraulic diameter, and 𝐿

𝑉
is the average volute length:

𝐿
𝑉
=
1

2

𝜋𝐷
3

cos𝛼
𝑉

, (47)

𝐿
𝑉

𝐷
2

=
1

2

𝜋

cos𝛼
𝑉

(
𝐷
3

𝐷
2

) . (48)
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The average volute hydraulic diameter relative to impeller
diameter is

1

𝐷
ℎ
𝑉

/𝐷
2

=
1

2 (𝑏
3
/𝑏
2
) (𝑏
2
/𝐷
2
)
+

1

8 (𝜋/𝑍) (𝐷
3
/𝐷
2
) sin𝛼

𝑉

.

(49)

The volute friction coefficient𝑓
𝑉
which corresponds to a pipe

flow is function of the volute Reynolds number Re
𝑉
and the

roughness 𝜅, [10]:

𝑓
𝑉
=

0.3086

{log [(6.9/Re
𝑉
) + ((𝜅/𝐷

ℎ
𝑉

) /3.7)
1.11

]}
2
, (50)

where

𝜅

𝐷
ℎ
𝑉

=
(𝜅/𝐷
2
)

(𝐷
ℎ
𝑉

/𝐷
2
)
. (51)

The volute Reynolds number is calculated as

Re
𝑉
=
𝑉
3𝑝
⋅ 𝐷
ℎ
𝑉

]
= 2

𝐶
𝑉
3𝑝

𝜑
(
𝐷
ℎ
𝑉

𝐷
2

) ⋅ Re
2
, (52)

where

Re
2
=
𝑢
2
⋅ 𝐷
2
/2

]
. (53)

In the first term of (44) and (45),𝑉
3𝑝

is the volute throw flow
velocity (Figure 6) and given as

𝑉
3𝑝
=

𝑉
4

cos𝛼
𝑉

, or 𝐶
𝑉
3𝑝

=
𝐶
𝑉
4

cos 𝛼
𝑉

. (54a)

In the second term of (44) and (45), 𝐶
𝑑
𝑉

is the volute
diffusion loss coefficient which could be assumed to have the
value 𝐶

𝑑
𝑉

= 0.8, and 𝑉
3𝑑

is the volute circulatory velocity
component:

𝑉
3𝑑
= 𝑉
𝑢
2act

− 𝑉
4

𝐶
𝑉
3𝑑

=
𝑉
3𝑑

√2𝑔𝐻
= 𝜎 (𝜑 + 𝜓 cot𝛽

𝑏
2

) − 𝐶
𝑉
4

.
(54b)

The third term of (45) is

𝐶
𝑉
3𝑟

=
𝑉
3𝑟

√2𝑔𝐻
=

𝜀
2
𝜂vol

(𝐷
3
/𝐷
2
) (𝑏
3
/𝑏
2
)
⋅ 𝜓. (54c)

In the fourth term of (44) and (45), the volute throat head
loss ℎ
𝑙th
could be calculated as

ℎ
𝑙th
= 𝐶
𝑓th

𝑉
2

4

2𝑔
, (55)

where 𝐶
𝑓th

is the volute throat friction loss coefficient
assumed to be, [10],

𝐶
𝑓th

= 0.5 + 2.6 ∗ sin(
𝜃th
2
) , (56)

where 𝜃th is the throat cone angle.

2.7. Pump Eye Head Loss ℎ
𝑙eye
. Thehead loss in pump eye ℎ

𝑙eye
,

[2], and the eye head loss relative to the pump head are

ℎ
𝑙eye

= 𝐶eye
𝑉
2

eye

2𝑔
,

ℎ
𝑙eye

𝐻
= 𝐶eye

𝑉
2

eye

2𝑔𝐻
= 𝐶eye ⋅ 𝐶

2

𝑉eye
,

(57)

where𝑉eye is the flow velocity in pump eye and𝐶eye is the eye
loss coefficient defined by (39).

2.8. PumpManometric Head𝐻. Thepumpmanometric head
is the difference in static pressure heads between pump outlet
and pump eye:

𝐻 =
𝑝
5
− 𝑝eye

𝛾
. (58)

With the assumption that the throat diameter 𝐷th equals the
eye diameter 𝐷eye, the flow velocity is the same at pump
suction pipe and pumpdelivery pipe (𝑉

𝑠
= 𝑉
5
) and neglecting

the difference in elevation head across the pump, then

𝐻 = 𝐻
0
− ℎ
𝑙
𝑉

− ℎ
𝑙eye (59)

or

𝐻 = 𝐻
∞
− ℎ
𝑙slp
− ℎ
𝑙
𝑉

− ℎ
𝑙eye
. (60)

Define a parameter 𝑥 as

𝑥 =
𝐻

𝐻
0

=
1

[1 + (ℎ
𝑙
𝑉

/𝐻) + (ℎ
𝑙eye
/𝐻)]

,

or 1

𝑥
= 1 +

ℎ
𝑙
𝑉

𝐻
+
ℎ
𝑙eye

𝐻
.

(61)

Using (45) as well as (57) and (61) then

1

𝑥
= 1 + 𝐶

𝑓
𝑉

⋅ 𝐶
2

𝑉
3𝑝

+ 𝐶
𝑑
𝑉

⋅ 𝐶
2

𝑉
3𝑑

+ 𝐶
2

𝑉
3𝑟

+ 𝐶
𝑓th
⋅ 𝐶
2

𝑉
4

+ 𝐶eye ⋅ 𝐶
2

𝑉eye
.

(62)

The sum of volute and eye head losses, from (59), is written
as

ℎ
𝑙
𝑉

+ ℎ
𝑙eye

= (1 − 𝑥)𝐻
0
= (1 − 𝑥) 𝜎𝐻

∞
. (63)

Using (9), (29), and (59), the pump manometric head𝐻 is

𝐻 = 𝑥𝜎𝐻
∞
= 𝑥𝜎

𝑢
2
⋅ 𝑉
𝑢
2

𝑔
,

𝐻 = 𝑥𝜎
𝑢
2

2

𝑔
(1 +

𝜓

𝜑
cot𝛽
𝑏
2

) .

(64)

Coefficients. There are two additional groups of coefficients,
namely, the pumphead coefficients and head loss coefficients.
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The pump head coefficients are the pump manometric
head coefficient, 𝐶

𝐻
, Euler head coefficient, 𝐶

𝐻
∞

, and the
head coefficient at impeller outlet, 𝐶

𝐻
0

. They are defined and
given, respectively, as

𝐶
𝐻
=

𝐻

𝑢2
2
/𝑔

= 𝑥𝜎(1 +
𝜓

𝜑
cot𝛽
𝑏
2

) , (65a)

𝐶
𝐻
∞

=
𝐻
∞

𝑢2
2
/𝑔

= 1 +
𝜓

𝜑
cot𝛽
𝑏
2

, (65b)

𝐶
𝐻
0

=
𝐻
0

𝑢2
2
/𝑔

= 𝜎(1 +
𝜓

𝜑
cot𝛽
𝑏
2

) . (65c)

According to (21) and (65b), 𝑦 = 𝐶
𝐻
∞

.
The head loss coefficients include the slippage head loss

coefficient, 𝐶
ℎ
𝑙slp
, the volute-eye head loss coefficient, 𝐶

ℎ
𝑙𝑉+eye

,
the eye head loss coefficient, 𝐶

ℎ
𝑙eye
, and the volute head loss

coefficient, 𝐶
ℎ
𝑙𝑉

. They are given, respectively, as

𝐶
ℎ
𝑙slp

=
ℎ
𝑙slp

𝑢2
2
/𝑔

= (1 − 𝜎) 𝐶
𝐻
∞

, (65d)

𝐶
ℎ
𝑙𝑉+eye

=
ℎ
𝑙
𝑉

+ ℎ
𝑙eye

𝑢2
2
/𝑔

= (1 − 𝑥) 𝜎𝐶
𝐻
∞

, (65e)

𝐶
ℎ
𝑙eye

=
ℎ
𝑙eye

𝑢2
2
/𝑔

= 𝐶eye ⋅ 𝐶
2

𝑉
𝑒𝑦𝑒

⋅
1

2𝜑2
, (65f)

𝐶
ℎ
𝑙𝑉

=
ℎ
𝑙
𝑉

𝑢2
2
/𝑔

= (𝐶
𝑓
𝑉

⋅ 𝐶
2

𝑉
3𝑝

+ 𝐶
𝑑
𝑉

⋅ 𝐶
2

𝑉
3𝑑

+ 𝐶
2

𝑉
3𝑟

+ 𝐶
𝑓th
⋅ 𝐶
2

𝑉
4

) ⋅
1

2𝜑2
.

