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Object shape reconstruction from images has been an active topic in computer vision. Shape-from-shading (SFS) is an important
approach for inferring 3D surface from a single shading image. In this paper, we present a unified SFS approach for surfaces of
various reflectance properties using fast eikonal solvers. (e whole approach consists of three main components: a unified SFS
model, a unified eikonal-type partial differential image irradiance (PDII) equation, and fast eikonal solvers for the PDII equation.
(e first component is designed to address different reflectance properties including diffuse, specular, and hybrid reflections in the
imaging process of the camera. (e second component is meant to derive the PDII equation under an orthographic camera
projection and a single distant point light source whose direction is the same as the camera. Finally, the last component is targeted
at solving the resultant PDII equation by using fast eikonal solvers. It comprises two Godunov-based schemes with fast sweeping
method that can handle the eikonal-type PDII equation. Experiments on several synthetic and real images demonstrate that each
type of the surfaces can be effectively reconstructed with more accurate results and less CPU running time.

1. Introduction

In the field of computer vision, object shape reconstruction
from images has been an active topic. (ere are several
techniques, such as stereo vision, structured light, fringe
projection profilometry, and shape-from-X (X� shading,
photometric stereo, texture, focus/defocus, motion, etc.).
Shape-from-shading (SFS) is an important approach for
inferring 3D surface from a single shading image and be-
cause of its simplicity of equipment, it is widely used in face
reconstruction [1, 2], 3D reconstruction of medical images
[3, 4], lunar surface reconstruction [5, 6], and so on. It was
initiated by Horn [5] who firstly formulated a first-order
partial differential image irradiance (PDII) equation de-
scribing the relations between the 3D shape of a surface and
its corresponding 2D variation of intensities. (us one can
determine 3D surface by starting with the PDII equation.

Since Horn’s original work, a great number of different SFS
approaches have come out (for surveys, refer to Zhang et al. [7],

and Durou et al. [8]). (ere are mainly two steps when
utilizing an SFS approach. (e first step is meant to model
the image formation process of the camera which is de-
termined by the reflectance property of the surface, the light
source, and the camera projection and to derive the PDII
equation under certain assumption [9]. (e second step is
targeted at designing a numerical scheme to solve the re-
sultant PDII equation. Most of the SFS approaches con-
centrate on how to design an effective numerical scheme
assuming that the surface obeys a simple Lambertian re-
flection. (ese approaches are generally divided into two
classes: partial differential equation- (PDE-) based methods
and optimisationmethods [10, 11].(e characteristics-based
approach [5] and the viscosity solution-based approaches
[1, 3, 4, 9–16] can be categorized into the first class. We
should mention the pioneering viscosity solution-based
approach of Rouy and Tourin [12], who first described the
PDII equation under Lambertian reflectance model as a
Hamilton-Jacobi-Bellman PDE and got a nonclassical
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solution based on viscosity solution theory. Kimmel and
Sethian [13] transformed the PDII equation under the
vertical light into an eikonal-type PDE and used the first-
order fast marching method [17] to solve its viscosity so-
lution. For the oblique light case, Governi et al. [14]
reconstructed the initial surface by directly using the fast
marching method [17]. (ey rotated the normal map ob-
tained from the surface around the oblique light and then
computed the “new” image as the dot product between the
normal map and vertical light. (e final surface could be
reconstructed by applying the fast marching method to the
“new” image again.(e works of [5, 7, 8, 10–14] are thinking
of an orthographic projection for the camera. As for per-
spective camera projection, Prados and Faugeras [1] related
the PDII equation to a Hamiltonian based on the work [12]
and got its viscosity solution with optimal control theory.
Breuss et al. [15, 16] analytically and numerically studied the
perspective PDII equation formulated by Prados and Fau-
geras [1] and the associated Hamilton-Jacobi PDE. At the
same time, they proved the convergence of the finite-dif-
ference and the semi-Lagrangian schemes for the resultant
PDE. (e second class means the minimisation methods for
the SFS problem [7]. Ikeuchi and Horn [18] formulated SFS
as a minimisation problem of the difference between ob-
served intensities and the expected intensities that are given
through the PDII equation from the expected surface
normal, on which the smoothness constraint was used.
Tankus et al. [19] first derived a perspective PDII equation
and obtained an approximate solution under the assumption
that the surface is locally paraboloidal. (e 3D shape was
reconstructed by minimising a quadratic cost functional.
More recently, Santo et al. [20] revisited the numerical SFS
approach of Ikeuchi and Horn [18] and described corre-
sponding solution that was built upon different convex
relaxation strategies. It is worth mentioning that Quéau et al.
[21] combined the advantages of optimisation methods and
PDE-based methods and built a generic variational solution
that is suitable for SFS under natural illumination and can
handle a variety of scenarios for various lighting and camera
projection.

