
Research Article
Vector Rayleigh Diffraction of High-Power Laser Diode Beam in
Optical Communication

Qiang Xu , Renxian Li , Yuanyuan Zhang , Yiping Han, and Zhensen Wu

School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China

Correspondence should be addressed to Qiang Xu; qxu@xidian.edu.cn

Received 19 April 2020; Revised 6 June 2020; Accepted 22 June 2020; Published 18 July 2020

Guest Editor: Chen Chen

Copyright © 2020 Qiang Xu et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Laser diodes (LDs) are widely used in optical wireless communication (OWC) and optical networks, and proper theoretical
models are needed to precisely describe the complicated beam field of LDs. A novel mathematical model is proposed to describe
the vectorial field of nonparaxial LD beams. Laser beam propagation is studied using the vector Rayleigh diffraction integrals, and
the stationary phase method is used to find the asymptotic expansion of diffraction integral. 'e far-field distribution of the LD
beam in the plane parallel and perpendicular to the junction is considered in detail, and the computed intensity distributions of the
theory are compared with the corresponding measurements. 'is model is precise for single transverse model beam of LDs and
can be applied to describe the LD beams in OWC and optical networks.

1. Introduction

Considering that laser diodes (LDs) are the efficient light source
and easy to integrate, LD-enabled optical wireless communi-
cation (OWC) is an emerging technology for realizing high-
confidentiality and high-speed point-to-point (PtP), vehicle-to-
vehicle, and white-lighting data access links in free-space
communication [1–6], indoor communication [7, 8], under-
water communication [9–11], and optical networks [12–16].

However, the output beam quality of LDs is relatively
poor, such as astigmatism, high beam asymmetry, and large
beam divergence [17–19], in many applications, and proper
theoretical models are needed to precisely describe the
optical field distribution of LDs.

'e problem of laser propagation is mainly dealt through
paraxial approximation. However, the output facet of LDs is
extremely small, and their beams are divergent and asym-
metrical. 'e rigid optical field distributions cannot be cal-
culated from the paraxial approximation, and the longitudinal
component in beam propagation direction should be con-
sidered.'us, the vector theory for nonparaxial beams should
be used to precisely describe beam fields of LDs. Several
models, such as exponential Gaussian function [20–22],
Hermite–Gaussian model [23], nonparaxial diffraction of

vectorial Gaussian wave [24, 25], plane waves with a small
aperture [26], propagation of LD beams in the optical system
[27–29], and polarization of LD beams [30], are used to
describe the beam field of LDs. However, no theoretical model
is used for all cases because of the complicated beam field of
LDs. 'us, a novel model should be developed to precisely
describe the output field of LDs, which is the aim of this paper.

2. Vectorial Electric Field of LD Beam

Considering that transverse electric modes are usually ex-
cited in LD, E(x, y) is identified with the component
Ey(x, y) of the electric field vector, and a source beam is
linearly polarized at the plane z� 0:

Ex x0, y0( 􏼁 � 0, (1)

Ey x0, y0( 􏼁 � E0 exp −p x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(3/2)

− qy
2
0􏼒 􏼓, (2)

where p and q are related to the waveguide structure of LDs,
(1/p) � 1.22(λn/dx) × 10−3 and (1/q) � 1.22(λn/dy) × 10−3,
in which λn is the beamwavelength in the active layer of LDs,
dx is the waveguide width in the x direction, and dy is the
waveguide width in the y direction, and E0 is a constant.
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Beam propagation is governed by the vector Rayleigh
diffraction integrals that provide the field expression in the
entire half-space z> 0. When the boundary condition at the
plane z� 0 is given, the field takes the following form [24, 26]:

Ex(r) � −
1
2π

􏽚 Ex r0( 􏼁
zG r, r0( 􏼁

zz
ds,

Ey(r) � −
1
2π

􏽚 Ey r0( 􏼁
zG r, r0( 􏼁

zz
ds,

Ez(r) �
1
2π

􏽚 Ex r0( 􏼁
zG r, r0( 􏼁

zx
+ Ey r0( 􏼁

zG r, r0( 􏼁

zy
􏼢 􏼣ds,

(3)

where r0 � x0i + y0j (r0 is the vector in beam output plane),
r � xi + yj + zκ (r is the beam propagation vector), i, j, κ are
the unit vectors in the x-, y-, and z-directions, respectively, and

G r, r0( 􏼁 �
exp ik r − r0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

r − r0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (4)

in which k is the wavenumber related to wavelength λ by
k � 2π/λ. Substituting equation (4) into equation (3) yields
[24, 26]

Ex(x, y, z) � −
1
2π

􏽚
+∞

−∞
􏽚

+∞

−∞
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ik r − r0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1

r − r0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3 exp ik r − r0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx0dy0,

Ey(x, y, z) � −
1
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􏽚
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􏽚
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−∞
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􏽚
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−∞
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3 exp ik r − r0
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(5)