(65g)

The relationship between the pump speed coefficient 𝜑 and
the pump flow coefficient 𝜓 is derived as follows.

Using (11), (64) becomes

𝐻 = 𝑥𝜎
𝑢
2

2

𝑔

cot𝛼
2

cot𝛼
2
− cot𝛽

𝑏
2

. (66)

Dividing both sides by 𝐻, noting that 𝑢2
2
/(2𝑔𝐻) = 𝜑

2, and
using (11), (64) becomes a quadric equation for cot𝛼

2
:

cot2 𝛼
2
− cot𝛽

𝑏
2

⋅ cot𝛼
2
−

1

2𝑥𝜎𝜓2
= 0, (67)

which has a solution (since cot𝛼
2
should be greater than

cot𝛽
𝑏
2

, whence only the +ve sign is considered)

cot𝛼
2
=
1

2
cot𝛽
𝑏
2

+
1

2
√cot2 𝛽

𝑏
2

+
2

𝑥𝜎𝜓2
. (68)

Multiplying (68) by 𝜓 and then subtracting 𝜓 cot𝛽
𝑏
2

from
both sides and using (11) yield the following relation for 𝜑:

𝜑 = −
1

2
𝜓cot𝛽

𝑏
2

+
1

2
√𝜓2cot2 𝛽

𝑏
2

+
2

𝑥𝜎
. (69)

2.9. Pump Shaft Power 𝑃sh, and Pump Shaft Head 𝐻sh. The
total shaft power required to drive the impeller is

𝑃sh = 𝑃


sh
0

+ 𝑃


𝑙
𝑓

+ 𝑃


𝑙cirin
+ 𝑃
𝑙
𝐷

, (70)

where 𝑃sh
0

= 𝛾(𝑄 + 𝑄
𝐿
)𝐻
0
is the impeller power given to

water, 𝑃
𝑙
𝑓

= 𝛾(𝑄 + 𝑄
𝐿
)ℎ
𝑙
𝑓

is the power lost in friction inside
impeller, 𝑃

𝑙cirin
= 𝛾(𝑄+𝑄

𝐿
)ℎ
𝑙cirin

is the power needed for given
circulation to flow at impeller inlet, and 𝑃

𝑙
𝐷

is the power lost
in friction on outside surface of impeller disks.

The total shaft power and pump shaft head can be
simplified, respectively, to

𝑃sh = 𝑃sh
0

+ 𝑃
𝑙
𝑓

+ 𝑃
𝑙cirin

+ 𝑃
𝑙vol
+ 𝑃
𝑙
𝐷

, (71)

in which

𝑃sh
0

= 𝛾𝑄𝐻
0
, 𝑃

𝑙
𝑓

= 𝛾𝑄ℎ
𝑙
𝑓

, 𝑃
𝑙cirin

= 𝛾𝑄ℎ
𝑙cirin

,

𝑃
𝑙vol

= 𝛾𝑄ℎ
𝑙vol

= 𝛾𝑄
𝐿
(𝐻
0
+ ℎ
𝑙
𝑓

+ ℎ
𝑙cirin

) ,

𝑃
𝑙
𝐷

= 𝛾𝑄ℎ
𝑙
𝐷

,

(72)

where ℎ
𝑙
𝑓

is the impeller skin friction head loss, ℎ
𝑙cirin

is
the inlet shock circulation head loss, ℎ

𝑙vol
is the volumetric

(leakage) head loss, and ℎ
𝑙
𝐷

is the disk friction head loss.
The shaft head 𝐻sh = 𝑃sh /(𝛾𝑄) and the shaft head

coefficient 𝐶
𝐻sh

= 𝐻sh/(𝑢
2

2
/𝑔) are given, respectively, as

𝐻sh = 𝐻
0
+ ℎ
𝑙
𝑓

+ ℎ
𝑙cirin

+ ℎ
𝑙vol
+ ℎ
𝑙
𝐷

,

𝐶
𝐻sh

= 𝐶
𝐻
0

+ 𝐶
ℎ
𝑙
𝑓

+ 𝐶
ℎ
𝑙cirin

+ 𝐶
ℎ
𝑙vol

+ 𝐶
ℎ
𝑙𝐷

,
(73)

where𝐶
ℎ
𝑙
𝑓

= ℎ
𝑙
𝑓

/(𝑢
2

2
/𝑔) is the impeller skin friction head loss

coefficient,𝐶
ℎ
𝑙cirin

= ℎ
𝑙cirin

/(𝑢
2

2
/𝑔) is the inlet shock circulation

head loss coefficient, 𝐶
ℎ
𝑙vol

= ℎ
𝑙vol
/(𝑢
2

2
/𝑔) is the volumetric

head loss coefficient, and𝐶
ℎ
𝑙𝐷

= ℎ
𝑙
𝐷

/(𝑢
2

2
/𝑔) is the disk friction

head loss coefficient.

2.10. Pump Efficiency (Manometric Efficiency) 𝜂. The pump
manometric efficiency is the ratio of gained water power (𝑃

𝑤
)

to the pump shaft power (𝑃sh) supplied to pump impeller.
According to its definition, it takes the following forms:

𝜂 =
𝑃
𝑤

𝑃sh
=

𝑃
𝑤

𝑃sh
0

+ 𝑃
𝑙
𝑓

+ 𝑃
𝑙cirin

+ 𝑃
𝑙vol
+ 𝑃
𝑙
𝐷

,

𝜂 =
𝐻

𝐻sh
=

𝐻
∞
− ℎ
𝑙slp
− ℎ
𝑙
𝑉

− ℎ
𝑙eye

𝐻
0
+ ℎ
𝑙
𝑓

+ ℎ
𝑙cirin

+ ℎ
𝑙vol
+ ℎ
𝑙
𝐷

,

𝜂 =
𝐶
𝐻

𝐶
𝐻
𝑠ℎ

=

𝐶
𝐻
∞

− 𝐶
ℎ
𝑙slp
− 𝐶
ℎ
𝑙𝑉+eye

𝐶
𝐻
0

+ 𝐶
ℎ
𝑙
𝑓

+ 𝐶
ℎ
𝑙cirin

+ 𝐶
ℎ
𝑙vol

+ 𝐶
ℎ
𝑙𝐷

.

