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D. Benarab,1,2 T. Napoléon ,1 A. Alfalou,1 A. Verney,2 and P. Hellard3

1ISEN Brest, Vision-AD Department, L@bISEN Lab—Yncrea Ouest, 20 Rue Cuirassé Bretagne, CS 42807,
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In order to accompany the swimming coaches in evaluating high-level swimmers, we developed a prototype for instantaneous
speed estimation. To achieve this, we proposed and validated, in a previous work, a swimmer tracking system based on data fusion.
However, the initialization phase is done manually, and our aim, in this paper, is to automate this process. First, we propose a
region of interest localization module that allows the detection of the first appearance of the swimmer in the lane as well as the
restriction of the region of interest around him. ,is module is based on the method a contrario which consists of modeling the
random noise corresponding to the water and detecting the structured movement relative to the swimmer motion. To do that, we
calibrate the pool using DLT (Direct Linear Transform) technique, extract the concerned lane, apply the frame difference
approach to detect the moving objects, and then decompose the lane into blocs and classify them into swimmer motion or noise.
Second, in order to detect the swimmer’s head, we propose the Scaled Composite JTC which is based on the NL-JTC correlation
technique. ,e input plane of this latter includes a target and a reference image. ,e first is the region of interest detected by the
method a contrario. ,e second consists of a Scaled Composite Reference. ,e tests conducted on real video sequences of French
swimming championships (Limoges 2015) showed very good results in terms of region of interest localization and swimmer’s
head detection which allows a reliable initialization for the tracking system.

1. Introduction

Recently, a strong interest is given to kinematic and biome-
chanical studies in order to enhance swimmers performances.
In the context of our collaboration with the French Federation
of Swimming, our objective is to conceive an automatic system
that estimates swimmers pace and instantaneous speed. Some
constraints are imposed in order to generalize the use of the
system in different cases: training and high-level competitions.
In particular, this system must fulfill the following conditions:
minimal user intervention, no wearable sensors, and no
physical markers. We thus sought to develop an automatic
swimmer tracking system using 4K video sequences.

In our previous work, we proposed an optimized simmer
tracking system based on the multirelated targets approach

[1]. ,is latter consists of tracking two targets (head and
swimsuit) simultaneously using the dynamic fusion tracking
approach. ,e main idea is to estimate the position of the
occluded target taking into account the position of the visible
one. For this, all the potential detections of the two targets
are evaluated according to a complex criterion composed of
the confidence factor of the detection of each target, the
Euclidean distance between the targets, and the swimmer
speed. ,en, this criterion is maximized in order to choose
the best couple head-swimsuit. ,is approach showed good
results in terms of tracking.

Based on this approach, we developed a prototype of
automatic swimmer tracking and instantaneous speed es-
timation. However, the selection of the initial reference of
the swimmer’s head is performed manually. Hence, in order
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to achieve an all-automatic robust swimmer tracking system,
we proposed a novel approach called Scaled Composite JTC
[2]. In this paper, we will extend this work and enhance
principally the region of interest localization and the ref-
erence initialization modules.

For the first module, we propose the following process.
First, we calibrate the camera using the DLT technique
(Direct Linear Transform) [3, 4] which will allow us to pass
from any real metric coordinates to the correspondent pixel
coordinates in the image and vice versa. ,is will help us to
extract the swimming lane containing the swimmer to be
tracked. Afterwards, we apply frame difference in order to
detect the swimmer’s motion. For this, we decompose the
difference image into blocs and analyze each bloc locally to
determine its nature (swimmer motion/noise). ,is can be
done using the method a contrario [5–7] which creates a
model for the random noise and then detects the structured
movement that appears in the lane. ,is allows the detection
of the exact moment when the swimmer appears in the lane
to launch the tracking process and the restriction of the
region of interest around the swimmer all along the video
sequence.

,e second module consists of an automatic initializa-
tion of the tracking process with a reference image of the
swimmer’s head. In our previous work [1, 8, 9], this initial
reference is selectedmanually to launch the tracking process.
To detect it automatically, we propose the Scaled Composite
JTC approach which is based on the NL-JTC correlation
technique [10–12]. ,e input plane of this latter contains a
reference and a target images. For the first image, we propose
a Scaled Composite Reference which is generated by ap-
plying the composite filter on 3 images chosen from a
pregenerated database according to the current situation
(swimming direction, gender, age. . .). ,en, this composite
reference is scaled according to the concerned lane pixel
dimensions. For the second image, we use the proposed
region of interest localization module to select the target
image. ,e application of the NL-JTC correlation technique
on this input plane provides a potential detection in each
frame of the video sequence. In order to initialize the
swimmer tracking system, we choose the best 3 potential
detections according to their PCE value (Peak to Correlation
Energy).

