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On the basis of the linearized fluid forces acting on the rotor obtained directly by using
the two-dimensional Navier — Stokes equations, the stability of symmetrical rotors with
a cylindrical chamber partially filled with a viscous incompressible fluid is investigated
in this paper. The effects of the parameters of rotor system, such as external damping
ratio, fluid fill ratio, Reynolds number and mass ratio, on the unstable regions are
analyzed. It is shown that for the stability analysis of fluid filled rotor systems with
external damping, the effect of the fluid viscosity on the stability should be considered.
When the fluid viscosity is included, the adding external damping will make the system
more stable and two unstable regions may exist even if rotors are isotropic in some

cases.
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INTRODUCTION

For the rotating machinery with cavity compo-
nents, such as fluid-filled centrifuges and separa-
tors, fluid-cooled gas turbines, spin-stabilized
satellites as well as rockets containing liquid fuels,
there is an amount of fluid trapped in the cavity
when the rotor rotates. The interaction between
the rotating rotor and the enclosed fluid may lead
to self-excited vibration or instability in a certain
region of rotational speeds. The instability of
rotors partially filled with fluid was first observed

by Kollmann (1962), and then theoretically
explained by many researchers. The theoretical
models used hitherto are basically divided into two
groups: the in-viscous fluid and the viscous fluid.
In the in-viscous fluid model, one of the most
important conclusions is that adding external
damping on the rotor system will cause the rotor
system to become unstable at any speeds. This is
not in agreement with the facts that the unstable
motions observed in experiments only occur in a
certain range of rotational speeds and that there is
a certain amount of external damping in every

*Present address: Center of Vibration Engineering, Mechanical Engineering Department, Imperial College, Exhibition Road,
London SW7 2BX, UK. e-mail: ¢.s.zhu@ic.ac.uk, cszhu@hotmail.com



302 Z. CHANGSHENG

experimental rig. The reason for this is that the
effect of the fluid viscosity is not considered. The
unstable region derived from the viscous fluid
model is finite, but the conclusions about the effect
of external damping on the rotor stability obtained
by using different solving methods do not agree
with each other. For example, Hendricks and
Morton (1979) showed that the external damping
makes the rotor system become more unstable; but
Saito and Someya (1980); Holm and Tréager (1991)
showed that the external damping makes the
system more stable. Therefore, there are lots of
problems to be studied in the stability of the rotors
partially filled with viscous fluid.

On the basis of the linearized fluid forces acting
on the rotor in the two-dimensional case obtained
directly by using the Navier — Stokes equations, the
objectives of this paper are to investigate the sta-
bility of symmetrical rotor systems partially filled
with the viscous incompressible fluid and to ana-
lyze the effects of the system parameters, such as
the external damping ratio, fluid fill ratio, Rey-
nolds number at the critical speed and mass ratio,
on the stability of the fluid filled rotor system.

ROTATING VISCOUS FLUID
DYNAMICS

Basically, the motion of the rotor is coupled with
the fluid motion in the chamber. During the steady
state operation, the rotor will be exposed to a
deflection, and waves will be excited in the rotating
fluid layer. These waves will produce fluid forces
on the rotor which depends on the unknown
whirling speed of the rotor, rotational speed,
structure of the chamber and properties of the
fluid. The fluid forces are incorporated into the
equations of motion of the rotor, to give the con-
ditions which must be satisfied if the instability
occurs. Therefore, the key problem in analyzing
the dynamics of the rotor partially filled with fluid
is to obtain the fluid forces acting on the rotor.
The following assumptions are made in order to
analyze the linearized fluid forces acting on the

rotor. (1) The fluid chamber is an axis-symmetrical
rigid cylinder and is totally balance, the properties
of the fluid, such as fluid kinematic viscosity and
density are constants; (2) The fluid is viscous
incompressible and the surface tension effects are
negligible. During operation, no fluid enters or
leaves the chamber; (3) The effect of the gravity
force is neglected in comparison with the centri-
fugal force; (4) The motion of the fluid in the
chamber is assumed to be uniform in the axial
direction and independent of axial position; (5)
The rotor is driven at a constant rotational speed
Q. Under the above assumptions, the equations of
motion of the fluid in the polar co-ordinate system
rotating at the speed (2, can be written from the
two-dimensional Navier — Stokes equations as fol-
lows:
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where A is the Laplacian operator, u and p are the
kinematic viscosity and the density of fluid. u and
v are the velocities in the r and ¢-directions,
respectively. w is the whirling speed of the rotor,
is the eccentricity ratio of the chamber motion
relative to the inner radius of the chamber a, p is
the fluid pressure, and « is the inner radius of the
chamber. i = v/—1.