(74)
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2.11. Pump Shaft Power Coefficient 𝐶
𝑃
𝑠ℎ

. The pump shaft
power coefficient and the pump water power coefficient are
given, respectively, as

𝐶
𝑃sh

=
𝑃sh

𝜌(𝑁/60)
3

𝐷5
2

= 𝜋
2

𝐶
𝑄
𝐶
𝐻sh
, (75)

𝐶
𝑃
𝑤

=
𝑃
𝑤

𝜌(𝑁/60)
3

𝐷5
2

= 𝜋
2

𝐶
𝑄
𝐶
𝐻
. (76)

2.12. Impeller Skin Friction Power Head Loss ℎ
𝑙
𝑓

. The impeller
hydraulic friction head loss ℎ

𝑙
𝑓

is estimated by the theory of
flow through pipes and is given by [11]:

ℎ
𝑙
𝑓

= 4𝐶
𝑑
𝑖

𝐿
𝑏

𝐷hyd

𝑊
2

av
2𝑔

, (77)

where 𝐶
𝑑
𝑖

is the dissipation coefficient, 𝐿
𝑏
is the blade

length,𝐷hyd is the hydraulic diameter, and𝑊av is the average
relative velocity. Therefore, the impeller skin friction head
loss coefficient could be calculated from

𝐶
ℎ
𝑙𝑓

=
ℎ
𝑙
𝑓

𝑢2
2
/𝑔

= 4𝐶
𝑑
𝑖

(𝐿
𝑏
/𝐷
2
)

(𝐷hyd/𝐷2)

1

2
(
𝑊av
𝑢
2

)

2

. (78)

The hydraulic diameter and the average relative velocity are
given, respectively, as, Gülich [11]

𝐷hyd =
4 ∗ Area
Perimeter

=
2 (𝑑
1
𝑏
1
+ 𝑑
2
𝑏
2
)

𝑑
1
+ 𝑏
1
+ 𝑑
2
+ 𝑏
2

,

𝑊av =
𝑄
𝑖
/𝑍

𝐴av
=

𝑄
𝑖
/𝑍

(𝑑
1
𝑏
1
+ 𝑑
2
𝑏
2
) /2

.

(79)

Substituting for 𝑑
1
, (26), 𝑑

2
, (15), and 𝑄

𝑖
, (3), yield:

𝐷hyd

𝐷
2

=
2 ((𝑑
1
/𝐷
2
) (𝑏
1
/𝑏
2
) (𝑏
2
/𝐷
2
) + (𝑑

2
/𝐷
2
) (𝑏
2
/𝐷
2
))

(𝑑
1
/𝐷
2
) + (𝑏
1
/𝑏
2
) (𝑏
2
/𝐷
2
) + (𝑑

2
/𝐷
2
) + (𝑏
2
/𝐷
2
)
,

(80)

𝑊av
𝑢
2

=
𝜀
2
(𝜋/𝑍) (𝑏

2
/𝐷
2
)

1/2((𝑑
1
/𝐷
2
) (𝑏
1
/𝑏
2
) (𝑏
2
/𝐷
2
)+(𝑑
2
/𝐷
2
) (𝑏
2
/𝐷
2
))

⋅
𝜓

𝜑
.

(81)

The blade length is 𝐿
𝑏
= ((1/2)(𝐷

2
− 𝐷
1
))/ sin𝛽bm, and thus

𝐿
𝑏

𝐷
2

=
1

2
(1 −

𝐷
1

𝐷
2

)
1

sin𝛽bm
, (82a)

where

𝛽bm =
(𝛽
𝑏
1

+ 𝛽
𝑏
2

)

2
. (82b)

The impeller dissipation coefficient is given as, Gülich [11]

4𝐶
𝑑
𝑖

= (𝑓
𝑖
+ 0.006) (1.1 + 4

𝑏
2

𝐷
2

) . (83)

The impeller friction coefficient 𝑓
𝑖
is function of the average

impeller Reynolds number Re and the roughness 𝜅 [10]:

𝑓
𝑖
=

0.3086

{log [(6.9/Re) + ((𝜅/𝐷hyd) /3.7)
1.11

]}
2
, (84)

where

𝜅

𝐷hyd
=

(𝜅/𝐷
2
)

(𝐷hyd/𝐷2)
. (85)

Re =
𝑊av ⋅ 𝐷hyd

]
= 2(

𝑊av
𝑢
2

)(
𝐷hyd

𝐷
2

) ⋅ Re
2
, (86)

where Re
2
is defined by (53).

2.13. Disk Friction Head Loss ℎ
𝑙
𝐷

. Thedisk friction power loss
𝑃
𝑙
𝐷

is the power loss in the fluid between external surfaces
of the impeller disks and internal walls of the pump casing,
Figure 7. The 𝑃

𝑙
𝐷

can be estimated as

𝑃
𝑙
𝐷

= 2 ∗ ∫

𝑟
2

0

𝜔 ⋅ 𝑟 ⋅ 𝜏 ⋅ 2𝜋𝑟 𝑑𝑟 (87)

with

𝜏 =
𝑓
𝐷

4
⋅
1

2
𝜌𝑢
2

=
𝑓
𝐷

4
⋅
1

2
𝜌 (𝜔𝑟)

2

, (88)

where 𝜏 is the shear stress in circumferential direction and𝑓
𝐷

is the disk skin friction coefficient, and it is assumed constant
along the disk surface.

Thus,

𝑃
𝑙
𝐷

=
𝜋

2
𝜌𝜔
3

∫

𝑟
2

0

𝑓
𝐷
𝑟
4

𝑑𝑟. (89)

Therefore, the final expression after the integration for the
disk friction power loss and, consequently, the impeller disk
friction head loss are

𝑃
𝑙
𝐷

=
𝜋

2
𝑓
𝐷
𝜌𝜔
3
𝑟
5

2

5
=

𝜋

40
𝑓
𝐷
𝜌𝑢
3

2
𝐷
2

2
,

ℎ
𝑙
𝐷

=
𝑃
𝑙
𝐷

𝜌𝑔𝑄
=

𝜋

40

𝑓
𝐷

𝑔

𝑢
3

2
𝐷
2

2

𝑄
.

(90)

The impeller disk friction head loss coefficient 𝐶
ℎ
𝑙𝐷

is given
as

𝐶
ℎ
𝑙𝐷

≡
ℎ
𝑙
𝐷

𝑢2
2
/𝑔

= 𝐾
𝐷
⋅
1

𝜂vol

𝜑

𝜓
, (91)

where𝐾
𝐷
is the impeller disk loss coefficient,

𝐾
𝐷
=

1

40

𝑓
𝐷

𝜀
2
(𝑏
2
/𝐷
2
)
. (92a)

It is derived by substituting for 𝑄 from (2) and (3) and using
the definition of 𝜓 which yields 𝑄 = 𝜂vol𝜀2 ⋅ 𝜓√2𝑔𝐻 ⋅ 𝜋𝐷

2
𝑏
2
.
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Correlations for 𝑓
𝐷

were obtained by Kruyt, cited in
[12]. Four different regimes were identified, Figure 8: Regime
I (laminar flow, boundary layers have merged), Regime II
(laminar flow with two separate boundary layers), Regime III
(turbulent flow, boundary layers have merged), and Regime
IV (turbulent flow with two separate boundary layers). These
regimes are characterized by the Reynolds number, Re

2
=

𝑢
2
⋅ (𝐷
2
/2)/], and a nondimensional gap parameter, 𝐺 =

𝑦
0
/(𝐷
2
/2), where 𝑦

0
is the axial gap between impeller disk

and casing (Figure 7). The equations of curves 1 to 5 in
Figure 8 are 𝐺 = 1.62Re−5/11

2
, 𝐺 = 188Re−9/10

2
, 𝐺 =

0.57 ∗ 10
−6Re15/16
2

, Re = 1.58 ∗ 10
5, and 𝐺 = 0.402Re−3/16

2
,

respectively. The disk friction coefficient for each regime is
given as

Regime I : 𝑓
𝐷
= 10𝐺

−1Re−1
2

Regime II : 𝑓
𝐷
=
18.5

𝜋
𝐺
1/10Re−1/2

2

Regime III : 𝑓
𝐷
=
0.4

𝜋
𝐺
−1/6Re−1/4

2

Regime IV : 𝑓
𝐷
=
0.51

𝜋
𝐺
1/10Re−1/5

2
.

