
Research Article
AsyncBTree: Revisiting Binary Tree Topology for Efficient
FPGA-Based NoC Implementation

Kizheppatt Vipin

Department of Electrical and Computer Engineering, Nazarbayev University, Astana, Kazakhstan

Correspondence should be addressed to Kizheppatt Vipin; vipin.kizheppatt@nu.edu.kz

Received 29 October 2018; Revised 11 January 2019; Accepted 7 February 2019; Published 20 February 2019

Academic Editor: John Kalomiros

Copyright © 2019 Kizheppatt Vipin. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Binary tree topology generally fails to attract network on chip (NoC) implementations due to its low bisection bandwidth. Fat trees
are proposed to alleviate this issue by using increasingly thicker links to connect switches towards the root node.This scheme is very
efficient in interconnected networks such as computer networks, which use generic switches for interconnection. In anNoC context,
especially for field programmable gate arrays (FPGAs), fat trees require more complex switches as we move higher in the hierarchy.
This restricts the maximum clock frequency at which the network operates and offsets the higher bandwidth achieved through
using fatter links. In this paper, we discuss the implementation of a binary tree-based NoC, which achieves better bandwidth by
varying the clock frequency between the switches as we move higher in the hierarchy. This scheme enables using simpler switch
architecture, thus supporting higher maximum frequency of operation.The effect on bandwidth and resource requirement of this
architecture is compared with other FPGA-based NoCs for different network sizes and traffic patterns.

1. Introduction

Network on chip (NoC) architectures enable high-per-
formance, scalable, and power-efficient multicore systems for
modern compute and communication intensive applications
[1, 2]. Researchers have proposed different NoC topologies
such as mesh, ring, torus, binary trees, and star, each
having varying degrees of quality of service, bandwidth, and
latency [3, 4]. Despite their simple architecture and routing
algorithms, binary trees are generally not attractive for NoC
implementations. It is mainly because of their lower bisection
bandwidth. Fat trees are proposed as a remedy to improve
the bandwidth by addingmore number of links whenmoving
towards the root node.This solution works well in traditional
interconnect networks such as computer networks [5]. In an
NoC environment, their advantage is limited since the switch
complexity increases as the network size increases.This limits
the maximum supported clock frequency of the network,
thus bringing down the system performance.

Theoretically, instead of increasing the link width
between tree levels, increasing the clock frequency between
them should provide the same benefit. In traditional

computer networks, this may not be possible since the
network interfaces operate on predefined standards, which
restrict the frequency of operation. In an NoC environment,
this is very much possible since all the compute instances are
within the same chip and are not restricted by any physical
protocol. Modern FPGAs support asynchronous FIFOs,
which make the implementation of such asynchronous
switches easier. These switches have simpler architecture
than fat tree switches and support better clock frequency. But
they are more resource-intensive compared to traditional
binary trees.

Although asynchronous NoCs were proposed previously
for integrated circuits, they are not evaluated for binary tree
performance improvement [6–8]. A quantitative analysis is
missing in the literature, especially for FPGA implemen-
tations. In this work, we present a quantitative analysis of
different tree topologies, namely, the binary tree, binary fat
tree, and asynchronous binary tree when targeting FPGA-
based NoC implementation. The main contributions of this
work are

(i) detailed design of an open-source globally
asynchronous-locally synchronous (GALS) binary
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Figure 1: Different NoC topologies.

tree-based NoC implementation targeting Xilinx
FPGAs,

(ii) performance evaluation of the proposed infrastruc-
ture with traditional binary trees and the state-of-
the-art open-source binary fat tree, torus, and mesh
topologies,

(iii) an analysis of trade-off points for the different imple-
mentations when targeting FPGAs.

The remainder of this paper is organized as follows: Section 2
discusses the relevant background, Section 3 discusses the
architecture of the proposed NoC, Section 4 discusses the
performance metrics, and Section 5 concludes the paper and
gives the future research directions.

2. Background

Network on chip is an interconnect approach that helps
different IPs and subsystems in a chip to communicate
with each other in an efficient and scalable manner. In this
approach, each processing element (PE) is connected to a
switch and multiple switches are interconnected to form a
network. A PE could be a processor core, a DSP core, or
an IP block. The network infrastructure helps in routing
data from one PE to another in the form of data packets.