While most of the SFS approaches assume the Lam-
bertian reflection, there are a few researchers who are in-
terested in non-Lambertian SFS since the Lambertian
reflectance model has been proved to be inaccurate, espe-
cially for rough diffuse surfaces [22]. Ragheb and Hancock
[23] proposed a non-Lambertian SFS with the Oren-Nayar
reflectance model and gave two solutions: the lookup table
and the analytic solution. Ahmed and Farag [24, 25] pre-
sented several non-Lambertian SFS approaches including
Ward SFS and Oren-Nayar SFS and approximated the PDII
equations by using the Lax-Friedrichs sweeping scheme [26].
Since the actual convergence to the correct solution is very
slow in [25], Vogel and Cristiani [27] applied the Upwind
scheme to get a more efficient solution with less convergence
time. Tozza and Falcone [10, 28] addressed a general
framework for several non-Lambertian SFS problems in-
cluding Oren-Nayar SFS and Phong SFS, solved by a semi-
Lagrangian scheme, and obtained convergence results.
However, their framework can only handle a special case

where the specular reflection parameter n in the Phong
reflectance model [29] equals 1; that is, it represents the
worst case. By extending the work of Galliani et al. [30],
Ju et al. [4] adopted spherical parameterisation of the surface
into the Oren-Nayar PDII equations and thus could com-
pute them at any position of the point light source. However,
the fast-marching scheme depicted in Cartesian coordinates
needs to be converted to spherical coordinates during the
process.

In this paper, motivated by the work of Camilli and
Tozza [31] and based on our previous work [11], we first
present a unified SFS model for surfaces of different re-
flectance properties including diffuse, specular, and hybrid
reflections in the image formation process. Although our
work falls in the situation where the camera performs an
orthographic projection and the direction of the single
distant point light source is the same as the camera, these
reflections lead to more complex nonlinear PDII equations.
However, all the PDII equations corresponding to the re-
flections considered here (Oren–Nayar model and unified
model) have a similar structure, so we can look for weak
solutions to this class in the viscosity solution sense. Another
contribution of our work is that we convert the PDII
equation into an eikonal-type PDE through solving a high-
order equation by using the Newton-Raphson method, after
which we try to obtain the viscosity solution of the eikonal-
type PDE by using fast eikonal solvers which are composed
of the first- and high-order Godunov-based schemes
accelerated by the fast sweeping method.

A similar formulation for the SFS problem of the Oren-
Nayar model has been reported in our previous work [11].
As we said, in this paper we will focus our attention on the
unified reflectance model (including Lambertian model,
Oren–Nayar model, and Blinn–Phong model) and formu-
late the unified high-order PDII equation under the vertical
light. Using the Newton-Raphson method for the resultant
PDII equation, we will obtain the eikonal-type PDE that can
be solved via fast eikonal solvers presented preliminarily in
our work [11].

2. A Unified SFS Model in the Imaging Process

In this section, a very brief description for the Lambertian,
Oren–Nayar and Blinn–Phong reflectance model is given in
order to setup a unified imaging model.

2.1. Lambertian Reflectance Model. Generally, the Lamber-
tian reflectance is a classical assumption in most of the SFS
approaches [1, 3, 5, 8, 12–16, 18–21, 30] for approximating
the reflectance property of the diffuse surface. In this case,
the surface reflected radiance is addressed as [3]

Lr � I0
ρd

π
cos θi, (1)

where I0 is the intensity of point light source, ρd is the diffuse
albedo which controls the proportion of incident light that is
reflected diffusely, and θi is the angle between the surface
unit normal n and the incident light direction L illustrated in
Figure 1.
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2.2.Oren–NayarReflectanceModel. In order to get rid of the
inaccuracy resulting from the assumption of the Lambertian
reflectance model for diffuse reflection, Oren and Nayar [22]
proposed a comprehensive reflectance model for rough
diffuse surfaces.