The equation of continuity for the incompres-
sible rotating fluid is given by

O(ru)  Ov
o + % =0 (3)
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The boundary condition at the wetted rotor
surface(r =a) is

u(a) =0 4)

During the rotor’s whirling, the position of the free
surface of the fluid is defined by R, =b+n(r, ¢, 1),
where b is the inner radius of the fluid free surface
for an undisturbed motion, 5 is the response
function of the fluid free surface to the distur-
bance. For small perturbations, R, = b, the bound-
ary conditions at the fluid free surface are

on
u(b) = — 5
(b =5 (5)
For the viscous fluid, the velocity in the ¢-
direction must be zero at the wetted rotor surface
(no slip condition) and the free surface of the fluid
must be free from shear stresses, i.e.,

v(a) =0,
Oy
r=b or

10u

a’¢|r:b 2555 =0

r=b

r=b b

In order to linearize Egs. (1)—(3), a perturbation
method is employed in which the eccentricity ratio
of the chamber motion relative to the inner radius
of the chamber ¢ is chosen as the perturbation
parameter. Each dependent variable, ® €[u,v,p],
is represented in powers of the non-dimensional
eccentricity ratio e, ie., ®= By+eD,+ 0,
where ®, is the zero-order term and &, the
first-order term. After substituting the relation in
Egs. (1)—(3) and neglecting the higher-order terms
of ¢, the terms of like order are grouped to form
the corresponding equations for different order
solutions.

Because the zero-order solution corresponding
to the undisturbed motion of the rotating fluid can
be considered as the rigid body motion which ro-
tates at the same rotational speed of the chamber,
so the zero-order solution is given by:

1
up =0, v=0, po= 5/792(72 -v) (7

On the basis of the zero-order solution, we get
the equations to be satisfied by the first-order solu-
tion, which can be expressed in non-dimensional
parameters as

ORUY) V)

OR 190) 0 ®)
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i 200,
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The boundary conditions are
Ui(1) =0 (11)
Vi(1)=0 (12)
Pl(H) = —-2H§1 (13)
_0q
U(H) = 5 (14)
1 8U1 aVl Vl
21 ~ - =0 15
H 0 gy OR |gep  H lg—n 13

where U= (u1/afY), Vi=(/af)), Re=(a’Q/p),
Py =(2p1/a*pQ%), R=(r|a), H=(bla), a=(w/®),
q:(m/a), T=Qt, c=a~—1.

It is found that the forced solution of Egs.
(8)—(10), in which we are interested, should
be in the form of ¥, = U(R)-expli(or — )],
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¥, €[Uy, V1, P1,¢1], so we get from Egs. (8)—(10)

- — . dU
V= iU~ iR (16)

_ dU _
P=—2i(a— 1)R2——q —2(a+ 1)RiU + 20*R

dR
2R (U d*U
a 1d 1 .
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The corresponding boundary conditions for vari-
able U are

T(1) =0 (19)
du
x| O (20)
a*u dUu
HY—| +=| =0 (21)
AR |,y dR |4y

After eliminating the unknown variable ¢; from
the Eqgs. (13)—(14) and using Eq. (16), we can
convert the boundary conditions in Egs. (13)-(14)
into the following form.

T a*u
(a — NH*=— +4(a— 1)H——
dR3 |y dr? |,y
du —
—(a— 1)2ReH2id—g e o*ReHiU|p_y,
+ o*(a— 1)ReH =0 (22)

Equation (18) can be converted into a first-order
modified Bessel’s equation, the solution of U can
be written as:

_ 1 G Cy
U=C1+C2E§+-—R5-Il(kR)+?K|(kR) (23)

C; (i=1,2,3 and 4) are integral constants which
are determined by the boundary conditions Egs.

(19)-(22). I(kR) and K;(kR) are modified Bessel’s
functions of the first order first kind and the
second order first kind, respectively. k& = (1/2)
[1+ sig(a — 1)i]y/|a — 1|Re. After obtaining U,
we can easily get V and P from Egs. (16) and
(17), respectively.