(92b)

2.14. Volumetric Head Loss ℎ
𝑙Vol
. The volumetric (leakage)

head loss and the volumetric head loss coefficient are given
as follows after using (2):

ℎ
𝑙vol

=
𝑃
𝑙vol

𝛾𝑄
=
𝑄
𝐿

𝑄
(𝐻
0
+ ℎ
𝑙
𝑓

+ ℎ
𝑙cirin

)

= (
1

𝜂vol
− 1) ⋅ (𝐻

0
+ ℎ
𝑙
𝑓

+ ℎ
𝑙cirin

)

𝐶
ℎ
𝑙vol

=
ℎ
𝑙vol

𝑢2
2
/𝑔

= (
1

𝜂vol
− 1) ⋅ (𝐶

𝐻
0

+ 𝐶
ℎ
𝑙𝑓

+ 𝐶
ℎ
𝑙cirin

) .

(93)

The leakage flow rate 𝑄
𝐿
can be estimated using orifice

formula [13]:

𝑄
𝐿
= 𝐶dL ⋅ 𝑎𝑐√2𝑔Δ𝐻𝑐, (94)

where 𝑎
𝑐
is the clearance area of wearing ring (= 𝜋𝐷eye𝑦𝑐), 𝑦𝑐

is the clearance of wearing ring, Figure 7, 𝐶dL is the leakage
discharge coefficient (≈0.6), and Δ𝐻

𝑐
is the pressure head

drop across the clearance:

Δ𝐻
𝑐
=
𝑝
𝑐
− 𝑝
𝑠

𝛾
=
𝑝
3
− 𝑝
𝑠

𝛾
−
𝑝
3
− 𝑝
𝑐

𝛾
, (95)

where𝑝
𝑐
is the pressure before clearance and𝑝

𝑠
is the pressure

after clearance at suction side of the impeller (Figure 7).
The pressure head difference between volute and pump

suction side equals
𝑝
3
− 𝑝
𝑠

𝛾
=
𝑝
5
− 𝑝
𝑠

𝛾
+
𝑝
3
− 𝑝
5

𝛾

= 𝐻 + [ℎ
𝑙
𝑉

− (
𝑉
2

4

2𝑔
−
𝑉
2

5

2𝑔
)]

= 𝐻
0
− ℎ
𝑙eye

− (
𝑉
2

4

2𝑔
−
𝑉
2

5

2𝑔
) .

(96)
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Figure 7: Disk and wearing ring clearances.
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Figure 8: Disk friction flow regimes [12].

The pressure distribution along the radial direction of
impeller shroud is parabolic [13], and thus the pressure head
difference between impeller outlet and before clearance is
given by

𝑝
3
− 𝑝
𝑐

𝛾
=
𝑢
2

2

8𝑔
(1 −

𝐷
2

eye

𝐷2
2

) . (97)

Thus, the leakage flow rate and the leakage flow rate coeffi-
cient, 𝐶

𝑄
𝐿

, are

𝑄
𝐿
= 𝐶dL ⋅ 𝜋𝐷eye𝑦𝑐 ⋅ 𝑢2√2

∗ (𝐶
𝐻
0

−

𝐶
2

𝑉
4

− 𝐶
2

𝑉
5

+ 𝐶eye ⋅ 𝐶
2

𝑉eye

2𝜑2

−
1

8
(1 −

𝐷
2

eye

𝐷2
2

))

1/2

,

𝐶
𝑄
𝐿

=
𝑄
𝐿

(𝑁/60)𝐷3
2

=
𝑦
𝑐

𝐷eye

√2𝜋
2

𝐶dL

(𝐷
2
/𝐷eye)

2
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∗ (𝐶
𝐻
0

−

𝐶
2

𝑉
4

− 𝐶
2

𝑉
5

+ 𝐶eye ⋅ 𝐶
2

𝑉eye

2𝜑2

−
1

8
(1 −

𝐷
2

eye

𝐷2
2

)) .

1/2

(98)
Using (2), 𝑄

𝐿
/𝑄 = 𝐶

𝑄
𝐿

/𝐶
𝑄
, and (8) for 𝐶

𝑄
, the pump vol-

umetric efficiency can be deduced after some mathematical
manipulations:

𝜂vol = 1 − (
𝑦
𝑐

𝐷eye
)(

𝐷eye

𝐷
1

)

2

(
𝐷
1

𝐷
2

)

2 √2𝐶dL
(𝑏
2
/𝐷
2
) 𝜀
2

𝜑

𝜓

∗ (𝐶
𝐻
0

−

𝐶
2

𝑉
4

− 𝐶
2

𝑉
5

+ 𝐶eye ⋅ 𝐶
2

𝑉eye

2𝜑2

−
1

8
[1 − (

𝐷eye

𝐷
1

)

2

(
𝐷
1

𝐷
2

)

2

])

1/2

.

(99)

2.15. Inlet Shock CirculationHead Loss ℎ
𝑙cirin

. At impeller inlet,
a shock circulation exists inside pump eye when the flow
discharge differs from that of designed one. As discussed
before in Section 2.3, the tangential velocity responsible for
this shock eddy is Δ𝑊

𝑢
1

, which could be estimated from
(28).

Therefore, the inlet shock circulation head loss equals

ℎ
𝑙cirin

=
Δ


𝑊
𝑢
1

⋅ 𝑢
1

𝑔
. (100)

Thus, the inlet shock circulation head loss coefficient is

𝐶
ℎ
𝑙cirin

=

ℎ
𝑙cirin

𝑢2
2
/𝑔

= (1 − 𝜀
1

𝜋

𝑍
sin𝛽
𝑏
1

)(
𝐷
1

𝐷
2

)

2

−
cot (180 − 𝛽

𝑏
1

)

(𝑏
1
/𝑏
2
) (𝜀
1
/𝜀
2
)
⋅
𝜓

𝜑
.

(101)

2.16. Required Net Positive Suction Head 𝑁𝑃𝑆𝐻R. The pump
net positive suction head NPSH is defined as the difference
between the fluid inlet stagnation pressure head and vapour
pressure head [13]:

NPSH = (
𝑝
1

𝛾
+
𝑉
2

1

2𝑔
) −

𝑝V

𝛾
, (102)

where 𝑝
1
, 𝑉
1
are the absolute pressure and absolute velocity

of fluid at impeller inlet and𝑝V is the absolute vapour pressure
of fluid at the corresponding fluid temperature.

In the vicinity of the leading edge of the impeller blades,
the fluid has to accelerate in order to follow the rotating
movement of the blades. This acceleration leads to a drop of
the static pressure, which results in a local minimumpressure
at blade inlet:

𝑝min
𝛾

=
𝑝
1

𝛾
− (

𝑊
2

1𝑏

2𝑔
−
𝑉
2

1

2𝑔
) . (103)

Therefore, the pump required net positive suction head is

NPSH
𝑅
=
(𝑝min − 𝑝V)

𝛾
+
𝑊
2

1𝑏

2𝑔
. (104)

The pump NPSH
𝑅
coefficient is defined as

𝐶NPSH
𝑅

=
NPSH

𝑅

𝑢2
2
/𝑔

. (105)

Referring to Figure 5,𝑊
1𝑏
= (𝑉
𝑟
1

/ sin𝛽
𝑏
1

), and thus

𝐶NPSH
𝑅

=
(𝑝min − 𝑝V) /𝛾

𝑢2
2
/𝑔

+
1

sin2𝛽
𝑏
1

𝑉
2

𝑟
1

2𝑢2
2

. (106)