We expand exp(ik|r − r0|) into a series, keeping the first-
, second-, and third-order series expansions [31]:

exp ik r − r0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 ≈ exp ikr − ik
xx0 + yy0

r
+ ik

y2 + z2( 􏼁x2
0 + x2 + z2( 􏼁y2

0 − 2xyx0y0

2r3
􏼢 􏼣, (6)

where r �
����������
x2 + y2 + z2

􏽰
, replace exp(ik|r − r0|) in equation

(5) by equation (6), and replace |r − r0| in equation (5) by r:

Ex(x, y, z) � 0,

Ey(x, y, z) � −
1
2π

z
ikr − 1

r3
exp(ikr) 􏽚

+∞

−∞
􏽚

+∞

−∞
Ey x0, y0( 􏼁

× exp −ik
xx0 + yy0
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+ ik

y2 + z2( 􏼁x2
0 + x2 + z2( 􏼁y2

0 − 2xyx0y0

2r3
􏼢 􏼣dx0dy0,

Ez(x, y, z) �
1
2π

ikr − 1
r3

exp(ikr) 􏽚
+∞

−∞
􏽚

+∞

−∞
Ex x0, y0( 􏼁 x − x0( 􏼁 + Ey x0, y0( 􏼁 y − y0( 􏼁􏽨 􏽩

× exp −ik
xx0 + yy0

r
+ ik

y2 + z2( 􏼁x2
0 + x2 + z2( 􏼁y2

0 − 2xyx0y0

2r3
􏼢 􏼣dx0dy0.

(7)

For large k (104mm− 1), exp[−ik((xx0 + yy0)/r) + ik(((y2

+ x2)x2
0 + (x2 + z2)y2

0 − 2xyx0y0)/2r3)] rapidly oscillates,
and such rapid oscillations over the range of integration indicate
that the integrand averages to approximately zero, except near

the stationary phase. 'us, the stationary phase method is used
to find the asymptotic expansion of the diffraction integral.

'e corresponding diffraction integral is approximated
by [32]
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U(x, y, z) � B
D

f x0, y0( 􏼁exp ikg x0, y0( 􏼁􏼂 􏼃dx0dy0 ≈
2πσ

k
���
|H|

√ f xs, ys( 􏼁exp ikg xs, ys( 􏼁􏼂 􏼃. (8)

f(x0, y0) � Ey(x0, y0) for Ey(x, y, z), and f(x0, y0) �

Ex(x0, y0)(x − x0) + Ey(x0, y0)(y − y0) for Ez(x,y,

z).where

H �
z2g

zx2
0

z2g

zy2
0

−
z2g

zx0zy0
􏼠 􏼡

2

, (9)

σ �

1, (if H< 0),

i, if H> 0,
z2g

zx2
0

􏼌􏼌􏼌􏼌􏼌􏼌 xs,ys
> 0􏼒 􏼓,

−i, if H> 0,
z2g

zx2
0

􏼌􏼌􏼌􏼌􏼌􏼌 xs,ys
< 0􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where xs and ys are the stationary phase points, and we have

g x0, y0( 􏼁 � −
xx0 + yy0

r
+

y2 + z2( 􏼁x2
0 + x2 + z2( 􏼁y2

0 − 2xyx0y0

2r3
.

(11)

Letting
zg

zx0
� 0,

zg

zy0
� 0,

(12)

we find the stationary phase points

xs �
r2

z2 x,

ys �
r2

z2 y,

(13)

g xs, ys( 􏼁 �
−r

2z2 x
2

+ y
2

􏼐 􏼑, (14)

and (z2g/zx2
0) � ((y2 + z2)/r3), (z2g/zy2

0) � ((x2 + z2)/r3),
and (z2g/zx0zy0) � (xy/r3).

'us,

H �
z2g

zx2
0

z2g

zy2
0

−
z2g

zx0zy0
􏼠 􏼡

2

�
z2

r4
, (15)

and H> 0,(z2g/zx2
0)|xs,ys
> 0,
σ � i. (16)

Substituting equations (13)–(16) into equation (7) yields

Ex(x, y, z) � 0,

Ey(x, y, z) � −i
ikr − 1

kr
E0 · exp −p

r2

z2|x|
(3/2)

− q
r2

z2 y􏼠 􏼡

2
⎛⎝ ⎞⎠ × exp ik

−r

2z2
x2 + y2

z2􏼢 􏼣exp(ikr),

Ez(x, y, z) � i
ikr − 1

kr
·
y

z

x2 + y2

z2􏼠 􏼡E0 · exp −p
r2

z2|x|
(3/2)

− q
r2

z2 y􏼠 􏼡

2
⎛⎝ ⎞⎠ × exp ik

−r

2z2
x
2

+ y
2

􏼐 􏼑􏼔 􏼕exp(ikr).

(17)

Equation (17) represents the expression of vector theory
for nonparaxial LD beam.

