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The group-theoretical analysis of polymethine dyes (PMD) showed that relaxation processes between the states S; and S, are forbidden,
either by radiation or by internal conversion. From the state S5, only transition to the ground state of the molecule is possible. Since the
experimental data state that the quantum yield of S; — S, fluorescence does not exceed 1%, it is indicated that the internal conversion
rate can be 2 orders of magnitude higher than the radiative relaxation rate of the molecule. Concerning the reasons for the appearance of
fluorescence from the higher excited states of molecules, it can be asserted that the necessary condition for the appearance of S; — Sy
fluorescence is the absence of Sy — S;(v)-absorption in the region of the Sy— S; transition. The sufficient condition is the cor-

responding symmetry of the excited states, which imposes a prohibition on the S — S, relaxation process.

1. Introduction

For a long time, scientists believed that azulene is the only
compound with anomalous fluorescence and band in the
radiation spectrum above the first absorption band of the
molecule [1]. The synthesis and studies of new dyes have
shown that azulene is far from being unique in this regard [2].
The ketone radical of the azaxantone AXH. showed
double fluorescence peaks at 460 and 645 nm, which were
assigned to the transitions D, — Dy and D; — D,, re-
spectively [3]. It was found that the fluorescence lifetime for
D,— D, (1.0ns) was longer than that for D; — D,
(0.4ns). The fluorescence quantum yields D; — D, and
D, — D, were estimated at 0.0008 + 0.0002 and 0.05 + 0.02,
respectively. These abnormal emitting properties can be
attributed to the pyridine ring in Azaxantone. AXH- is a new
example of a neutral radical that violates Kasha’s rules.
Two bands are observed in the radiation of 2-butylamino-
6-methyl-4-nitropyridine N-oxide (2B6M) [4]. Relative in-
tensities of the bands depend on the wavelength of the ex-
citation that violates Kasha-Vavilov’s rule. The aim of the
study was interpretation of these results. Based on the

measured lifetimes and quantum fluorescence yields, a kinetic
scheme was compiled to explain the experimental results.
Tryptophan was one of the first organic compounds for
which a violation of Vavilov’s law was also established [5].
This law is concerned by the independence of the quantum
yield of fluorescence from the frequency of exciting light.
Anomalous S, — S fluorescence of tryptophan in aqueous
ethanol solutions was detected as a result of the transition
from the second singlet-excited level to the ground level. The
violation was explained by the competition of ultrafast (at
least 10 fs) nonradiative deactivation and the photo-induced
electron transfer processes occurring in highly excited
singlet S, (n>1) states of the amino acid. Using indirect
methods and primarily fluorescence, one can obtain a
qualitative picture of the processes occurring in S, states.
Recent achievements in the synthesis of multicomponent
nanocrystals have made it possible to create the highly lumi-
nescent molecular nanocrystal with unique photophysical
behavior and functionality. This functionality is due to the weak
vibronic coupling between the excited states, which thereby
violates Kasha’s rule by radiation from several excited levels [6].
Using single-particle photoluminescent spectroscopy, it was


mailto:yu.lopatkin@gmail.com
https://orcid.org/0000-0001-8913-2816
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6953206

shown that the transition from the higher energy level through
spatially indirect recombination is possible in addition to the
expected radiation transition from LUMO to HOMO.

During these three or four decades, significant
progress has been made in the accumulation of abnormal
emission spectral data of organic molecules, including
emission from higher excited states. In particular, ex-
periments provided information on the internal photo-
physical properties of cooled and isolated molecules in
which the Boltzmann distribution is practically negligible.
Organic molecules that have emitting higher excited states
form unique systems. Application of a number of modern
methods to these systems should provide more detailed
information about their photophysical properties. These
data will bring a deeper understanding of the dynamic
behavior of isolated molecules in their excited states. At
least three mechanisms of the emergence of fluorescence
from higher excited states have been proposed in the
literature [7]: (A) fluorescence occurs through thermal re-
excitation of a molecule from a lower excited state, for
example, S;; (B) this occurs through the inverse internal
transformation from the lower singlet state in the absence
of collisions; and (C) it originates directly from a higher
singlet state without the participation of a fluorescent
component through inverse internal conversion from a
lower singlet state, i.e., fast fluorescence. In case (C), the
rate of internal conversion from a higher singlet state to a
lower state is considered to be slow enough to compete
with fluorescence from a higher state.