The term ((𝑝min −𝑝V)/𝛾)/(𝑢
2

2
/𝑔) is a design parameter for the

pump and could be assumed to be 0.02.
From (3) 𝑉

𝑟
1

= 𝑉
𝑟
2

(𝐷
2
/𝐷
1
)(𝑏
2
/𝑏
1
)(𝜀
2
/𝜀
1
), and therefore

the NPSH
𝑅
coefficient is

𝐶NPSH
𝑅

= 0.02 +
1

2sin2𝛽
𝑏
1

(𝜓/𝜑)
2

(𝐷
1
/𝐷
2
)
2

(𝑏
1
/𝑏
2
)
2

(𝜀
1
/𝜀
2
)
2
. (107)

2.17. Pump Specific Speed 𝑛
𝑠
. The pump specific speed is

defined with suitable units as

𝑛
𝑠
=
𝑁√𝑄

𝐻3/4
[𝑁 (rpm) ,𝐻 (m) , 𝑄 (lit/s)] . (108)

Substitute for

𝑄 = 1000𝜂vol𝜀2 ⋅ 𝜋𝐷2𝑏2 ⋅ 𝜓√2𝑔𝐻 (lit/s) ,

𝑁 =
60

𝜋𝐷
2

𝜑√2𝑔𝐻, and 𝑏
2
= 𝐷
2
(
𝑏
2

𝐷
2

) yield :

𝑛
𝑠
=
60 ∗ √1000 ∗ (2𝑔)

3/4

∗ √𝜀2

√𝜋
√(

𝑏
2

𝐷
2

) ∗ √𝜂vol ⋅ 𝜑√𝜓.

(109)

Therefore,

𝑛
𝑠
= 9977√𝜀

2
√(

𝑏
2

𝐷
2

) ⋅ √𝜂vol ⋅ 𝜑√𝜓. (110)

3. Calculation Procedure and Results

An iterative procedure using Microsoft Office EXCEL pro-
gram is performed to calculate the pump design parameters
described by the preceding derived equations. The input
parameters are the blades number, 𝑍, impeller inlet diam-
eter to outlet diameter ratio, (𝐷

1
/𝐷
2
), volute diameter to

impeller outlet diameter ratio, (𝐷
3
/𝐷
2
), ratio of blade width

at impeller outlet to impeller outlet diameter, (𝑏
2
/𝐷
2
), blade

width at impeller inlet to blade width at impeller outlet ratio,
(𝑏
1
/𝑏
2
), volute width to blade width at impeller outlet ratio,

(𝑏
3
/𝑏
2
), blade angle at impeller outlet, 𝛽

𝑏
2

, blade angle at
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Table 1: Pump input-parameters.

Input parameter Value

Impeller

𝐷
1

𝐷
2

0.5
𝑏
2

𝐷
2

0.121
𝑏
1

𝑏
2

1

𝜖
2

0.95
𝐺 =

𝑦
0

(𝐷
2
/2)

0.05

Re
2
=
𝑢
2
⋅ (𝐷
2
/2)

]
(𝐷
2
= 0.209m)

(𝑁 = 1450 rpm)
(] = 10

−6m2/s) water

1.16 ∗ 10
6

𝜅

𝐷
2

(𝜅 = 0.0001m)

0.000478

Blades

𝑍 4
𝛽
𝑏2

164∘

𝛽
𝑏1

164∘
𝐷
3

𝐷
2

1.05
𝑏
3

𝑏
2

1.05

Volute
𝛼
𝑉

7∘

𝛼th 4∘

𝐶
𝑑𝑉

0.8

Eye

𝐷eye

𝐷th

1

𝑦
𝑐

𝐷eye
0.005

𝐶dL 0.6
𝐶eye 1.0

impeller inlet, 𝛽
𝑏
1

, volute angle, 𝛼
𝑉
, throat angle, 𝛼th, ratio of

wearing ring clearance/impeller eye diameter, (𝑦
𝑐
/𝐷eye), leak-

age discharge coefficient,𝐶dL, volute diffusion loss coefficient,
𝐶
𝑑
𝑉

, eye loss coefficient, 𝐶eye, blade thickness coefficient at
impeller outlet, 𝜀

2
, with constant-thickness blades, ratio of

axial gap between impeller disk and casing to impeller outlet
radius, 𝑦

0
/(𝐷
2
/2), Reynolds number at impeller outlet, Re

2
,

and relative roughness, (𝜅/𝐷
2
) approximated values are used

by putting 𝐷
2
≈ 0.209m, 𝑁 ≈ 1450 rpm, 𝜅 ≈ 0.0001m,

] ≈ 10
−6m2/𝑠: Re

2
= 1.16 ∗ 10

6, and 𝜅/𝐷
2
= 0.000478.

For a certain flow coefficient, 𝜓, all pump performance
parameters and coefficients are calculated after iterations.
Case Study. For reason of comparison between results of
present analytical study and experimental pump perfor-
mance obtained by Baun and Flack [14], calculations of cen-
trifugal pump performance are performed with the following
input parameters given in Table 1.

Other pump constant-parameters are calculated accord-
ing to the present procedure as shown in Table 2.

The sequence of calculations by using the procedure
derived equations of pump variable parameters is listed in
Table 3.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00 0.02 0.04 0.06 0.08 0.10 0.12

𝜓/𝜑

Experimental head coeff. [14]
Present procedure head coeff.

Experimental [14]
Present procedure

𝜂

𝜂

Efficiency

CH
CH

Figure 9: Comparison between present procedure results and
experimental results by Baun and Flack [14].

The manometric head coefficient and pump efficiency
of both present procedure and experimental measurements
by Baun and Flack [14] are plotted in Figure 9 versus the
ratio (𝜓/𝜑) (defined as flow coefficient in [14]). It shows a
good similarity between the present procedure results and the
experimental ones. Only in range of low ratios of 𝜓/𝜑, the
calculated efficiency is relatively high.This is attributed to the
uncounted mechanical power loss in the prediction of pump
shaft power and hence in efficiency.

The pump performance characteristics are presented
by the calculated pump head coefficient, efficiency, power
coefficients, and required NPSH as shown in Figure 10. From
the figure, the pump best efficiency point (BEP) occurs at
discharge coefficient 𝐶

𝑄
≈ 0.0675 giving an efficiency 𝜂 ≈

75.3%, a manometric head coefficient 𝐶
𝐻

≈ 0.468, a shaft
power coefficient 𝐶

𝑃sh
≈ 0.414, a water power coefficient

𝐶
𝑃
𝑤

≈ 0.312, and a pump required net positive suction head
coefficient 𝐶NPSH

𝑅

≈ 0.129.
Themaximumshaftpower coefficient𝐶

𝑃sh
≈ 0.428 occurs

at 𝐶
𝑄

≈ 0.085, and the maximum water power coefficient
𝐶
𝑃
𝑤

≈ 0.3165 occurs at 𝐶
𝑄
≈ 0.075.

The variations of pump flow coefficient 𝜓 and pump
speed coefficient 𝜑 with the discharge coefficient are shown
in Figures 11 and 12, respectively. Figure 11 shows also the
variation of the ratio 𝜓/𝜑 with the discharge coefficient 𝐶

𝑄
.

The linear relationship between 𝐶
𝑄
and 𝜓/𝜑 is evident as

given by (6).The dotted lines in the figures correspond to the
value of 𝐶

𝑄
that gives the pump best efficiency. At pump best

efficiency point (𝐶
𝑄
≈ 0.0675), 𝜓 ≈ 0.063 (Figure 11) and

𝜑 ≈ 1.034 (Figure 12). Also, it is indicated from Figure 12 that
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Table 2: Pump constant-parameters.

Constant parameter equation Equation no.