'e intensity profiles can be given by

Ix(x, y, z) � 0,

Iy(x, y, z) �
1 + k2r2

k2r2
E
2
0 · exp −2p

r2

z2|x|
(3/2)

− 2q
r2

z2 y􏼠 􏼡

2
⎛⎝ ⎞⎠,

Iz(x, y, z) �
1 + k2r2

k2r2
y2

z2
x2 + y2

z2􏼠 􏼡

2

E
2
0 · exp −2p

r2

z2|x|
(3/2)

− 2q
r2

z2 y􏼠 􏼡

2
⎛⎝ ⎞⎠,

(18)
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and the total intensity can be expressed as

I(x, y, z) � Ix(x, y, z) + Iy(x, y, z) + Iz(x, y, z)

�
1 + k2r2

k2r2
1 +

y2

z2
x2 + y2

z2􏼠 􏼡

2
⎡⎣ ⎤⎦

· E
2
0 exp −2p

r2

z2|x|
(3/2)

− 2q
r2

z2 y􏼠 􏼡

2
⎛⎝ ⎞⎠.

(19)

'e intensity of LD beams can be investigated in two
vertical planes. In the plane perpendicular to the junction
(i.e., y� 0), as shown in Figure 1, the substitution of y� 0 into
equation (19) yields

I(x, 0, z) �
1 + k2 x2 + z2( 􏼁

k2 x2 + z2( )
E
2
0 exp −2p

x2 + z2

z2 |x|
(3/2)

􏼠 􏼡.

(20)

In the plane parallel to the junction (i.e., x� 0), as shown
in Figure 1, the total intensity can be expressed as follows:

I(0, y, z) �
1 + k2 y2 + z2( 􏼁

k2 y2 + z2( 􏼁
1 +

y6

z6
􏼢 􏼣E

2
0 exp −2q

y2 + z2

z2
y􏼠 􏼡

2
⎛⎝ ⎞⎠.

(21)

3. Experimental Procedure

'e experiments were performed to examine the theoretical
results using three high-power LDs (USHIO HL63391DC,
TOSHIBA TOLD9441MC, and USHIO HL63290HD). 'e
parameters are shown in Table 1.

As shown in Figure 2, the intensity profiles of laser beam
were measured through a pinhole scan (radius is 100 μm)
and a photodiode (LSGSPD-UL0.25, 0.25mm visible light
PIN photodiode, wavelength 500–880 nm, and 0.25mm
active diameter) behind the hole. 'e photodiode moved
along the straight lines parallel to the output facet of the LDs’
chip in the x–z and y–z planes, where z� 50mm. 'e un-
certainty of measurements is less than 1%.

Figure 3 shows the measurements and theoretical beam
profiles of HL63391DC, and the intensity curve of the theory
agrees with the experimental data in most portions. Figure 4

LDs 
Pinhole

Attenuator

Photodiode
Beam

x

z

Figure 2: Experimental setup.

z

y

x

Active layer 

Cladding 

Output beam 

Figure 1: Facet of a LD chip and the related coordinate system.

Table 1: Parameter of LDs.

LDs Wave model Operating current (mA) Wavelength (nm) Parameter p Parameter q
USHIO HL63391DC Single transverse model 225 639 1.55×103 2.20×104

TOSHIBA TOLD9441MC Single transverse model 50 650 335 3.05×104

USHIO HL63290HD Multitransverse model 2.4 638 256 1.55×104
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shows the light intensity profiles of TOLD9441MC. 'e
calculated profiles agree well with the experimental data in
most portions, except for the discrepancies in the low-intensity
value regions in the x–z plane.'e theoretical curve agrees well
with the experimental data in the y–z plane. Figure 5 shows the
light intensity profiles of HL63290HD, and the discrepancies of
theory and measurement of this LD are greater than those of
HL63391DC andTOLD9441MCbecause only single transverse
mode exists in HL63391DC and TOLD9441MC, whereas
multitransverse modes exist in HL63290HD. 'us, the output
light field of the latter is more complicated, the shape intensity
of two lobes appears in the y–z plane, and the theoretical curve
does not fit the measurement.

Compared with the previous models of LD beam,
including Hermite–Gaussian model [23], Gaussian
model [25, 27, 28], elliptical Gaussian model [24, 29], and
negative exponential Gaussian model [22, 30], the novel
output model Ey(x0, y0) � E0 exp(−p|x0|

(3/2) − qy2
0) in

this article is more precise for single transverse model
beam. For the calculation of the vector Rayleigh dif-
fraction integrals, we expand exp(ik|r − r0|) into a series
by keeping the first, second, and third series expansions.
'e calculations make the diffraction integral of beam
distribution with large divergence more reliable
compared with the first two expansions in the article
[24, 26].
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Figure 4: Measured and theoretical beam intensity profiles of TOLD9441MC. (a) x–z plane. (b) y–z plane.
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Figure 3: Measured and theoretical beam intensity profiles of HL63391DC. (a) x–z plane. (b) y–z plane.
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4. Conclusion

A novel theoretical model for the nonparaxial vectorial field
of high-power LDs was proposed, and the beam parameters
were related to the structure of LDs’ waveguide. High-order
approximations of the diffraction integral were calculated on
the basis of the vector Rayleigh diffraction integrals, the
fields parallel and perpendicular to beam propagation di-
rection were considered, and the beam intensities of three
high-power LDs beam were measured. 'e mathematical
model provided a good fit to the experimental data of single
transverse model beam of LDs.'is mathematical model can
be used to describe the beam propagation and shape of LDs
in OWC and optical networks.
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