The manifold of explanations for the nature of the oc-
currence of abnormal fluorescence corresponds to the
manifold of its manifestations.

One of the classes of dyes in which a violation of Kasha’s
rule has been found is polymethine dyes [8-10]:

R /CH / R+Cl_
\{CH - . cH”

A characteristic feature of polymethine dyes (PMD) is the
presence of an odd number of methine groups (CH =). At the
ends of the polymethine chain, there are fragments (identical or
different) that determine the properties of the dye. Depending
on the nature of the substituents R, one can distinguish cyanine
(both substituents are the same), hemicianine (one substituent
has electron-donor properties, and the second has electron-
acceptor properties), carbocyanine dyes, and so on.

As a rule, in the absorption spectrum of PMD, there is a
long-wavelength intense band, the position of which sub-
stantially depends on the amount of methine groups in the
polymethine chain. There is a sufficiently large gap between
the first absorption band and the subsequent ones, where
absorption is practically absent. Then, weak bands and the
intense absorption ones in the UV region appear. It turned
out that some molecules from a large class of PMD lumi-
nesce in the transparency region of the dye between the first
and subsequent absorption bands [8-10]. These bands are
conventionally called fluorescence of type S, — S.
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Since the nature of the excited states of PMD has not been
studied, the reason for the fluorescence of dyes from higher
excited states remains unclear. This paper presents a peculiar
approach to solving this problem, which made it possible to
explain the nature of the phenomenon. In this work, we per-
formed the corresponding quantum-chemical studies that could
solve this problem, namely, to obtain the physical picture of the
effect, the number of the singlet excited state, its localization in
the molecule and symmetry, the analysis of the probabilities of
quantum transitions, and, as a result, allows explaining the effect.

2. Objects and Methods of Research

Consider two compounds whose fluorescence S, — S is
described in the literature [8-10].

Returning to these works, we can find a modern ex-
planation for abnormal fluorescence. First, consider the dye
trimetin-di-(4-dimethylaminophenyl) (PMD-I) [8].

(CH,),N / 41\}(0{3)2
C1074
NN
PMD-I

The next dye, which was studied in this paper, was PMD-IL

Et Et

PMD-II [10]

The absorption spectrum of PMD-I has the intense long
wave band with A, = 665 nm with vibrational repetition at
640 nm and a number of weak bands with maxima in the
region of 440, 400, and 300 nm (Figure 1) [8, 11].

The research of the fluorescence of PMD-I showed that,
in addition to the fluorescence band in the 700 nm region,
there is a short-wave fluorescence band with a maximum at
490 nm (Figure 1). The research of the excitation spectrum of
this fluorescence showed that it corresponds to the ab-
sorption spectrum in the region A,,,, <450 nm. The authors
of [8], like other authors who studied this fluorescence,
believe that an important feature of the dye absorption
spectrum is the practical absence of the contribution from
the electron-vibrational S, — S;(v)-transition to absorp-
tion in the region of the Sy — S,-transition. This causes a
significant decrease in the internal conversion of S, — S,
and the appearance of S, — Sp-fluorescence.
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FIGURE 1: Absorption spectrum of trimethine-di-(4-dimethylaminophenyl) (B), the same spectrum with 10 times increased optical density

(D), and the spectrum of (S), — (S),-fluorescence (C) [8].