Impeller

1 − 𝜎
0
=

√sin𝛽
𝑏2

𝑍0.7
for 𝐷1

𝐷
2

≤ 𝜖limit = 𝑒
−8.16 sin𝛽𝑏2 /𝑍 (22)

𝜖
1
= 1 −

(1 − 𝜖
2
)

(𝐷
1
/𝐷
2
) (sin𝛽

𝑏1
/ sin𝛽

𝑏2
)

(4)

𝑑
2

𝐷
2

= 𝜖
2

𝜋

𝑍
sin𝛽
𝑏2

(15)

𝑑
1

𝐷
2

= 𝜖
1

𝜋

𝑍

𝐷
1

𝐷
2

sin𝛽
𝑏1

(26)

𝐷hyd

𝐷
2

=
2 (((𝑑

1
/𝐷
2
) (𝑏
1
/𝑏
2
) (𝑏
2
/𝐷
2
)) + ((𝑑

2
/𝐷
2
) (𝑏
2
/𝐷
2
)))

(𝑑
1
/𝐷
2
) + ((𝑏

1
/𝑏
2
) (𝑏
2
/𝐷
2
)) + (𝑑

2
/𝐷
2
) + (𝑏

2
/𝐷
2
)

(80)

𝜅

𝐷hyd
=

𝜅/𝐷
2

𝐷hyd/𝐷2
(85)

𝐾
𝐷
=

1

40

𝑓
𝐷

𝜖
2
(𝑏
2
/𝐷
2
)

(92a)

𝑓
𝐷
= 𝑓
𝐷
(Re2, 𝐺) (92b)

Blades
𝐿
𝑏

𝐷
2

=
1

2
(1 −

𝐷
1

𝐷
2

)
1

sin𝛽bm
(82a)

𝛽bm =
1

2
(𝛽
𝑏1
+ 𝛽
𝑏2
) (82b)

Volute

1

𝐷
ℎ𝑉
/𝐷
2

=
1

2(𝑏
3
/𝑏
2
)(𝑏
2
/𝐷
2
)
+

1

8(𝜋/𝑍)(𝐷
3
/𝐷
2
) sin𝛼

𝑉

(49)

𝐿
𝑉

𝐷
2

=
1

2

𝜋

cos𝛼
𝑉

(
𝐷
3

𝐷
2

) (48)

𝜅

𝐷
ℎ𝑉

=
(𝜅/𝐷
2
)

(𝐷
ℎ𝑉
/𝐷
2
)

(51)

tan(
𝜃th

2
) =

1

2
[𝜋 tan𝛼

𝑉
+ tan𝛼th −

(𝑏
3
/𝑏
2
) (𝑏
2
/𝐷
2
)

(𝐷
3
/𝐷
2
)

] (43)

𝐶
𝑓th

= 0.5 + 2.6 ∗ sin(
𝜃th

2
) (56)

Eye
𝐷eye

𝐷
1

=
(𝐷
3
/𝐷
2
)

(𝐷
1
/𝐷
2
)
(𝜋 tan𝛼

𝑉
+ tan𝛼th) (40)

the speed coefficient takes a minimum value of 𝜑 ≈ 0.932

at 𝐶
𝑄
≈ 0.024, which corresponds to the maximum 𝐶

𝐻
in

Figure 10.
Figure 13 shows the theoretical dimensionless head-

discharge curve (Euler head) which is a straight line, and𝐶
𝐻
∞

decreases with the increase of 𝐶
𝑄
for the proposed outlet

blade angle 𝛽
𝑏
2

= 164
∘

> 90
∘. The actual impeller outlet

dimensionless head-discharge curve 𝐶
𝐻
0

is obtained taking
into consideration the slip or eddy circulation of flow inside
impeller which is nearly constant. Actually, the effect of slip
is not a loss but a discrepancy not accounted by the basic
assumptions. The second loss shown is the volute-and-eye
loss, which is minimum at 𝐶

𝑄
≈ 0.051. Reduced or increased

𝐶
𝑄
, from the value 0.051, increases the volute-and-eye loss.
Figure 14 gives the variation of different head loss coef-

ficients with 𝐶
𝑄

in addition to the 𝐶
𝐻

and 𝐶
𝐻
0

curves.
Generally, these head loss coefficients decrease with the
increase of 𝐶

𝑄
. At very low discharge coefficients, both the

disk head loss coefficient and volumetric head loss coefficient
become very big. The inlet circulation head loss is big at low

𝐶
𝑄
and decreases until it reaches zero at 𝐶

𝑄
≈ 0.06, and

then, its direction is inverse (becomes negative) whichmeans
that the inlet circulation adds power to impeller and does not
bleed power from impeller.

The variation of the flow velocity coefficients and the
pump volumetric efficiency 𝜂vol with the pump discharge
coefficient is shown in Figure 15.The coefficients𝐶

𝑉
1

,𝐶
𝑉Δ𝑉
𝑢2

,
and 𝐶

𝑉
4

have the trends of increasing with the increase of
𝐶
𝑄
, whereas the two coefficients 𝐶

𝑉
3𝑑

and 𝐶
𝑉
3𝑑

have the

trends of decreasing with the increase of 𝐶
𝑄
. These two later

coefficients have maximum values at 𝐶
𝑄
= 0. At 𝐶

𝑄
≈ 0.085,

the coefficient 𝐶
𝑉
3𝑑

becomes zero, which indicates that at this
point of operation the flow inside volute is without circulation
and 𝑉

4
= 𝑉
𝑢
2 act. At increased 𝐶𝑄, the 𝐶𝑉3𝑑 becomes negative

which means that the flow circulation inside the volute
changes its direction of rotation opposite to impeller motion
whereas 𝑉

4
> 𝑉
𝑢
2 act (Figure 6).

The pump specific speed is presented in Figure 16, which
shows that 𝑛

𝑠
≈ 870 at pump best efficiency point.
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Table 3: Pump variable-parameters.

Order Variable parameter equation Eq. no.

𝜓 ≡
𝑉
𝑟2

√2𝑔𝐻
= 0.002 to 0.12 step = 0.001

Initial 𝜎 = 𝜎
0
, 𝑥 = 1, 𝜂vol = 1

Start of iteration

1 𝜑 = −
1

2
𝜓 cot𝛽

𝑏2
+
1

2
√𝜓2cot2𝛽

𝑏2
+

2

𝑥𝜎
(69)

2 𝑦 = 𝐶
𝐻∞

≡
𝐻
∞

𝑢2
2
/𝑔

= 1 +
𝜓

𝜑
cot𝛽
𝑏2

(21), (65b)

3 𝜎 = 1 −
(1 − 𝜎

0
)

𝑦
(20)

4 𝐶
ℎ𝑙slp

≡
ℎ
𝑙slp

𝑢2
2
/𝑔

= (1 − 𝜎)𝐶
𝐻∞

(65d)

5 𝐶
𝐻0

≡
𝐻
0

𝑢2
2
/𝑔

= 𝜎(1 +
𝜓

𝜑
cot𝛽
𝑏2
) (65c)

6 𝐶
𝑉5
≡

𝑉
5

√2𝑔𝐻
=

4𝜖
2
𝜂vol (𝑏2/𝐷2)

(𝐷
𝑡ℎ
/𝐷
3
)
2

(𝐷
3
/𝐷
2
)
2
⋅ 𝜓 (37)

7 𝐶
𝑉4
≡

𝑉
4

√2𝑔𝐻
=

𝜖
2
𝜂vol

(𝐷
3
/𝐷
2
) (𝑏
3
/𝑏
2
) tan𝛼

𝑉

⋅ 𝜓 (33)

8 𝐶
𝑉eye

≡
𝑉eye

√2𝑔𝐻
=

4𝜖
2
(𝑏
2
/𝐷
2
)

(𝐷
𝑡ℎ
/𝐷
3
)
2

(𝐷
3
/𝐷
2
)
2
⋅ 𝜓 (39)