By assuming that the surface is composed of V-shaped
cavities which are symmetric and have two planar facets and
that each facet obeys a simple Lambertian reflection, for a
Gaussian distribution of the facet normals, they got a
simplified expression for the reflected radiance:

Lr θi, ϕi; θr, ϕr( 􏼁 � I0
ρd

π
cos θi A + Bmax 0, cos ϕr(􏼂(

− ϕi􏼁􏼃sin α tan β􏼁,

(2)

where A � 1 − 0.5σ2/(σ2 + 0.33), B � 0.45σ2/(σ2 + 0.09);
(θi, ϕi) is the incident light direction L; (θr, ϕr) is the
camera direction V; α � max[θi, θr], β � min[θi, θr]. (e
parameter σ is applied as a measure of the surface
roughness, and it denotes the standard deviation of the
Gaussian distribution.

For smooth surfaces, we have σ � 0 and obviously the
Oren-Nayar reflectance model degenerate to the Lambertian
model in this situation.

2.3. Blinn–Phong Reflectance Model. It is worth mentioning
that Phong [29] developed a hybrid reflectance model by
introducing a specular component to the surface reflected
radiance (1). He described the specular component as a
power of the cosine of the angle between the reflected light
direction R and the camera direction V. Hence, the hybrid
reflected radiance can be derived in general as

Lr � wdI0
ρd

π
cos θi + wsI0

ρs

π
R

‖R‖
·
V

‖V‖
􏼠 􏼡

n

, (3)

where wd and ws are the weighting factors of diffuse and
specular components, respectively, and wd + ws ≤ 1. ρs is the
specular albedo that determines the proportion of incident
light that is reflected specularly. (e parameter n is used to
express the specular reflection property of a surface and can
be used as a measure of the surface shininess. Obviously, the
contribution of the specular component decreases when the
value of parameter n increases.

Note that it is not convenient to compute the specular
reflected radiance in terms of (R · V). (e Blinn–Phong
reflectance model, proposed by Blinn [32], is a modification
of the Phong model for computation convenience.
Substituting (n · h) into (R · V) in formula (3), the hybrid
reflected radiance based on the Blinn–Phong model can be
formulated as

Lr � wdI0
ρd

π
cos θi + wsI0

ρs

π
(n · h)

n
. (4)

2.4. A Unified Reflectance Model. As mentioned before, the
Lambertian reflectance model has been proved to be inac-
curate, especially for rough diffuse surfaces. (us, we can
combine diffuse and specular components of a surface
through a linear combination of Oren–Nayar model and the
specular part of Blinn–Phong model; that is, we substitute
surface reflected radiance (2) into the diffuse part of
Blinn–Phong model:

Lr � wdI0
ρd

π
cos θi A + Bmax 0, cos ϕr − ϕi( 􏼁􏼃sin α tan β􏼂 􏼁( + wsI0

ρs

π
(n · h)

n
. (5)

Obviously, surface reflected radiance (5) is a unified re-
flectance model including the Lambertian, the Oren–Nayar, and
the Blinn–Phong model. For ws � 0, it reduces to the Oren–
Nayar model. For σ � 0, it reduces to the Blinn–Phong model.
Specially, if ws � 0 and σ � 0, it degenerates to the Lambertian
model.

(e following relationship between the surface reflected
radiance Lr and the image irradiance Ei of the camera is well
known [9]:

Ei � Lr

π
4

D

f
􏼠 􏼡

2

cos4 χ, (6)

where D is the entrance pupil diameter of the camera lens
whose focal length is f. χ is the angle between the line of sight
to an image point of a corresponding surface point and the
optical axis of the camera. Even for uniform illumination, the
term cos4 χ implies nonuniform image irradiance. (e actual
imaging lens of the camera, however, is generally designed to
correct it. (us, one can consider Ei to be proportional to Lr:

n

θi

θr

ϕi

ϕr

θi

h

VL
R

P

δ

Figure 1: Reflection geometry of a local surface point. n is the unit
normal of the surface point P; (θr, ϕr) and (θi,ϕi) are the camera
direction V and incident light direction L, respectively; R is re-
flected light direction; h is the unit angular bisector ofV and L; that
is, h � (V + L)/‖V + L‖; δ is the angle between n and h.
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Ei � ηLr. (7)

Substituting equation (5) into (7), and if we set ρd � ρs to
a constant ρ as done in [31] and denote I � πEi/ηI0ρ as done

in most of SFS approaches, the image irradiance equation (7)
will be rewritten as

I � wd cos θi A + Bmax 0, cos ϕr − ϕi( 􏼁􏼃sin α tan β􏼂 􏼁( + ws(n · h)
n
. (8)

3. A Unified Eikonal-Type PDII Equation

In this section, we will formulate the image irradiance
equation under the situation where the camera performs an
orthographic projection and the direction of the single
distant point light source coincides with the camera.