Since the influence of the fluid viscosity is
considered here, the net fluid forces acting on the
rotor depend on both the fluid pressure and the
shear stress at the wetted rotor surface, and are
obtained by integrating them in a certain range.
Because p(a) and o,4(a) obtained are all complex
values, only the real parts of them are physically
of sense, so the fluid forces acting on the rotor
are

{r)
=aL
Fy
2r ( Real[p(a)] cos ¢ + Real(o,4(a)] sin ¢ J
/0 { Real[p(a)]sin ¢ — Real[o,,(a)] cos ¢ } ”

(24)

Finally, we get the net forces Fy and Fy in the X
and Y directions in the fixed co-ordinate system as

follows:
Fx | _ | —Real(A) —Real(4i)|[X (25)
Fy [ Real(Ai) —Real(A) Y
where
1 [d*U d*U
_ 2r02) 2, L |aU auv
A = mpa“LS) {a +Re [dR3 . +3dR2 R:1:|}’

L is the height of the chamber.

We should point out, the linearized forces of
the rotating fluid layer acting on the rotor only
depend on the displacement of chamber center,
other parameters of the chamber structure and
properties of the fluid, do not depend on velocity
of the chamber center. It is distinctly different
from the traditional unstable elements in rotor
systems, where a destabilizing force would typi-
cally be tangential with respect to whirl orbit
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and contain a velocity proportional and a deflec-
tion proportional term, i.e., there exist both the
damping and the stiffness effect. However, There
exists only the stiffness effect not any damping
effect between the rotating fluid layer and the rotor
even for the viscous fluid model. This should be
studied in the rotating viscous fluid dynamics in
the future.

ROTOR SYSTEM MODEL

The rotor system may be one of the systems shown
in Figure 1. One consists of a disk with a
cylindrical chamber mounted midway between
the bearings on a massless uniform elastic shaft
used by Wolf (1968). The other consists of a
hollow rigid rotor partially filled with fluid
mounted symmetrically on the flexible supports.
If only the motion of parallel mode is considered,
these two rotor systems can be simplified as a
signal mass—stiffness—damper system. Let the
equivalent mass of the rotor system be M, the
equivalent external damping be C and the equiva-
lent stiffness coefficient of the system be K,
respectively, the equations of motion of the
rotor system in fixed XYZ co-ordinate system are

HlH
o {v}-{5)

(26)

Assuming the solution of Eq. (26) to have the form
of © =0 exp(i\t), O€[X, Y], we get a homo-
geneous system of equations to which nontrivial
solutions only exist if the determinant equals zero.
After some algebraic operation, we obtain the
following characteristic equation of the rotor
system partially filled with viscous fluid:

N5t = 26087 — 24 € — 2Real(A) NS
+2[1 — Real(A)]\i¢S
+[(1 — Real(A))* + (Real(4i))*] =0 (27)

i

a = Real ()\). £ = C/Muw,, is the external damping
ratio, A = A/ is the non-dimensional complex

where
N d*U
Rl dR?

\-
A:mSZ{aer 1 [d J

SRe., | dR3

X

G A o SIS AT A
VA e A A AT A T A

FIGURE 1 Rotor system models.
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eigen-value, m = mp/M is the mass ratio, S=
QJwe is the rotational speed ratio, mp=rpLa® is
the mass of the fluid needed to completely fill
the chamber, w2, = K/M is the first critical speed
of the empty rotor system.

It is clear that the instability behavior of the
rotor partially filled with the viscous incompres-
sible fluid will be described by five non-dimen-
sional parameters H, S, Re., m and £. The stability
analysis is performed by looking at the smallest
imaginary part Im()\),,,,, occurring among the four
eigen-values in Eq. (27) for each rotational speed
ratio S. If Im(\),,;, is less than zero, the rotor
system is unstable; If Im(X),,;, is larger than zero,
the rotor system is stable. Since the eigen-value A
to be obtained appears in the arguments of the
Bessel’s functions, the iteration method must be

used in order to solve Eq. (27) for .

RESULTS AND DISCUSSION

The following analyses are performed for rota-
tional speed ratios 0.01 < S < 2.0, Reynolds num-
ber 10 < Re,, < 10°, fluid fill ratio 0.01 < H < 1.0,
external damping ratio 0.0005 < £ < 0.2 and mass
ratio 0.001 <m < 1.0. It is found that there exist
two forms in curve of the smallest imaginary part
Im(\),,;, among the eigen-values varying with the
rotational speed ratio S shown in Figure 2. One
shown in dashed line just has one top in which the
Im(\),;, is more than zero, there is only one un-
stable region of rotational speeds; the other shown
in solid line has two tops, so there exist two unstable
regions of rotational speeds. The reason for the
occurrence of two unstable regions of rotational
speeds in the isotropic rotors is that the linearized
fluid forces acting on the rotor are not isotropic.