9 𝐶
𝑉3𝑝

=
𝐶
𝑉4

cos𝛼
𝑉

(54a)

10 𝐶
𝑉3𝑑

= 𝜎 (𝜑 + 𝜓cot𝛽
𝑏2
) − 𝐶
𝑉4

(54b)

11 𝐶
𝑉3𝑟

≡
𝑉
3𝑟

√2𝑔𝐻
=

𝜖
2
𝜂vol

(𝐷
3
/𝐷
2
) (𝑏
3
/𝑏
2
)
⋅ 𝜓 (54c)

12 𝜂vol = 1 − (
𝑦
𝑐

𝐷eye
)(

𝐷eye

𝐷
1

)

2

(
𝐷
1

𝐷
2

)

2

1

(𝑏
2
/𝐷
2
)

√2𝐶dL

𝜖
2

𝜑

𝜓
∗ √𝐶

𝐻0
−
𝐶
2

𝑉4

− 𝐶
2

𝑉5

+ 𝐶eye ⋅ 𝐶
2

𝑉eye

2𝜑2
−
1

8
[1 − (

𝐷
1

𝐷
2

)

2

(
𝐷eye

𝐷
1

)

2

] (99)
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Table 3: Continued.

Order Variable parameter equation Eq. no.

13 Re
𝑉
=
𝑉
3𝑝
⋅𝐷
ℎ𝑉

]
= 2(

𝐶
𝑉3𝑝

𝜑
)(

𝐷
ℎ𝑉

𝐷
2

) ⋅ Re
2

(52)

14 𝑓
𝑉
=

0.3086

{log [(6.9/Re
𝑉
) + ((𝜅/𝐷

ℎ𝑉
) /3.7)

1.11

]}
2

(50)

15 𝐶
𝑓𝑉

= 𝑓
𝑉

𝐿
𝑉

𝐷
ℎ𝑉

= 𝑓
𝑉
(
𝐿
𝑉

𝐷
2

)(
1

𝐷
ℎ𝑉
/𝐷
2

) (46)

16
ℎ
𝑙𝑉

𝐻
= 𝐶
𝑓𝑉
𝐶
2

𝑉3𝑝

+ 𝐶
𝑑𝑉
𝐶
2

𝑉3𝑑

+ 𝐶
2

𝑉3𝑟

+ 𝐶
𝑓𝑡ℎ
𝐶
2

𝑉4

(45)

17
ℎ
𝑙eye

𝐻
= 𝐶eye ⋅ 𝐶

2

𝑉eye
(57)

18 1

𝑥
= 1 +

ℎ
𝑙𝑉

𝐻
+

ℎ
𝑙eye

𝐻
(61)

End of iteration

19 𝐶
ℎ𝑙𝑉+eye

≡

ℎ
𝑙𝑉
+ ℎ
𝑙eye

𝑢2
2
/𝑔

= (1 − 𝑥) 𝜎𝐶
𝐻∞

(65e)

20 𝐶
𝐻
≡

𝐻

𝑢2
2
/𝑔

= 𝑥𝜎(1 +
𝜓

𝜑
cot𝛽
𝑏2
) (65a)

21 𝐶
𝑄
≡

𝑄

(𝑁/60)𝐷
3

2

= 𝜂vol𝜖2𝜋
2

(
𝑏
2

𝐷
2

) ⋅ (
𝜓

𝜑
) (6)

22
𝑊av

𝑢
2

=
𝜖
2
(𝜋/𝑍) (𝑏

2
/𝐷
2
) ⋅ (𝜓/𝜑)

1/2 (((𝑑
1
/𝐷
2
) (𝑏
1
/𝑏
2
) (𝑏
2
/𝐷
2
)) + ((𝑑

2
/𝐷
2
) (𝑏
2
/𝐷
2
)))

(81)

23 Re =
𝑊av ⋅ 𝐷hyd

]
= 2(

𝑊av
𝑢
2

)(
𝐷hyd

𝐷
2

) ⋅ Re
2

(86)

24 𝑓
𝑖
=

0.3086

{log [(6.9/Re) + ((𝜅/𝐷hyd) /3.7)
1.11

]}
2

(84)

25 4𝐶
𝑑𝑖
= (𝑓
𝑖
+ 0.006) (1.1 + 4

𝑏
2

𝐷
2

) (83)
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Table 3: Continued.

Order Variable parameter equation Eq. no.

26 𝐶
ℎ𝑙𝑓

≡

ℎ
𝑙𝑓

𝑢2
2
/𝑔

= 4𝐶
𝑑𝑖

(𝐿
𝑏
/𝐷
2
)

(𝐷hyd/𝐷2)

1

2
(
𝑊av

𝑢
2

)

2

(78)

27 𝐶
ℎ𝑙𝐷

≡
ℎ
𝑙𝐷

𝑢2
2
/𝑔

= 𝐾
𝐷
⋅
1

𝜂vol

𝜑

𝜓
(91)

28 𝐶
ℎ𝑙cirin

≡

ℎ
𝑙cirin

𝑢2
2
/𝑔

= (1 − 𝜖
1

𝜋

𝑍
sin𝛽
𝑏1
)(

𝐷
1

𝐷
2

)

2

−
cot (180 − 𝛽

𝑏1
)

(𝑏
1
/𝑏
2
) (𝜖
1
/𝜖
2
)
⋅
𝜓

𝜑
(101)

29 𝐶
ℎ𝑙vol

≡
ℎ
𝑙vol

𝑢2
2
/𝑔

= (
1

𝜂vol
− 1) ⋅ (𝐶

𝐻0
+ 𝐶
ℎ𝑙𝑓

+ 𝐶
ℎ𝑙cirin

) (93)

30 𝐶
𝐻sh

≡
𝐻sh

𝑢2
2
/𝑔

= 𝐶
𝐻0

+ 𝐶
ℎ𝑙𝑓

+ 𝐶
ℎ𝑙cirin

+ 𝐶
ℎ𝑙vol

+ 𝐶
ℎ𝑙𝐷

(73)

31 𝜂 ≡
𝑃
𝑤

𝑃sh
=

𝐶
𝐻

𝐶
𝐻sh

(74)

32 𝐶
𝑃sh

≡
𝑃sh

𝜌(𝑁/60)
3

𝐷5
2

= 𝜋
2

𝐶
𝑄
𝐶
𝐻sh

(75)

33 𝐶
𝑃𝑤

≡
𝑃
𝑤

𝜌(𝑁/60)
3

𝐷5
2

= 𝜋
2

𝐶
𝑄
𝐶
𝐻

(76)

34 𝐶NPSH𝑅 = 0.02 +
1

2 sin2𝛽
𝑏1

(𝜓/𝜑)
2

(𝐷
1
/𝐷
2
)
2

(𝑏
1
/𝑏
2
)
2

(𝜖
1
/𝜖
2
)
2

(107)

35 𝑛
𝑠
= 9977√𝜖2√(

𝑏
2

𝐷
2

) ⋅ √𝜂vol ⋅ 𝜑√𝜓 (110)

Figure 17 shows the procedure results of centrifugal pump
performance when the pump handles fluids with different
kinematic viscosities. The head and efficiency for the pump
whenhandling oils are lower than thosewhen handlingwater.
But the required power when handling oil is higher than that
when handling water.

The pump head decreases slightly due to the increase
in volute friction loss as fluid viscosity increases, while the
increase in pump power is high due to the increase in both
hydraulic friction inside impeller and disk friction power
losses. Hence, the drop in pump efficiency is very high as
the fluid viscosity increases. This result is in accordance with
experimental results by Shojaee Fard and Boyaghchi [15].