3.1. Nonlinear PDII Equation for the Unified Model. With
the basis that the optical axis of the camera is the z−axis and
the image plane of the camera is the x − y plane, the SFS
approach can be described as inferring a 3D surface, z(x, y).
Since our work falls in an orthographic camera projection,
the first partial derivatives of the surface z(x, y) with respect
to x and y, respectively, are

p(x, y) �
zz(x, y)

zx
,

q(x, y) �
zz(x, y)

zy
.

(9)

So the unit normal n at a 3D surface point P(x, y,

z(x, y)) can be expressed as

n(x, y) �
(p(x, y), q(x, y), −1)
�������������������
1 + p2(x, y) + q2(x, y)

􏽰 �
(p, q, −1)

�������������

1 +‖∇z(x, y)‖2
􏽱 .

(10)

Considering that the direction of the distant point light
source L is the same as the camera direction V illustrated in
Figure 1, we have θi � θr, ϕi � ϕr, α � θi � β, and h � L/‖L‖,
n · h� cos θi. Consequently, image irradiance equation (8)
will be reduced to

I(x, y) � wd A cos θi + B sin2θi􏼐 􏼑 + wscos
nθi. (11)

Defining that the direction vectors of L and V both are
[0, 0, −1]; that is, they are parallel to the optical axis of the
camera lens, and because θi is the angle between n and L, we
have

cos θi � n ·
L

‖L‖
�

1
�������������

1 +‖∇z(x, y)‖2
􏽱 ,

sin2θi � 1 − cos2θi �
‖∇z(x, y)‖2

1 +‖∇z(x, y)‖2
.

(12)

Substituting equation (12) into (11), the image irradiance
equation (11) can be rewritten as

I(x, y) � wd

A
�������������

1 +‖∇z(x, y)‖2
􏽱 +

B‖∇z(x, y)‖2

1 +‖∇z(x, y)‖2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ ws

1
�������������

1 +‖∇z(x, y)‖2
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

n

.

(13)

Obviously, the image irradiance equation (13) is a more
complex nonlinear PDE and is difficult to solve z(x, y).

Applying the change of variable T � 1/
�������������

1 + ‖∇z(x, y)‖2
􏽱

, the
PDII equation (13) can be considered as calculating a zero of
the function F(T), given by

F(T) � wsT
n

− BwdT
2

+ AwdT + Bwd − I; 0<T≤ 1.

(14)

3.2. Eikonal-Type PDE for theOren–NayarModel. Especially,
for ws � 0, that is, for the PDII equation of the Oren–Nayar
model, F(T) � 0 will lead to a quadratic equation:

BwdT
2

− AwdT + I − Bwd � 0. (15)

Calculating equation (15) and satisfying 0<T≤ 1, we can
obtain

T �
Awd −

���������������������

Awd( 􏼁
2

− 4Bwd I − Bwd( 􏼁

􏽱

2Bwd

. (16)

Hence, SFS problem (13) can be rewritten as an eikonal-
type PDE:

‖∇z(x, y)‖ �

������
1

T2 − 1
􏽲

, ∀(x, y) ∈ Ω,

z(x, y) � Γ(x, y), ∀(x, y) ∈ zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

where Ω is a given image domain and Γ(x, y) is a boundary
condition. Similar work has been studied in our previous
work [11] and here will be extended to the unified model.

3.3. Eikonal-Type PDE for the Unified Model. For ws ≠ 0,
F(T) is a high-order function of T when n> 1 and it is
difficult to calculate the zero values. We can use the New-
ton–Raphson method to solve it. (e derivative of the
function F(T) is
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F′(T) � nwsT
n−1

+ wd(A − 2BT)≥ nwsT
n−1

+ wd(A − 2B).