Analogous results were obtained for the dye PMD-II
[10], and it turned out that the intensity of S, — Sp-fluo-
rescence in this case is much higher than the azulene
fluorescence intensity in the analogous quantum transition.
However, the author of [10] paid attention to the fact that the
absence of the contribution of the S;— S;(v)-transition
into the absorption of the molecule in the region So — S, is
not a sufficient condition for the appearance of S, — Sp-
fluorescence. This can be explained by the absence of short-
wave fluorescence in cyanines, in which the energy distance
between S, and S, is larger than that in the case of PMD-II.

Since the nature of the excited states of PMD has not
been investigated, the cause of the fluorescence of the dye
from higher excited states remains unclarified. Therefore,
the corresponding quantum-chemical studies were carried
out in this work in order to answer to the posed question.

In the electrically neutral state, the PMD-I and PMD-II
dye molecules contain an odd number of electrons, that is,
they are radicals, unstable formation. Stabilization of the
molecule is achieved by transferring to the cation state. The
anion, as a rule, is C1O;. This anion in the dye solutions does
not create neutral associates. This would significantly change
the physical properties of the dye.

For the research, quantum-chemical calculations using
the HyperChem software package were used. In particular,
semiempirical methods of calculating MNDO, MNDO/d, and
AMI1 were used. These methods give a certain shift in the
position of the bands in the absorption spectrum. Never-
theless, they give the correct order in the spectral arrangement
of various quantum transitions and provide correct data on
the oscillator strength in various quantum transitions and the

energy difference between quantum transitions. Since the
method AM1 proved to be convenient in use, the basic
quantum-chemical studies were carried out with its use.

During the research, the authors found out that the
effects of symmetry play a key role in the appearance of
S, — Sp-fluorescence. It turned out that the calculation
procedure can give deviations of bond lengths in the third
sign after the comma, which immediately reduces the
symmetry of the molecule and distorts the form of the
molecule orbitals (MOs). Therefore, special attention was
paid to symmetrization of the geometric structure of PMD
molecules.

To obtain a full answer to this question, group-theoretic
analysis was used to conduct studies on the energy structure
of molecules.

3. The Results of the Study and Discussion

3.1. Group-Theoretical Analysis. In this work, the energy
structure and nature of the energy states of the PMD-I and
PMD-II molecules were studied. To determine the true cause
of the appearance of S, — So-fluorescence, it is necessary to
include studies of the symmetry of the energy states of
excited molecules because the laws of symmetry are the most
important ones in nature. Therefore, they are able to answer
the posed question.

PMD-I and PMD-II cations in the free state were used in
the study. The authors, in accordance with experimental
data, believed that the presence of solvent molecules in the
near environment to the dye molecule will slightly change
the spectral properties of the dissolved dye molecule.



The PMD-I and PMD-II cations in the trans-configu-
ration are described by the symmetry group C,,. Table 1
shows the results of the PMD-I analysis.

As follows from Table 1, the total number of degrees of
freedom (IN=132) was distributed according to the repre-
sentations of the group C,: A; —44, A,—21, B, —44, and
B,—-23. This information is important to know before
studying the infrared absorption spectra of the PMD-I
molecules. On the other hand, Table 1 presents data on the
number and symmetry of molecular orbitals (MOs) of o-
and 7-type. As seen from Table 1, in the C,, group, the 0-MO
and 7-MO refer to different representations.

A similar description of the PMD-II molecule showed
that, in this case, the total number of the degrees of freedom
(N=234) was distributed according to the representations:
A;-78, A, —38, B;—76, and B, — 38. These degrees of free-
dom include 3 translations, 3 rotations, 77 completely
symmetric vibrations, 37 oscillations of symmetry A,, 76
vibrations of symmetry B;, and 38 vibrations of symmetry B,.