4. Conclusions
A one-dimensional flow procedure for analytical study of
centrifugal pump performance is accomplished applying the

principle theories of turbomachines.Theprocedure is capable
of providing the performance characteristic of centrifugal
pump in a dimensionless information form. The predicted
coefficients and performance curves obtained have been
found to be in a reasonable agreement with experimental
measurements. The present procedure is also capable of pre-
dicting the effects of handling viscous fluids on the centrifugal
pump performance. The input form for this procedure of
pump flow analysis makes it an effective tool analysis and can
be used in the pump conceptual design.

Notations

𝐴 : Impeller net area, m2
𝑎
𝑐
: Clearance area of wearing ring, m2

𝐴
𝑉
: Volute area, m2

𝐴 th: Throat outlet area, 𝜋𝐷2th/4, m
2

𝐴
𝑉th
: Volute throat inlet area, m2
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Figure 10: Characteristics of centrifugal pump obtained by present
study.
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Figure 11: Variation of flow coefficient and ratio of flow coefficient
to speed coefficient with discharge coefficient.

𝑏 : Impeller width, m
𝐶
𝑑
𝑖

: Impeller dissipation coefficient
𝐶dL: Leakage discharge coefficient
𝐶
𝑑
𝑉

: Volute diffusion loss coefficient
𝐶eye: Eye loss coefficient
𝐶
𝑓th
: Volute throat friction loss coefficient

𝐶
𝑓
𝑉

: Volute friction loss coefficient
𝐶
𝐻
: Manometric head coefficient,𝐻/(𝑢

2

2
/𝑔)

𝐶
𝐻
0

: Head coefficient at impeller outlet,
𝐻
0
/(𝑢
2

2
/𝑔)

𝐶
𝐻
∞

: Euler head coefficient,𝐻
∞
/(𝑢
2
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/𝑔)

𝐶
𝐻sh

: Shaft head coefficient,𝐻sh/(𝑢
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/𝑔)
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Figure 12: Speed coefficient variation with pump discharge coeffi-
cient.
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Figure 13: Variation of head coefficients and head loss coefficients
with discharge coefficient.

𝐶
ℎ
𝑙cirin

: Inlet shock circulation head loss coefficient,
ℎ
𝑙cirin

/(𝑢
2

2
/𝑔)

𝐶
ℎ
𝑙𝑓

: Impeller skin friction head loss coefficient
𝐶
ℎ
𝑙eye
: Eye head loss coefficient, ℎ

𝑙eye
/(𝑢
2

2
/𝑔)

𝐶
ℎ
𝑙𝐷

: Disk friction head loss coefficient, ℎ
𝑙
𝐷

/(𝑢
2

2
/𝑔)

𝐶
ℎ
𝑙slp
: Slip head loss coefficient, ℎ

𝑙slp
/(𝑢
2

2
/𝑔)

𝐶
ℎ
𝑙𝑉

: Volute head loss coefficient, ℎ
𝑙
𝑉

/(𝑢
2

2
/𝑔)

𝐶
ℎ
𝑙𝑉+eye

: Volute-eye head loss coefficient,
(ℎ
𝑙
𝑉

+ ℎ
𝑙eye
)/(𝑢
2

2
/𝑔)

𝐶
ℎ
𝑙vol
: Volumetric head loss coefficient, ℎ

𝑙vol
/(𝑢
2

2
/𝑔)
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Figure 14: Head loss coefficients affecting pump power at different
discharge coefficients.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12

BE
P

CQ

CV

𝜂vol

𝜂vol

CV2

CV2act

C V
4

CV1

C
V
3𝑑 

C
V
3𝑑

CVΔVu2

Figure 15: Values of volumetric efficiency and different pump
velocity coefficients.
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: Coefficient of pump NPSH
𝑅
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Figure 16: Pump specific speed values at different discharge coeffi-
cient.
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Figure 17: Effect of pumped fluid viscosity on the performance of
centrifugal pump.

𝐷eye: Pump eye diameter, m
𝐷
ℎ
𝑉

: Average volute hydraulic diameter, m
𝐷th: Throat diameter, m
𝑓 : Hydraulic friction coefficient
𝑓
𝐷
: Disk friction coefficient

𝑔 : Acceleration of gravity, m/s2
𝐺 : Impeller disk gap parameter, 𝑦

0
/(𝐷
2
/2)

ℎ
𝑙cirin

: Inlet shock circulation head loss, m
ℎ
𝑙
𝐷

: Disk friction head loss, m
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ℎ
𝑙
𝑓

: Impeller skin friction head loss, m
ℎ
𝑙slp
: Slippage head loss, m

ℎ
𝑙
𝑉

: Volute head loss, m
ℎ
𝑙vol
: Volumetric head loss, m

𝐻 : Manometric head of pump, m
𝐻
0
: Water head at impeller outlet, m

𝐻sh: Pump shaft head, m
𝐻
∞
: Euler pump head, m

𝐾
𝐷
: Impeller disk loss coefficient

𝐿
𝑏
: Blade length, m

𝐿 th: Throat length, m
𝐿
𝑉
: Volute length, m

𝑁 : Pump rotational speed, rpm
NPSH: Pump net positive suction head, m
NPSH

𝑅
: Pump required net positive suction head, m

𝑛
𝑠
: Pump specific speed

𝑝: Pressure, N/m2
𝑝
𝑐
: Pressure before wearing ring clearance, N/m2

𝑝
𝑠
: Pressure at pump suction side, N/m2

𝑃sh: Pump shaft power, W
𝑃
𝑤
: Pumped water power, W

𝑃sh
0

: Impeller Euler power, W
𝑃
𝑙cirin

: Inlet shock circulation power loss, W
𝑃
𝑙
𝑓

: Impeller friction power loss, W
𝑃
𝑙
𝐷

: Disk friction power loss, W
𝑃
𝑙vol
: Volumetric power loss, W

𝑄: Pump discharge, m3/s
𝑄
𝑖
: Impeller discharge, m3/s

𝑄
𝐿
: Pump internal discharge leakage, m3/s

𝑟: Radius, m
𝑡: Blade thickness, m
𝑢: Tangential flow velocity, m/s
𝑉: Absolute flow velocity, m/s
𝑉
3𝑝
: Throughflow component of volute velocity,

m/s
𝑉
3𝑑
: Circulation velocity of flow in volute, m/s

𝑊: Relative velocity of flow, m/s
𝑥: Ratio,𝐻/𝐻

0

𝑦: Group parameter, (𝑦 = 𝐶
𝐻
∞

)
𝑦
0
: Axial gap between impeller disk and casing,

m
𝑦
𝑐
: Clearance of wearing ring, m

𝑍: Number of blades.

Greek Letters

𝛼: Theoretical absolute velocity angle, degrees
𝛼
𝑉
: Volute angle, degrees

𝛽
𝑏
: Blade angle, degrees

𝜃th: Volute throat angle, degrees
𝜖: Blade thickness coefficient
𝜑: Pump speed coefficient, 𝑢

2
/√2𝑔𝐻

𝜂: Manometric efficiency of pump
𝜂vol: Volumetric efficiency
]: Fluid kinematic viscosity, m2/s
𝜌: Density of fluid, kg/m3
𝜎: Slip factor, 𝑉

𝑢
2act
/𝑉
𝑢
2

𝜓: Pump flow coefficient, 𝑉
𝑟
2

/√2𝑔𝐻

𝜅: Roughness height, m.

Subscripts

1: Impeller inlet
2: Impeller outlet
3: Volute inlet
4: Volute outlet (throat inlet)
5: Pump outlet (throat outlet)
av: Average
act: Actual
eye: Pump eye
𝑐: Clearance
hl: Head loss
𝑖: Impeller
𝑙: Loss
𝑟: Radial direction
𝑠: Suction
sh: Shaft
th: Volute throat
𝑢: Tangential direction
vol: Volumetric.
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