(18)

If the surface roughness 0≤ σ ≤ 0.6220, then A≥ 2B≥ 0.
At the same time, 0<T≤ 1, so F′(T)> 0 and function F(T)

is monotonous. Simultaneously, we have

F(0) � −wsT
n − wdT(A − BT)< − wsT

n − wdT(A − 2B)< 0,

F(1) � ws 1 − Tn( ) + wd(1 − T)(A − B − BT)≥ws 1 − Tn( ) + wd(1 − T)(A − 2B)≥ 0.
􏼨 (19)

Hence, function (14) always has a unique zero. Starting
with the value T0 � 0, the iterative equation of the Newton-
Raphson method is applied to calculate a new value for Tk as
follows:

T
k

� T
k−1

−
F Tk−1( 􏼁

F′ Tk−1( 􏼁
. (20)

After several numbers of iterations, an accurate zero of
function (14) is obtained. Similar to the structure of the
Oren–Nayar model, we can get an eikonal-type PDE for the
unified model:

‖∇z(x, y)‖ �

��������
1

Tk( 􏼁
2 − 1

􏽳

, ∀(x, y) ∈ Ω,

z(x, y) � Γ(x, y), ∀(x, y) ∈ zΩ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

4. Fast Eikonal Solvers for the Eikonal-
Type PDE

In this section, we will use the fast eikonal solvers which are
composed of the first-order Godunov-based scheme [12, 33]
and high-order Godunov-based scheme [11, 34] accelerated

by the fast sweeping method [33, 35] to look for the weak
solutions of the resultant eikonal-type PDE (21) in the
viscosity solution sense.

4.1. First-Order Godunov-Based Scheme. We use (xi, yj) �

(i × w, j × w) to denote a grid point in the image domain Ω,
w to denote the grid size, M × N to denote the image size,
and zi,j � z(xi, yj) to denote the numerical solution at the
3D surface z(x, y). (e first-order Godunov-based scheme
[12, 33] can be employed to discretize resultant eikonal-type
PDE (21):

zi,j − zimin

w
􏼒 􏼓

+

􏼢 􏼣

2

+
zi,j − zjmin

w
􏼒 􏼓

+

􏼢 􏼣

2

� G
2
i,j, (22)

where zimin � min[zi+1,j, zi−1,j], zjmin � min[zi,j+1, zi,j−1],
Gi,j �

������������
(1/(Tk

i,j)
2) − 1

􏽱
, and

(x)
+

�
0, x< 0,

x, x≥ 0.
􏼨 (23)

(us, the viscosity solution of eikonal-type PDE (21) can
be obtained using the first-order Godunov-based scheme:

zi,j �

min zimin, zjmin􏽨 􏽩 + wGi,j, zimin − zjmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥wGi,j,

zimin + zjmin +

���������������������

2w2G2
i,j − zimin − zjmin􏼐 􏼑

2
􏽱

2
, zimin − zjmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<wGi,j.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

4.2.High-OrderGodunov-BasedScheme. In order to obtain a
higher-order accuracy viscosity solution, the high-order
Godunov-based scheme [34] can be employed to discretize
resultant eikonal-type PDE (21):

znew
i,j − z

high
imin

w
⎛⎝ ⎞⎠

+

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

2

+
znew

i,j − z
high
jmin

w
⎛⎝ ⎞⎠

+

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

2

� G
2
i,j, (25)

with

z
high
imin � min z

old
i,j + wp

+
i,j􏼐 􏼑, z

old
i,j − wp

−
i,j􏼐 􏼑􏽨 􏽩,

z
high
jmin � min z

old
i,j + wq

+
i,j􏼐 􏼑, z

old
i,j − wq

−
i,j􏼐 􏼑􏽨 􏽩,

(26)

where pi,j and qi,j need to be approximated with higher-
order accuracy. According to [34], third-order weighted
essentially nonoscillatory scheme [36] is able to be chosen as
pi,j and qi,j approximations:

p
+
i,j � 1 − u+( 􏼁

zi+1,j − zi−1,j

2w
􏼒 􏼓 + u+

−zi+2,j + 4zi+1,j − 3zi,j

2w
􏼠 􏼡,

p
−
i,j � 1 − u−( 􏼁

zi+1,j − zi−1,j

2w
􏼒 􏼓 + u−

3zi,j − 4zi−1,j + zi−2,j

2w
􏼠 􏼡,

(27)

with
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u+ �
1

1 + 2v2+
,

v+ �
ε + zi+2,j − 2zi+1,j + zi,j􏼐 􏼑

2

ε + zi+1,j − 2zi,j + zi−1,j􏼐 􏼑
2,

u− �
1

1 + 2v2−
,

v− �
ε + zi,j − 2zi− 1,j + zi− 2,j􏼐 􏼑

2

ε + zi+1,j − 2Vi,j + zi−1,j􏼐 􏼑
2,

(28)

where ε is a very small number that keeps the denominator
from getting too close to zero. Similarly, q+

i,j and q−
i,j can be

defined. Now the viscosity solution of eikonal-type PDE (21)
can be obtained using the high-order Godunov-based
scheme:

z
new
i,j �

min z
high
imin, z

high
jmin􏼔 􏼕 + wGi,j, z

high
imin − z

high
jmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥wGi,j,

z
high
imin + z

high
jmin +

���������������������

2w2G2
i,j − z
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(29)