On the other hand, chemical bonds between atoms form
78 0-MO and 41 7-MO. There are 108 electrons on the MO
occupied by electrons (electrons are placed on 1s atomic
orbitals of hydrogen atoms, on 2s and 2p atomic orbitals of C
and N atoms, and also on 3s and 3p atomic orbitals of S
atoms). It is important that the 0-MO refers to the repre-
sentations A; and B;, while 7-MO refers to the represen-
tations A, and B, of the symmetry group C,,.

It is known from quantum mechanics that the proba-
bility of quantum transition of an electron between two MOs
is described by means of the dipole moment of a quantum
transition:

Dfnn =-e J W;Ellfndv: (1)

where & = x, y, z denotesmatrix element of the dipole electric
moment vector; ¥, and y,, are the y-functions of the
electron in states with numbers m and n.

To determine if the corresponding quantum transition is
allowed, it is sufficient to consider this integral from the
group theory point of view. In this case, wave functions and
coordinates are substituted by their representations in the
theory of symmetry. Afterwards, it is found out whether the
corresponding product contains a fully symmetric repre-
sentation. If there is no such content, the probability of a
quantum transition is zero. Therefore, knowing the MO
representation in the C,, group, we can immediately find the
presence of a quantum transition and its polarization. The
corresponding information is presented in Table 2.

As follows from Table 2, the quantum transitions be-
tween two 71-MOs are always allowed and polarized in the
plane of the molecule along the x or y axis. Situation is
similar between two 0-MOs. Also, quantum transitions
7« o can be already polarized along the z axis, or they are
forbidden by symmetry.

Certainly, there can be a spatial prohibition in addition
to the prohibition of quantum transitions by symmetry. It
shows up in the case when MOs, between which the
quantum transition of an electron is calculated, are spatially
separated and do not overlap.
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TaBLE 1: Characters of the C,, group and assigning the coordinate
axes, translations (T, rotations (R), the number of vibrational
modes (1), and 0-MO and 7-MO of the PMD-I molecule to them.

Cyy E C, oy oy T R N n o¢ =
A 1 1 1 1 y 1 0 44 43 23 0
A, 1 1 -1 -1 0 1 21 20 0 8
B, 1 -1 1 -1 x 1 1 44 42 22 0
B, 1 -1 -1 1 z 1 1 23 21 O 9
X 1 -1 1 -1

Y 1 1 1 1

Z 1 -1 -1 1

T 3 -1 1 1

R 3 -1 -1 -1

N 132 -2 44

2
o- MO 44 2 44 2
n- MO 17 -1 =17 1

TaBLE 2: Quantum transitions allowed by the symmetry group C,,
with absorption or emission of light.

MO g-Ay -A, 0-B; n-B,
U-Al y_Al - A2 x-Bl Z-BZ
7T-A2 - A2 y'Al Z-B2 X-Bl
U-Bl x—81 Z-BZ y_Al - A2
n-B, z-B, x-B, - A, y-Ay

It is important to pay attention to one more circum-
stance in the future. There are nonradiative transitions
besides radiative ones. In this case, the electron excitation
energy is converted into the thermal energy of the solution.
The probability of such transition (internal conversion) can
be found if the operator of the perturbation which causes a
conversion is known:

2

p=|] vs.pvsc]. @

Assuming the operator responsible for the nonradiative
transition is symmetric, we find the selection rules for such
transitions: in the ¢,, group, nonradiative transitions be-
tween MOs of the same symmetry are allowed. In addition, it
turned out that internal conversion is inefficient for those
transitions that do not change the interatomic distance in the
molecule. Also, since the interatomic distance changes
markedly under excitations into the ¢*-state (7 — ¢* and
0 —0"), in these cases, the internal conversion efficiency
increases significantly [11].

3.2. Molecule PMD-I. Calculation of the energy structure of
PMD-I was conducted taking into account the configuration
interaction between 12 occupied MOs and 12 free MOs (CI
12x12). The calculated absorption spectrum is shown in
Figure 2.

The results of the calculation of the energy structure, as
well as the structure and symmetry of the MO, are given in
Table 3.