Effect of the Reynolds Number, Re,,

The influence of the Reynolds number at the
critical speed Re, on the unstable regions is shown
in Figure 3 for different fluid fill ratios H’s. It
shows that when Re., is small, the two unstable

0.08

g 0.071

0.06

-Im@)

P

/

0.05
0.04
0.03

0.02¢ l unstable

o\

p o 4

I
1
I
[
i
1
1
1
1
1
(]
i
:
[
)
1
!
]
]
1
1
1
1

&Q----——‘

0 0:5 1 1.5 2
Rotating speed ratio, S

FIGURE 2 The smallest imaginary part Im(\),,, varying
with the rotating speed ratio S.
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FIGURE 3 Effect of Reynolds number Re, on rotor in-
stability. £=0.01, m=0.25, H=0.25(c), H=0.50(7),
H=0.75(0).

regions may appear, one is above the critical speed
and the other under the critical speed. As Reg,
increases, the two unstable regions first expand,
then narrow, especially the lower one. If Re, is
higher, the lower unstable region disappears and
there exists only the upper one. This may be the
reason why only one unstable region is observed in
experiments with higher Reynolds number where
water with very low viscosity is often used as the
working fluid. The larger H, the wider the unstable
regions become. However, for small and medium
H, the change of the instability boundaries of the
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upper unstable region with Re,, in the higher Re,,
region is very little. It means the fluid viscosity is
not the key factor to result in the rotor instability.
Even if the fluid viscosity is very small, the rotor
instability can also appear.

Effect of the Fluid Fill Ratio, H

The fluid fill ratio H is the ratio of the inner radius
of the undisturbed rotating fluid layer to the in-
ner radius of the chamber. The variation of the
instability regions with H is given in Figure 4 for
different external damping ratios £’s. It shows that
when H is very small or very large, the rotor
system is absolutely stable, i.e., no unstable motion
appears in the speed range considered. If Re, is
high, there exists only one unstable region above
the critical speed of the empty rotor system, but
there probably exist two unstable regions for the
lower Re.. As H increases, the unstable motions
will appear in the two regions of rotational speeds,
the lower boundaries of these unstable regions
decrease and the upper ones increase, two unstable
regions expand rapidly. If £ is small, for example
£=0.005 and 0.6 < H < 0.9, the unstable regions
expand to almost the whole rotational speed range
considered except a very small zone between two
unstable regions. This means the rotor system will

—
n

Rotating speed ratio, S

0.5

0 02 04 06 0.8 1
Fluid fill ratio, H

FIGURE 4 Effect of fluid fill ratio H on rotor instability.
Reg =102, /i = 0.25, £ =0.025(0), £=0.01([7), £ =0.005().

be unstable in very low rotational speeds. As H
further increases into the region of very high, the
two unstable regions become narrow, then change
to one unstable region and finally disappear. The
smaller &, the wider the unstable regions will be,
and the wider the range of H for occurring un-
stable motions is. Similar phenomenon in which
the rotor system will become absolutely stable in
either the very large H or very small H was also
obtained by Saito and Someya (1980) for the thin
fluid layer, but they did not find there also exists
an absolutely stable phenomenon in the case of
very small H.

Effect of the External Damping Ratio, &

Figure 5 gives the result of the influence of external
damping ratio £ on the unstable regions at
different Re.’s and H’s. When H is very large in
Figure Sa, i.e., the fluid layer in the chamber is
very thin, there is only one unstable region. An
increase in £ tends to make the rotor system more
stable by rapidly narrowing the unstable region.
When ¢ is over a certain value, the system will be
absolutely stable. This result is in good agreement
with the theoretical results obtained by Saito and
Someya (1980) with the thin fluid layer theory and
the experimental observation of Kaneko and
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FIGURE 5a Effect of external dampin% ratio £ on rotor
instability. H=0.98, /m = 0.15, Re,=10°(0), Re,,=10*D),
Ree:=10°(0).
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FIGURE 5b Effect of external damping ratio £ on rotor
instability. Re,=10°, m =0.175, H=0.75(c), H=0.50(0J),
H=0.25(3).

Hayama (1985) and Ota et al. (1986), but contrary
to Hendricks and Morton’s results (1979). The
probable reason for this difference is that different
variables are used as perturbation parameter in
linearizing the motion’s equation of the rotating
fluid and they respectively analyzed the different
regions of instability of the rotor system.