4.3. Fast Sweeping Method for Godunov-Based Schemes.
In order to speed up the convergence numerical schemes, we
take the philosophy of fast sweeping method [33, 35] to the
first-order or high-order Godunov-based schemes in the
following. When the derivatives p+

i,j, q+
i,j and p−

i,j, q−
i,j are

calculated, the newest available values for z are employed.
Meanwhile, the iterations do not sweep in only one direction
but in four alternating directions repeatedly: (1) from upper
left to lower right, that is, i � 1: I, j � 1:J; (2) from lower left
to upper right, that is, i � I: 1, j � 1: J; (3) from lower right
to upper left, that is, i � I: 1 , j � J: 1; (4) from upper right
to lower left, that is, i � 1: I, j � J: 1. As can be easily seen,
various values zi±1,j, zi±2,j and zi,j±1, zi,j±2 are to be taken
according to the current sweeping direction.

We summarize the fast eikonal solvers for the resultant
eikonal-type PDE (21) as follows:

Step 1 (Initialization): according to the boundary con-
dition z(x, y) � Γ(x, y), (x, y) ∈zΩ, assign exact values
at the grid points on the boundary zΩ, whose values are
fixed during iterations. At all other grid points, for first-
order Godunov-based scheme, big positive values are
used as the initial guess, which are larger than the
maximum of the true solutions and will be updated in the
process of iterations. Especially for high-order Godunov-
based scheme, the solution of the first-order Godunov-
based scheme is considered as the initial guess.
Step 2 (Alternating Sweepings): we compute znewi,j

according to the update formulation (24) or (29) by Gauss-
Seidel iterations with four alternating direction sweepings:

(1) i � 1: I, j � 1: J;
(2) i � I: 1, j � 1: J;
(3) i � I: 1, j � J: 1;
(4) i � 1: I, j � J: 1.

Step 3 (Convergence): if ‖znew − zold‖L1 ≤ μ, where μ is a
given threshold value, the schemes converge and stop;
otherwise, return to Step 2. In this paper, we use
μ � 10− 5.

5. Experimental Results

Several experiments on synthetic and real images with
different reflectance properties have been carried out in
order to assess the effectiveness of the presented unified SFS
approach. We compare our presented approach with the
Ahmed and Farag’s approach [24, 25] using Lax-Friedrichs
sweeping scheme for the same reflectance property. We
implement all the approaches in Matlab. All the experiments
are conducted on a PC with a Xeon E5-1650 processor and
16GB of DDR3 memory.

5.1. Experimental Results on Synthetic Images. We use two
synthetic surfaces including a ball and a vase, which have
been benchmark test surfaces and are determined by
equations (30) and (31), respectively:

z(x, y) �

������������

R2 − x2 + y2( 􏼁

􏽱

, (30)

where R � 75 is the radius of the ball and the generated
image size M × N is 256 × 256; that is, (x, y) ∈
[−127, 128] × [−127, 128]:

z(x, y) �

���������

g(x)2 − y2
􏽱

, (31)

where g(x) � 0.15 − 0.025(6x − 1)(2x − 1)2(3x + 2)2(2x +

1) and original range of (x, y) values is
[−0.5, 0.5] × [−0.5, 0.5]. To obtain the same image size as the
ball, we map (x, y) range to [−127, 128] and scale z(x, y)

simultaneously. (eir ground truths are shown in Figure 2.
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In order to assess the effectiveness of the presented
unified SFS approach for the surfaces of various reflectance
properties, four different parameter sets of σ, wd, ws, and n

are used to generate the shading images. Table 1 shows the
parameter values. Especially for set (1) and set (2), σ � 0
means that the unified model reduces to the Blinn–Phong
model with different diffuse and specular components, and
for set (3), it means that the unified model reduces to the
Oren–Nayar diffuse model.