Table 3 contains data only for those singlet-triplet
transitions in which energy is lower than the singlet-singlet
transition energy. Two quantum transitions are indicated for
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F1GURE 2: The absorption spectrum of PMD-I. It is calculated using the AM1 method considering the CI 12x12. All singlet and triplet
quantum transitions (except the first one) are noted at the top without taking into account the oscillator strength.

some absorption bands. The configurational interaction
between these transitions ensures the formation of a cor-
responding absorption band.

The comparison of the data depicted in Figure 2 and in
Table 3 reveals that the quantum transitions Sy — S, and
So— S5 are weak and imperceptible against the back-
ground of the other absorption bands. The oscillator
strength in these bands may change somewhat under the
influence of the solvent, but they will still remain weak.

We consider the form of the corresponding molecular
orbitals to understand the reason why the oscillator strength
in the second and third absorption bands is small.

S
AP
\\-,‘“‘ i;'i

AN

=

The quantum transition So— S, is allowed by
symmetry. However, the structure of the MO 51 and 58,
which provides this transition, leads to strictly identical
positive and negative components in the integrand for the
dipole moment of the transition. This leads to the fact that
the oscillator strength becomes less than 107, The reason
for the small oscillator strength of the S; — S5 transition
is the same. In this case, the positive and negative
components of the integrand do not compensate each
other completely. This is the main reason for the absence

of the energy exchange between the S;- and S,-energy
states and the S;- and S;-energy states. In the latter case,
the internal conversion is forbidden, while the excitation
relaxation by the dipole mechanism (the radiative pro-
cess) is very weak.

3.3. The PMD-II Molecule. The geometric structure of the
PMD-II molecule is much more complicated than PMD-I.
However, the calculated absorption spectra of PMD-II
(Figure 3) and PMD-I qualitatively resemble each other.

Details of the calculations of the energy structure for the
molecule PMD-II, as well as the structure and symmetry of
the MO, are given in Table 4.

It follows from Table 4 that there are two more
quantum transitions with the formation of singlet excited
states between the Sy—S; and S;,— S, transitions,
which are visible in the absorption spectrum (Figure 3).
However, both transitions correspond to the excitation of
an electron from the 7-system to the o-system. In this case,
it is clear that the first of them (S, — S,) is forbidden in
symmetry and the second one (So— S;) is forbidden in
space.

Considering the effect of symmetry on the relaxation
processes in the PMD-II molecule, it can be concluded
that both the abovementioned excitation relaxation
mechanisms are forbidden for the transition from S,-state
to the S,-state. The excitation relaxation from S4 to S; is
allowed by the first mechanism although it is slowed down
due to the spatial prohibition. Energy exchange between
Sszand S, states is possible, but it does not affect the course
of further excitation relaxation processes. The excitation
relaxation from S; to S is forbidden by both the mech-
anisms. The radiative process S;— S, is allowed by
symmetry.

Another interesting parallel is observed for the two
molecules considered. There are two closely placed energy
states between the states S; and S, the transitions to which
are characterized by small values of the oscillator strength. In
PMD-I, this is 7n*-state, while in PMD-II, this is mo™*-state.
The reason for this similarity is the structure of the MO, to
which the electron is transferred from the ground state. In
both cases, the MOs are divided into two remote parts. If one
MO is represented as the sum of the right and left parts, then
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TaBLE 3: Calculated absorption spectrum of PMD-I.