NoCs have found varying applications such as image and
signal processing [1], multiprocessor systems [9], and virtual
machine implementations [10]. Based on how the switches
are interconnected, there are different NoC topologies such
as mesh, torus, tree, ring, star, and BFT, as shown in Figure 1
[11].

In a mesh topology, every switch, except the ones on the
edges, is connected to 4 other neighboring switches. A torus
topology is similar to mesh but is cyclic in nature. In a binary
tree, switches are arranged in a hierarchy. Each switch has
a parent node and two child nodes. Unlike mesh and torus,
where each switch has a corresponding PE, in a tree topology
only the switches at the bottom most level (leaf nodes) are
connected to PEs.

For interconnected networks, an important performance
parameter is the bisection bandwidth [12]. It is defined as
the minimum bandwidth between two equal partitions of
the network. For a mesh topology, it is √𝑛 ∗ 𝐵, where n is
the number of switches and B is the bandwidth of a single
link. For torus, it is twice that of mesh, but for a binary
tree, it is only B. To address this issue, instead of using a
single link between switches, more links can be used between
them as we go higher in the tree hierarchy. Such topology
is called a fat tree [13, 14]. Although this will improve the
bisection bandwidth, the switches in the upper hierarchy
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Figure 2: (a) A binary tree topology utilizing switches operating at different clock frequencies. (b) The tree as an H-tree for better
floorplanning on the FPGA.

become more and more complex. In this work, we analyze
whether using asynchronous switches with same link width
can provide similar performance of fat trees while keeping
relatively simpler switches.

Æthereal is a popular NoC implementation, which pro-
vides guaranteed quality of service through pipelined time-
division-multiplexed circuit switching [15]. But it requires
to explicitly set up a channel on the routing path before
transmitting the first payload packet, and a flow cannot use
more than its guaranteed bandwidth share even if the network
is underutilized. The MANGO [16] architecture is a clock-
less NoC to provide connection-oriented guaranteed services
(GS) as well as connection-less best-effort (BE) routing. The
clock-less implementation has the advantage of zero dynamic
power consumption when the network is idle, but the main
challenge is its interfacing with the standard IP cores. IP
cores available from vendors and third-party developers are
synchronous in nature, thus requiring a clock signal between
them and the NoC. Both these implementations target ASIC
implementations and are not evaluated on FPGAs to under-
stand the maximum possible speed of their operation.

There have been previous efforts to develop NoC archi-
tectures specifically targeting FPGAs. CONNECT NoC gen-
erator is the most popular among them [17]. CONNECT is
inspired by the fact that FPGAs have a large routing infras-
tructure available compared to memory and logic elements
and tries to exploit it. It supports differentNoC topologies and
uses a single-stage pipelinemechanism tominimize hardware
and latency. It has low operating frequency and is still quite
resource-intensive as seen in Section 4. Split-merge is another
NoC infrastructure developed at University of Pennsylvania
[18]. It tries to overcome the limited clock performance of
CONNECT at the expense of few more resources.

To the best of our knowledge, there have been no previous
efforts to implement asynchronous switch-based NoCs tar-
geting FPGAs. In this work, we give a quantitative analysis of
the performance of asynchronous binary trees. We compare
their performance with traditional and fat trees as well as
other popular FPGA NoCs. The binary tree implementations
are available as open source for other researchers to verify and
to improvise the designs.

3. Architecture

An AsyncBTree (asynchronous binary tree) tries to achieve
better performance compared to a conventional binary tree
and binary fat tree in terms of resource utilization and
throughput by applying topology specific optimizations and
using asynchronous links between different tree levels. Fig-
ure 2 shows the architecture of anAsyncBTree utilizing differ-
ent kind of optimized switches at different levels.The detailed
architectures of the switches are discussed in Section 3.1. The
binary tree is placed and routed in the FPGA as an H-tree for
efficient resource utilization and better floorplanning. Such
placement also supports partial reconfiguration of a portion
of the NoC in an efficient manner.