,ese two modules are integrated in the prototype of
swimmer tracking and instantaneous speed estimation to
achieve principally two goals. First, we validated swimmer’s
head detection using the Scaled Composite JTC approach for
the initialization of the tracking. Second, we enhanced the
region of interest localization using the a contrario ap-
proach. Accordingly, these propositions allowed us to
overcome some of the difficulties of the automatic swimmer
tracking, namely target occlusions.

2. Environment Specification

FINA (International Swimming Federation) has established
several standards for competition pools. ,e length of the
pool is 50 meters for the long races and 25meters for the
short ones [13]. Competition pools are generally covered and

heated to ensure their use throughout the year and to be
adapted more easily with FINA regulations regarding
temperature, lighting, and automatic arbitration equip-
ments. Table 1 summarizes the standards imposed by FINA
for 50meters Olympic pools.

A 50-meter pool can be qualified by FINA to host big
events, in case it has the following dimensions: 50meters of
length and 25meters of width. In addition, it must be di-
vided into eight lanes of 2.5-meter wide each. Two other
additional lanes 2.5-meter wide (lanes 0 and 9) were added
in each side of the pool to the traditional eight lanes at the
congress FINA 2009 [13]. Moreover, the depth of the pool is
not fixed but is limited to 2meters at least. Other criteria are
also imposed by FINA, for instance, the lane color and the
position of the flags indicating the flipping moment for
backstroke races (5meters from each edge). ,e water
temperature should be maintained at 25–28°C and the il-
lumination level at more than 1500 lux. Touchpads are
mounted on both edges of the pool in order to automatically
measure the arrival time of the athletes to the edges of the
pool. Figure 1 summarizes the dimensional norms imposed
by FINA.

,ese norms ensure a good organization of the com-
petitions, but they can also be used as reference landmarks in
order to calibrate the pool. ,is can be done by calculating
the geometric relationship between landmarks metric co-
ordinates, which must be known accurately and the cor-
respondent pixel coordinates. Once the video sequence is
calibrated, we can simply pass from any metric coordinates
to the correspondent pixel coordinates in the image and vice
versa. ,erefore, we will be able to calculate different
measures, namely:

Position of the detected swimmer in meters
Distance covered during a particular period
Instantaneous and average speed of the swimmer
Passing time by the various landmarks in the pool
Estimating the swimmers size in the different lanes in
the image

In our case, we are mainly interested in the evaluation of
swimmers according to their instantaneous speed. For this,
we need to establish the correspondence between pixel and
metric coordinates. ,is later can be done based on the
concept of calibration.

3. Calibration

All along our research in the field of swimmer tracking, we
have targeted various difficulties related to the aquatic en-
vironment specificities. In particular, the localization and the
extraction of the swimming lanes is a difficult task that
remains crucial to ensure a proper functioning of the
tracking system. Indeed, such information is necessary to
predict the future location of the swimmer or to estimate
distances required to calculate the speed. ,us, we propose
to calibrate the video in order to establish the link between
metric and pixel coordinates from the pool and the image,
respectively.
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In addition, calibration can be used to correct the dis-
tortion resulting from perspective errors and aberrations
corresponding to the camera lens. Because of these dis-
tortions, the image pixels are misplaced. However, the in-
formation is not lost, and it can be partially reconstructed by
measuring the extrinsic parameters of the camera (rotation
and orientation). To calculate these parameters, we use the
DLT calibration technique (Direct Linear Transformation)
[3, 4]. ,is technique establishes the relation between metric
and pixel coordinates that allows to correct perspectives and
calculate distances.

Videos of swimming competitions can be calibrated
based on the various landmarks of the swimming pool as
shown in Figure 1. Given that the pool can be considered as a
two-dimensional plane, it is possible to use the simplified 2D
DLTtechnique instead of the conventional DLT [3, 4], which
is calculated using the following equation:

x1 y1 1 0 0 0 −u1x1 −u1y1

0 0 0 x1 y1 1 −v1x1 −v1y1

: : : : : : : :

xn yn 1 0 0 0 −unxn −unyn

0 0 0 xn yn 1 −vnxn −vnyn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L1

L2

:

L7

L8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

u1

v1

:

un

vn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

To solve this equation, we need to calculate the cali-
bration parameters L1‥8 which represent the unknowns of
this system of equations. For this, it is sufficient to know the
pixel coordinates (xi, yi) and metric coordinates (ui, vi) of n
points of the recorded scene, with n≥ 4.