If Re. is higher, for example Re. =10’ in
Figure 5b, there are two unstable regions when £ is
much smaller. Two unstable regions will narrow
with the increase of &, especially the lower one.
When £ is over a certain value, the lower unstable
region disappears and there is only the upper one
above the critical speed of the empty rotor system.
However, for very high Re., the influence of &
on the upper unstable region is not obvious in
a certain range of &, but it does not expand the
unstable region. If £ is large enough, the system
could also be stabilized, which agrees well with the
experimental observation obtained by Kaneko and
Hayama (1985).

Effect of the Mass Ratio, m

The mass ratio m is the ratio of fluid mass
completely filling the chamber to rotor mass.
Figure 6 gives the instability regions varying with
m under different H’s in case of lower Re... When

2
m + v >
o
g1
'§ unstable
&
(-1}
g 1
0.5 - - —"
o ——O o—0—0o—=0
unstable
0 0
0 0.2 0.4 0.6 0.8 1
Mass ratio. fi

FIGURE 6 Effect of mass ratio m on rotor instability.
Re;=10%, £=0.01, H=0.25(0), H=0.50(C7), H="0.75().

H is larger, as m increases, the lower instability
boundaries decrease, the upper ones increase, the
unstable regions expand. If H is not large, as m
increases, both the lower and upper instability
boundaries decrease, but the unstable regions
expand. Therefore, the unstable regions always
expand with the increase of m. When 7 is larger,
the lower instability boundary of the upper
unstable region may be below the critical speed
of the empty rotor system.

CONCLUSIONS

On the basis of the linearized fluid forces in the
2D-case obtained directly by using the Navier—
Stokes equations, this paper investigates the
stability of symmetrical rotors partially filled with
viscous incompressible fluid and analyses the
effects of the parameters of the rotor system on
the stability regions. It is shown that for isotropic
rotors, the viscous fluid model may predict two
unstable regions, one is generally above the critical
speed of the empty rotor system and the other is
below the critical speed. The lower instability
boundary of the upper unstable region may also be
less than the critical speed in some cases.

In the viscous fluid model point of view, adding
external damping makes the system more stable
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and may be an effective method to suppress the
unstable motion in certain cases.

The influence of the rotor system parameters on
the instability regions are more complex, it is
difficult to summarize some general rules. For
different regions of the system parameters and
their combinations, the conclusions may be
different.

It is also shown that there are many other
problems to be studied. For example, does there
exist any damping effect between the rotating fluid
layer and the rotor? Are there two unstable
regions in the lower Reynolds number? Why are
the results about the effect of external damping
on the unstable regions by just using different
linearizing methods on the Navier—Stokes equa-
tions different? In order to check the correctness of
the modeling and simplification, it is very neces-
sary to perform systematic experiments on the
instability of rotor partially filled with fluid.
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NOMENCLATURE

a inner radius of the chamber

A, A variables defined in this paper

b inner radius of undisturbed fluid free
surface

C equivalent external damping coefficient of
rotor system

C; integral constant

F., F, fluid force components in the x and y
directions

H fluid fill ratio, H="b/a

i complex unit, i = v/—1

I modified Bessel’s function of first kind
first order
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variable defined in this paper

equivalent stiffness coefficient of rotor
system

modified Bessel’s function of second kind
first order

length of the chamber

mass of the fluid need to completely fill
the chamber, mp=rpLa®

mass ratio, m = mp/M

equivalent mass of empty rotor

fluid pressure

non-dimensional fluid pressure

polar co-ordinates in the rotating co-
ordinate system

non-dimensional radius, R=r/a
Reynolds number at the rotational speed
of Q, Re = (a*Q/u) = SRey,

Reynolds number at the critical speed w;,
Rec = (azwcr/l‘)

rotating speed ratio, S'=Q/we,

time

velocity components in the r-¢ co-ordi-
nate system

non-dimensional velocity components
co-ordinates of the chamber mass centre
non-dimensional whirling speed ratio,
a=w/Q

eccentricity ratio of the chamber center
relative to inner radius of the chamber a
response function of free surface of the
fluid to the disturbance

non-dimensional response function of free
surface to the disturbance, (; = (n1/a)
complex eigen-value
non-dimensional complex
A= (\/Q)

shear stress

non-dimensional time, 7= Q¢
fluid kinematic viscosity
fluid density

external damping ratio, £ = C/M we,
whirling speed of the rotor system

first critical speed of empty rotor system,
w(%r = (K / M)

Laplacian operator

rotational speed

eigen-value,
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Subscripts

0 zero-order term
1 first-order term
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