As the first optimization, the root node of the tree is
removed and the switches at level-1 are directly connected.
Since the connectivity of the root node is only 2, in practical
systems, they act as a transparent switch. They could be
useful where packets are injected to the NoC through the
root node by making its connectivity into 3. For FPGAs,
external interfaces such as PCI express and Ethernet are used
for injecting packets.The hardmacros corresponding to these
interfaces are situated along the periphery of the chips. Thus,
they will provide better clock performance when the packets
are injected from one of the leaf nodes which incorporates
one of these hard macros. Removing the root node helps in
reducing the resource utilization.

3.1. Switches. AsyncBTrees use three different kinds of
switches for packet routing. The architecture of the proposed
type-1 switch is as shown in Figure 3(a). Type-1 switches
are used only in the leaf nodes for directly interfacing with
PEs. The switch has separate interface for receiving and
transmitting packets from two PEs and a single interface to
the parent node. Each receive and transmit interface to/from
the PEs is connected to asynchronous FIFOs.The interface to
the parent node implements a single synchronous FIFO for
the receive interface but no transmit FIFO.Thus, each switch
contains 5 FIFOs.

Asynchronous FIFOs can operate their read and write
interfaces using independent clocks. Depth of the FIFOs is
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Figure 3: Architecture of the different switches used in the AsyncBTree. (a) Type-1 switch used with the leaf nodes (PEs), with complete
crossbar switch and asynchronous FIFOs with receive and transmit interfaces. (b) Type-2 switch used in intermediate nodes with partial
crossbar switch and synchronous FIFOs. (c) Type-3 switches used in intermediate switches with partial crossbar and asynchronous FIFOs
with receive and transmit interfaces.

kept very low (16) to reduce the resource utilization. The
asynchronous FIFOs receive data from the downstream ports
on Clock 1 signal. The received packets are routed to the
appropriate output ports by an arbitrator through a crossbar
switch.The read side of the receive FIFO, the write side of the
transmit FIFO, the arbitrator, and the crossbar work onClock
2 signal, whose frequency will be much higher than that of
Clock 1. In order tomatch the performance of a binary fat tree,

Clock 2 frequency should be twice as that of Clock 1. Type-1
switches implement a full crossbar, which enables loop-back
of packets at the switch level. The arbitrator internally uses
flit-level round-robin arbitration scheme to select the input
port whenmore than one port requests the same output port.

Figure 3(b) shows the architecture of a type-2 switch.
Type-2 switches are synchronous in nature and are similar
to the switches of traditional binary trees. These switches
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implement only partial crossbar switch where an incoming
packet cannot be routed back to the same port. Since
these switches are used only in intermediate levels, there
is no necessity to support loop-back since they are already
implemented by type-1 switches. This simplifies the switch
design and helps in reducing resource utilization.

Type-3 switches (Figure 3(b)) are similar to type-1
switches except that they implement only a partial cross-
bar similar to type-2 switches. Theoretically, to match the
performance of a binary fat tree, AsyncBTrees should be
implementing type-3 switches at every level with increasing
clock frequencies. But, in practical scenarios, doubling clock
frequency at each level is not possible in FPGAs as the
tree size increases. The maximum frequency supported by
modern devices is in the order of hundreds of megahertz.
Hence, for practical implementations, AsyncBTrees increase
the clock frequency only for alternative levels. For example,
for a NoC with 8 PEs and three levels (as shown in Figure 2),
clock frequency is doubled between the PE interface and
the output of level-3 (type-1) switches. The input and output
frequencies of next-level switches (here type-2 switches) are
the same, which are equal to the output frequency of type-1
switches. Again, the clock frequency is doubled between the
input and output of level-1 switches (here type-3 switches).
Although asynchronous FIFOs can operate using same clock
signal for read and write interfaces, the resource utilization
of asynchronous FIFOs is much more than its synchronous
counterpart for a given FIFO size. For reducing resource
consumption, levels which operate on synchronous clock use
type-2 switches and levels which operate on asynchronous
clock use type-3 switches.

3.2. Packet Format. The NoC uses a simple packet format
with destinationPE address and payload as shown inFigure 5.
TheNoC implementation is fully configurable such that it can
support any data width with varying number of PEs.The total
packet size depends upon these two parameters.