In our case, the Olympic pools that organize big events
usually conform to the international norms in terms of size
and color of the lanes. ,e cameras used for recording are
fixed during all the shooting sessions. Hence, to calibrate
all the video sequences of each session, it is sufficient to
calibrate only one frame and apply the same calibration
parameters on the rest. To do this, we manually selected
four points which we have accurately measured their
metric coordinates, as shown in Figure 2. Note that the
origin (0, 0) in our calculations corresponds to the top/
right corner of the pool, as shown in Figure 2. ,e co-
ordinates of the selected points replace the variables (ui, vi)
and (xi, xi) in the equation (1). ,is generates a system of 8
equations and 8 unknowns (L1‥8). ,e resolution of this
system allows to calculate these which represent the cal-
ibration parameters. Once they are calculated, the passage
from pixel to metric coordinates is ensured using the
following equation:

u �
L1x + L2y + L3

L7x + L8y + 1
,

v �
L4x + L5y + L6

L7x + L9y + 1
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

As shown in Figure 2, the calibration allows an accurate
localization of the swimming lane.

4. Region of Interest Localization

Our aim is to localize the swimmer globally and restrict the
region of interest around the swimmer during the video se-
quence. ,is module is important to prepare the video for a
robust swimmer tracking which yields the ability to perform
accurate measurements and evaluate his performance. ,e
process of localizing the region of interest solves two problems.
,e starting time corresponds to the first movement of the
swimmer in the swimming lane and the restriction of the
region of interest by prelocalizing the swimmer during the race.

For this, we propose an automatic process based on
motion detection [14–16] of the swimmer in the concerned
lane. To do this, we take into account the specificities as-
sociated with swimming and the characteristics of the pool
in order to apply the adapted preprocessing techniques. As
input data, this process requires the knowledge of the camera
calibration parameters, the lane number, and the dimen-
sions of the pool. In this section, we will present the method
a contrario used for region of interest localization, and then
we will detail the different steps of this process.

4.1. Motion Detection Using the Method A Contrario:
Adaptation. A contrario is a statistical approach based on
hypothesis tests to detect significant geometric events in
images. ,e basic idea of this approach is based on the
principle of visual perception called Non− accidental, which
is also known as the principle of Helmholtz [5, 6]. In their
book, Desolneux et al. [6] summarize this principle as fol-
lows: “whenever a deviation of the randomness aspect ap-
pears, a structure is perceived”. Here, the structure is defined
by its opposite, namely, the noise. In the case of the absence
of a structure, the events are independent, and they behave
randomly while the structure differs in a more organized
behavior. A contrario method was applied to various de-
tection problems. We cite for example, edge detection in
[7, 17], pattern recognition in [18], and detection of rigid
points of interest for the matching between images in [19].

In this work, we propose the adaptation of the method a
contrario in order to automatically detect the swimmer
motion starting from his first diving in the water. Indeed, the
noise model is considered as an independent uniform dis-
tribution. In our case, we consider the randommovement of
water in the empty lane as a noise model. For this reason, we
will establish a dynamic and relevant threshold corre-
sponding to the water movement in the concerned lane
which will allow the detection of the structuredmovement of
the swimmer. Subsequently, we will present in detail the
different steps of the region of interest localization process
based on the method a contrario, as shown in Figure 3.

Table 1: FINA standards for the eligibility of 50meters Olympic
pools.

Characteristic Conventional value
Length 50m
Width 25m
Depth 2 in minimum (3m recommended)
Lanes number 10 (2,5m of width)
Temperature 25–28°C
Lighting 1500 lux
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4.2. Lane Extraction. Knowing that the pool and the lanes
dimensions are known, we can precisely extract the lane
containing the concerned swimmer. ,is can be done by
defining the number of the lane to be extracted. For this we
use the following formula:

x1 � 0,

x2 � length,

y1 � NBlane ∗width,

y2 � NBlane + 1( 􏼁∗width,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where NBlane represents the lane number of the the swimmer
to be tracked. length (50m) and width (2.5m) represent the

dimensions of the lane. x1, x2, y1, and y2 represent the co-
ordinates of the 4 corners of the lane containing the con-
cerned swimmer. It should be noted that, in our case, the
origin (0; 0) corresponds to the top/right corner of the pool.
,ese measures are calculated in metric domain and it is,
therefore, necessary to obtain the corresponding pixel co-
ordinates. For this, we use the calibration results and more
specifically the equation (2) to ensure this passage and get
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Figure 1: Conventional dimensional measures recognized by FINA for 50meters Olympic pools.

(50, 0)
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(5, 15)

(45, 12.5)

Figure 2: Calibration of the pool by the DLT technique using four
selected points. Displaying a grid of 50× 25m2 where each cell
represents an area of 2.5× 2.5m2. Swimming Championships in
Limoges, France, April 2015.

Lane extraction

Frame difference

Blocs decomposition

Thresholding and 
classification

Elimination of false 
blocs

Figure 3: General process of the region of interest localization
based on the method a contrario.
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the coordinates of the 4 corners of the lane. Finally, we apply
a mask in order to keep only the concerned lane.,e result is
shown in Figure 4.