(e experimental results for the synthetic ball images
are illustrated in Figure 3. Figures 3(a)–3(d) show the
shading images generated by the four parameter sets shown
in Table 1, respectively. Figures 3(e)–3(h) show the
reconstructed surfaces of Figures 3(a)–3(d) using the first-
order Godunov-based scheme, while Figures 3(i)–3(l) show
the reconstructed surfaces using the high-order Godunov-
based scheme. Finally, Figures 3(m)–3(p) show the
reconstructed surfaces of Figures 3(a)–3(d) using the Lax-
Friedrichs sweeping scheme. Figure 4 illustrates the cor-
responding experimental results for the synthetic vase
images.

As can be roughly seen from Figures 3 and 4, the fast
eikonal solvers and the Lax-Friedrichs sweeping scheme can
basically get satisfactory reconstructed results for the four
different parameter sets of the unified reflectance model.
Furthermore, we can easily see that the first- and high-order
Godunov-based schemes illustrate similar results, and both
schemes can give much better reconstructed results with
smaller differences between reconstructed surfaces and
ground truths than the Lax-Friedrichs sweeping scheme,
especially for more specular components such as
Figures 3(b), 3(d), 4(b), and 4(d).

(e effectiveness of our presented unified approach is
further described by comparisons between the fast eikonal
solvers and the Lax-Friedrichs sweeping scheme with the
mean absolute (MA) error, the root mean square (RMS)
error, and the CPU running time. Tables 2 and 3 list the
quantitative comparisons of the three schemes for the
synthetic ball and vase images. It can be seen obviously that
the first-order Godunov-based scheme shows much more
superiority in CPU running time in all the images that we

carried out since it converges after about 2 iterations. At the
same time, we can see that the high-order Godunov-based
scheme exhibits the minimal reconstructed error in both the
MA and RMS errors because the third-order weighted es-
sentially nonoscillatory scheme is adopted in the approxi-
mation process. (e Lax-Friedrichs sweeping scheme shows
a worse performance; maybe, it is difficult to look for a
perfect estimate for the artificial viscosity term.

5.2. Experimental Results on Real Images. In order to
demonstrate the performance of our presented approach for
real surface, we test it on two real images and also compare
the reconstructed results with the Lax-Friedrichs sweeping
scheme. (e first image is a vase applied in [7], which is
illustrated in Figure 5(a) and is mostly diffuse. (e second
image is a plastic bottle, which is illustrated in Figure 6(a)
and contains more specular components. Figures 5(b) and
6(b) show the masks of Figures 5(a) and 6(a) representing
the (x, y) that is used in reconstruction, respectively.
Figures 5(c)–5(e) illustrate the reconstructed surfaces using
the first-order Godunov-based scheme, the high-order
Godunov-based scheme, and the Lax-Friedrichs sweeping
scheme, respectively. Figures 6(c)–6(e) show the corre-
sponding reconstructed surfaces for the bottle.

We only evaluate the effectiveness intuitively and
qualitatively. From the reconstructed results shown in
Figures 5(c)–5(e), we can see that the fast eikonal solvers are
more accurate than the Lax-Friedrichs sweeping scheme for
mostly diffuse surface. Details of surfaces illustrated in
Figures 5(c) and 5(d) are represented more vividly and
clearly than in Figure 5(e). From the reconstructed results
shown in Figures 6(c)–6(e), we can draw the similar con-
clusions as for more specular surface. As shown previously,
from Figures 5(e) and 6(e), we can see that the Lax-Frie-
drichs sweeping scheme also exhibits a slightly worse per-
formance since it is hard to find a perfect estimate for the
artificial viscosity term. It is well worth noting that the first-
order Godunov-based scheme is the fastest and the
reconstructed surface using the high-order Godunov-based
scheme looks like the best result.
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Figure 2: (e ground truths of the ball and the vase surfaces. (a) (e ball. (b) (e vase.
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Table 1: Parameter values employed to generate the shading images.

Parameter σ wd ws n

Set (1) 0 0.8 0.2 5
Set (2) 0 0.5 0.5 10
Set (3) 0.3 1 0 —
Set (4) 0.3 0.5 0.5 10

(a) (b) (c) (d)
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Figure 3: Experimental results for the synthetic ball images. (a)–(d) (e shading images generated by the four parameter sets shown in
Table 1. (e)–(h) Reconstructed surfaces of (a)–(d) using first-order Godunov-based scheme. (i)–(l) Reconstructed surfaces of (a)–(d) using
high-order Godunov-based scheme. (m)–(p) Reconstructed surfaces of (a)–(d) using Lax-Friedrichs sweeping scheme.