3.3. Routing. AyncBTree uses fixed routing based on the
destination address of the packet header. The routing is flit-
level, meaning each packet is expected to have the destination
PE address in the header. Larger packets are sent as multiple
flits. One major advantage of binary trees is that the multiple
packets sent from one PE to another will be always delivered
in the sent order. In other packet switched networks such as
mesh or torus, the packets could be delivered out of order
depending on the routing algorithms. In this case, additional
logic is required for packet reassembly and packet numbers
also have to be inserted into the payload.

The routing table of each switch in AsyncBTree contains
four entries corresponding to the smallest and largest PE
addresses in its left and right subtrees. If the destination
address is within the range of left subtree, it is routed left and
if it iswithin the range of right subtree, the packet is sent right.
If the address is not within these ranges, the packet is routed
towards the parent node. Due to the deterministic routing
policy and since the routing is at flit-level, the NoC is free of
dead or live locks.

Clock

Valid

Ready

Data

Successful data transfer

Figure 4: AXI4-Stream protocol.

3.4. Flow Control. The current AsyncBTree implementation
does not include virtual channels and flow control is achieved
at electrical signaling level. The interface between switches as
well as between switches and PEs confirms to AXI4-Stream
interface. Such interface also enables seamless integration of
several vendor-supported IP cores directly with the NoC. As
per AXI4-Stream protocol, a successful data transfer happens
only when the valid signal from the transmitter and ready
signal from the receiver are asserted simultaneously as shown
in Figure 4.

For comparison purpose, following the same design
principles, we implemented traditional (synchronous) binary
trees also. They follow the same arbitration and routing
architecture except that all asynchronous FIFOs are replaced
with synchronous counterparts.

4. Results and Discussion

In this section, we discuss the implementation and perfor-
mance comparison of the different NoC implementations.
All designs are modeled using Verilog HDL and extensively
simulated for their functional correctness. We use the CON-
NECT open-source NoC platform as the fat tree, mesh, and
torus references [17]. The designs are simulated as well as
implemented with Vivado 2017.3 targeting Xilinx xc7vx690t
FPGA (VC709 evaluation board).

Table 1 compares the resource utilization and the maxi-
mum frequency of operation for the binary tree, AsyncBTree,
and fat tree for different network sizes (number of PEs).
For all implementations, the interface between PEs and the
switches is kept 32-bits wide. As expected, binary trees are
least resource-intensive due to their simple switch architec-
ture. AsyncBTree consumes 45% to 65% more LUTs (look-
up-tables) and about 165% more flip-flops compared to the
binary tree implementation. The multiple frequencies in the
AsyncBTree rows represent the maximum clock frequency
supported at different tree levels. At the lowest level (switches
connected to PEs), the clock performance is better than
that of binary trees but deteriorates as it goes higher in the
hierarchy. This could be because of the additional pipelining
present inside the asynchronous FIFOs. This also means if
AsyncBTree is used as a synchronous NoC (all tree levels are
clocked by a single clock source), its resource consumption
and performance will be worse than a binary tree.
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Figure 6:Throughput of different binary NoC architectures with varying size corresponding to different traffic patterns when all of them are
clocked at the same clock frequency.
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Figure 7: Worst-case latency of different binary NoC architectures with varying size corresponding to different traffic patterns when all of
them are clocked at the same clock frequency.

Compared to AsyncBTree, fat trees consume ∼3.7× LUTs
but less than half the number of flip-flops. AsyncBTree
requires more flip-flops due to the presence of asynchronous
FIFOs. For fat trees, the impact due to complex switches can
be clearly seen in the clock performance, where they are not
even able to achieve 200 MHz for a high-end FPGA. Due to
the low clock performance of the NoC, the PEs also have to
be underclocked in most scenarios for overall synchronous
operations. Considering the fact that the number of LUTs
available in 7-series Xilinx FPGAs is half of that of number
of flip-flops, AsyncBTree is much lite compared to fat trees at
the same time given more than 4× clock performance.

Table 2 lists the resource utilization and clock perfor-
mance of the most popular FPGA NoC topologies, namely,
mesh and torus. Data shows that these topologies are quite
resource-intensive compared to all binary tree configura-
tions, especially the number of LUTs. In terms of clock
performance, for larger NoC configurations, they perform

better than fat trees but are inferior to traditional binary trees
and the proposed AsyncBTrees.