Type of quantum transition Wavelength A, nm MO, between which there was a transition Oscillator strength

Symmetry

So— T, 1146.8
S() — T2 684.3
SO — Sl 598.9
SO e Sz 351.7
So—S; 351.5
Sp— S, 344.9

54 — 55
54 — 56
53 — 55

54 — 55

54 — 58
51 — 55
54 — 57
52 — 55
54 — 56
53— 55

0
0
1.5975

T—T
0.0000
T—T7
0.0011
T—T
0.1673

mT—T7

B,— A,-x-B,
B2—>B2—y—A1
A,—A,-y-A;

B2—>A2—X—Bl

B,— A,-x-B,
B2—>A2—X—Bl
B,—B,-y-A,
A2—>A2—y—A1
B2—>B2—y—A1
A,— A,-y-A

N Y

207 266 322 381

700

A, nm

FIGURE 3: The calculated absorption spectrum of PMD-IL

TaBLE 4: Calculated absorption spectrum of PMD-IIL.

Type of quantum transition ~Wavelength A, nm MO, between which transition occurred Oscillator strength Symmetry
SO—> Tl 1389.3 110 — 111 0 BZ_)AZ - X—Bl
110 —112 B,— B, - y-A,
So—Ts 647.6 07— 0 R
So— S 700.2 110 —5 111 1.5603 B,— A, - x-B;
T—> T
So—S, 456.2 110 — 116 0.0002 B,— By - A,
T—0
So—$3 456.0 110 —115 0.0042 B,— A, - z-B,
T—0
110 — 112 0.4731 By— B, - y-A,
So — S4 381.4 107 — 111 T—7 Ay— Ay - y-A

the second one will correspond to the difference of the same
parts. The distance between them causes a very small
splitting between S,- and S;-states.

Consequently, the quantum transition S;— S, is re-
sponsible for the PMD fluorescence. Experimental studies
have shown that the quantum yield of S; — Sp-fluorescence
rarely exceeds 1%. Thus, even with a weak overlap of the
spectra of Sy — S;(v)- and Sy — S;-absorbances, the in-
ternal conversion (S3 — S;) proceeds at a rate that is two
orders of magnitude greater than the speed of the radiative
process S; — S,.

4. Conclusions

Based on the conducted studies aimed at elucidating the
mechanisms of fluorescence of PMD from higher excited
states, the following conclusions are made:

(1) Investigation of PMD from different groups of dyes
with the molecules giving fluorescence from higher
excited states was conducted. It was showed that, for
both cases, there are two more excited states with low
oscillator strengths for quantum transitions Sy — S,
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and S, — S5 in the transparency region of the PMD
solution between the first and fourth excited states.
In this case, the oscillator strength of the Sy — S;
transition is more than an order of magnitude
greater than the oscillator strength of the So— S,
transition.

\
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MO 116 0-B,

(2) In the case of PMD-I, the transitions S, — S, and
So— S5 correspond to the excitation of an electron
within the 7r-electron system. In the case of PMD-II,
excitations into S,- and S;-states correspond to
m—> o*-quantum transitions. The common thing
for both dyes is the structure of the MO of excited
states, which consists of two isolated regions of lo-
calization of the electron. One of the MO of excited
states can be represented as the sum of two parts, and
the second as a difference between them.

(3) The group-theoretical analysis of PMD showed that
relaxation processes between the states S5 and S, are
forbidden, either by radiation or by internal con-
version. Only transition to the ground state from the
state S; of the molecule is possible. Since the ex-
perimental data state that the quantum yield of
S3 — Sy fluorescence does not exceed 1%, it is in-
dicated that the internal conversion rate can be 2
orders of magnitude higher than the radiative re-
laxation rate of the molecule.

(4) It can be asserted that the necessary condition for the
appearance of fluorescence from the higher excited
states of molecules S;— S, is the absence of
So — S1(v) -absorption in the region of the Sy — S;
transition. Whereas, the sufficient condition is the
corresponding symmetry of the excited states, which
imposes a prohibition on the S;— §; relaxation
process.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

The HyperChem Molecular Modeling System software
package was used in this work (http://www.hyper.com/?
tabid=360). Quantum chemical calculations were per-
formed by the methods described in https://www.scribd.
com/document/380681457/HyperChem-Professional-8-0-
Manual-de-Utilizare#download.
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