(a) (b) (c) (d)

Figure 4: Continued.
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Table 2: Quantitative comparisons of schemes for the synthetic ball images.

Images
First-order Godunov-based

scheme
High-order Godunov-based

scheme Lax-Friedrichs sweeping scheme

MA RMS Time (s) MA RMS Time (s) MA RMS Time (s)
Figure 3(a) 0.7199 0.8924 0.04 0.0370 0.0883 0.64 3.2049 3.3360 2.49
Figure 3(b) 0.7228 0.9176 0.04 0.0595 0.1318 0.65 3.9782 4.1671 3.69
Figure 3(c) 0.7167 0.8902 0.04 0.0357 0.0725 0.64 2.6534 2.7687 2.67
Figure 3(d) 0.7776 1.0667 0.04 0.0940 0.1959 0.65 4.1396 4.3401 5.07

Table 3: Quantitative comparisons of schemes for the synthetic vase images.

Images
First-order Godunov-based

scheme
High-order Godunov-based

scheme Lax-Friedrichs sweeping scheme

MA RMS Time (s) MA RMS Time (s) MA RMS Time (s)
Figure 4(a) 0.5770 0.7129 0.04 0.0740 0.1371 0.81 2.2899 2.5879 2.31
Figure 4(b) 0.5791 0.7284 0.04 0.0812 0.1429 0.82 3.5141 3.8832 3.53
Figure 4(c) 0.5739 0.7095 0.04 0.0731 0.1366 0.81 1.3744 1.6557 3.61
Figure 4(d) 0.6309 0.7429 0.04 0.0953 0.1550 0.82 4.0818 4.4402 4.82
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Figure 4: Experimental results for the synthetic vase images. (a)–(d) (e shading images generated by the four parameter sets shown in
Table 1. (e)–(h) Reconstructed surfaces of (a)–(d) using first-order Godunov-based scheme. (i)–(l) Reconstructed surfaces of (a)–(d) using
high-order Godunov-based scheme. (m)–(p) Reconstructed surfaces of (a)–(d) using Lax-Friedrichs sweeping scheme.
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(a) (b) (c)

(d) (e)

Figure 6: Experimental results for the real bottle image. (a) (e real image. (b) (e mask of (a). (c) Reconstructed surface of (a) using first-
order Godunov-based scheme. (d) Reconstructed surface of (a) using high-order Godunov-based scheme. (e) Reconstructed surface of
(a) using Lax–Friedrichs sweeping scheme.

(a) (b) (c)

(d) (e)

Figure 5: Experimental results for the real vase image. (a) (e real image. (b) (e mask of (a). (c) Reconstructed surface of (a) using first-
order Godunov-based scheme. (d) Reconstructed surface of (a) using high-order Godunov-based scheme. (e) Reconstructed surface of
(a) using Lax–Friedrichs sweeping scheme.
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6. Conclusions

In this paper, we have reported a unified SFS approach for
surfaces of various reflectance properties including diffuse,
specular, and hybrid reflections using fast eikonal solvers. A
unified reflectance model that is a linear combination of the
Oren–Nayar model and the specular part of the Blinn–
Phong model is presented. We have derived the unified
image irradiance equation under this unified model with an
orthographic camera projection and a single distant point
light source whose direction is the same as the camera. We
have also converted the PDII equation into an eikonal-type
PDE through solving a high-order equation by using the
Newton-Raphson method. Fast eikonal solvers which are
comprised of the first- and high-order Godunov-based
schemes accelerated by the fast sweeping method are
employed to solve the viscosity solution of the resultant
eikonal-type PDE. Finally, the experiments are conducted on
both synthetic and real images and the results verify that our
presented approach can provide satisfactory 3D surface
reconstruction with a higher accuracy in less CPU running
time.

Frankly speaking, the presented unified SFS approach
can only handle the special case which assumes an ortho-
graphic camera projection and a single distant point light
source whose direction is parallel to the optical axis of the
camera lens. In future work, we will adopt the idea of using
the Newton-Raphson method to solve the high-order PDII
equations derived from the SFS problem with a more
complex reflectance model and will relax the two assump-
tions by employing a nearby point light source and a per-
spective camera projection.(e attenuation term of the light
illumination will be also considered to eliminate the convex-
concave ambiguity which can make the SFS problem ill-
posed.
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