Figures 6 and 7 compare the throughput and latency
of the three implementations with different NoC sizes for
different traffic patterns such as random, tornado, and reverse
[19]. The different patterns are generated based on how the
destination addresses are generated for each data packet. In
each case, the PE to switch interface is clocked at the lowest
frequency supported among the three implementations. For
AsyncBTree, upper levels are clocked at double the frequency
of lower levels but is limited by maximum supported fre-
quency given in Table 1. It could be seen that, for NoC
size up to 8 PEs, AsyncBTree performance is better than or
comparable to that of fat trees. For larger tree sizes, fat trees
perform better, since the clock frequencies cannot be scaled
beyond a limit. If PEs run at lower clock frequencies (∼50
MHz), AsyncBTree can provide better performance for NoC
with up to 16 PEs.
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Figure 8:Throughput of different NoC architectureswith varying size corresponding to different traffic patterns when all of them are clocked
at the maximum supported clock frequency.
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Figure 9: Maximum latency of different binary NoC architectures with varying size corresponding to different traffic patterns when all of
them are clocked at the maximum supported clock frequency.

Table 1: Resource utilization and maximum clock performance of
different binary tree based NoC configurations.

NoC # of PEs LUTs FFs Fmax (MHz)
Fat Tree 4 2833 760 180
Fat Tree 8 3660 912 150
Fat Tree 16 12431 3040 135
Fat Tree 32 37047 8512 94
Binary Tree 4 522 510 450
Binary Tree 8 1616 1566 407
Binary Tree 16 3603 3726 420
Binary Tree 32 6077 6850 425
AsyncBTree 4 760 1350 481,416
AsyncBTree 8 2242 4100 506,407,418
AsyncBTree 16 4212 7506 483,386,416
AsyncBTree 32 10046 18360 460,387,377

Figures 8 and 9 compare the throughput and latencywhen
each implementation is running at its maximum supported
frequency. Again, for smaller NoC sizes, binary tree and
AsyncBTree outperform fat tree for random traffic pattern.

But, for larger NoC sizes, fat trees are clearly advantageous.
Figure 8(a) also shows the performance of mesh topology,
which is the most popular NoC topology, compared to
different tree topologies. Again, for smaller NoC sizes (8
or less), AsyncBTree’s performance is better. Several FPGA-
based multiprocessor systems have 8 cores or less; thus
AsyncBTree could bemore suitable for their implementation.

Figure 10 compares the performance of each NoC
compared to its resource utilization. The total number of
resources is calculated by adding the number of LUTs with
the scaled number of flip-flops. The number of flip-flops is
multiplied by a factor of 0.5 since in Xilinx 7-series FPGAs
there are twice the number of flip-flops compared to LUTs
in every logic slice. Synchronous binary trees clearly have an
upper hand in this regard. AsyncBTree gives moderately high
throughput by consuming relatively less resources. But, for
larger NoC size, mesh topology is still the suitable candidate.

5. Conclusion

In this paper, we discussed the implementation of an
asynchronous binary tree-based NoC architecture targeting
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Table 2: Resource utilization and maximum clock performance of mesh and torus NoC topologies with different configurations.

NoC # of PEs LUTs FFs Fmax (MHz)
Torus 4 3763 960 164
Torus 8 7615 1920 164
Torus 16 15365 3840 149
Torus 32 32689 7680 141
Mesh 4 1337 576 215
Mesh 8 3940 1344 179
Mesh 16 10471 3072 165
Mesh 32 23798 6528 158
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Figure 10: Throughput versus cost.

FPGA implementation and compared it with other tree
and mesh implementations. It could be seen that, for low-
performance applications, binary trees are best suitable due
to their high throughput to resource utilization ratio. For
high-performance large NoC sizes, mesh topology is the
ideal candidate. For high-performance small NoC sizes,
AsyncBTree is a suitable candidate. In future, we will be
analyzing the effect of using asynchronous switches with
other topologies such as mesh and torus. Implementations
of AsyncBTree and binary tree are provided as open source,
which could complement the CONNECT NoC platform
[20].

Data Availability

All the source code for the designs used for generat-
ing the data is available as open source in the following
Github Repository under MIT License. The Repo link is
https://github.com/vipinkmenon/HNoC.
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