4.3. Frame Difference. Frame difference [16, 20] is usually
used as a preprocessing technique that is used for motion
detection, especially for the videos captured by fixed cam-
eras, which corresponds to our case. In order to detect the
motion, the moving object can be segmented and extracted
by performing a frame difference between the current frame
i of the video sequence and the background, where the latter
corresponds to an image of the scene without the object to be
tracked. In our case, the first frame when the lane is empty,
before the swimmer diving, can be considered as a back-
ground image. According to the literature [16, 20], this
technique shows very good tracking results in case of static
background. However, it remains highly sensitive to vari-
ations in lighting and movement of the various components
of the scene background.

In our case, the background is not completely static,
especially when the swimmer starts swimming. ,e latter
generates a lot of splashes and waves along the entire length
of the lane. ,is creates a significant noise after the frame
difference between the frame i containing the swimmer and
the first image of the empty lane, as shown in Figure 5.
However, we noticed minimal variations between succes-
sive frames except in the area containing the swimmer
where we noticed a significant variation. ,erefore, we
choose the difference of successive frames to detect the
swimmer based on his movement. In order to reduce the
noise caused by water movement, we propose to apply the
Median filter on the two successive frames before the
subtraction. Hence, the frame difference is calculated by the
following equation:

Diff i � Median imi( 􏼁 − Median imi−1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (4)

,e result Diffi is called the difference image; it contains
high intensities which correspond mainly to the swimmer’s
movement area. ,is is illustrated in Figure 6 where we
clearly notice that the difference of successive frames is less
noisy than the difference between the frame i and the empty
lane frame which is shown in Figure 5. For this reason, we
retain the difference of successive images for swimmer
motion detection in the rest of our study.

4.4. Blocs Decomposition. ,e difference image contains
pixels of different intensities. Indeed, the intensity value
corresponds to variation level of the pixel color which allows
us to detect moving objects in the scene. However, in our
case, it is not only the swimmer who is in movement but also
the water and the light reflections surrounding it which may
falsify swimmer motion detection. To overcome this
problem, we propose to decompose the difference image to
blocs in order to study the pixels intensities locally and take a
decision concerning the motion detection in each bloc of the
lane. In our case, we decompose the difference image to blocs
of size b× b as shown in the following equation:

b �
y11 − y22

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

NBbloc
, (5)

knowing that the distance |y11 − y22| represents the lane
width and NBbloc represents the desired number of blocs, in
our case NBbloc � 20. ,is allows a consistent local study
focusing on the areas containing a significant movement. To
take a decision concerning the nature of the bloc (swimmer
motion or noise), it is necessary to establish an adapted
threshold which we define subsequently.

4.5. <resholding and Classification. ,is step consists of
applying a threshold on the blocs to classify them into
swimmer motion or noise. For each bloc of the difference
image, we calculate the local mean of its intensity, which is
compared to a defined threshold (,resh). ,is threshold is
calculated before the diving phase in order to measure the
water movement and the variation associated with light re-
flection in an initial state. In order to calculate the threshold,
we proceed in the same way but on two successive frames of
the empty lane. We calculate the difference between the two
frames filtered by a Median filter. ,en, we decompose the
difference image into blocs and calculate the mean of each
block. Finally, the threshold (,resh) corresponds to the
maximum value of the noise associated with the random
motion of the water. In other words, ,resh is the maximum
value of the blocs means measured for an empty lane. In this
context, Figure 7 shows an example of classification according
to the noise model, where the noise threshold corresponds to
the bloc located in the middle. ,e blocs on the left are
considered as noise given that their mean intensity is lower
than the threshold ,resh. However, the blocs on the right
represent areas containing a significant movement that can
match swimmer motion because their mean intensity is
greater than ,resh. ,ese blocs are localized and labeled for
further processing to localize the swimmer.

,roughout the period in which the difference image Diffi
contains random noise, we consider it a state of rest. Once a
structuredmovement appears between the two lines delimiting
the lane, the mean intensity of the concerned blocs increases
and exceeds the threshold ,resh. ,is allows us to auto-
matically localize the swimmer and determine his direction.

4.6. Elimination of False Blocs. ,anks to the previous steps,
we can detect elements of the scene that are in motion
between two successive images. However, we noticed after
several tests that these detected areas correspond to the
swimmer motion, the movement of the lines delimiting the
lane and the light reflections. To eliminate these last two
cases, we rely on two main criteria: the position and surface.
,e position of each detected bloc helps to determine its
nature and whether it may be a swimmer or not. For ex-
ample, in Figure 8, we can distinguish the blocs that match
the movement of the lines delimiting the lane according to
their position. To refine the detection, we eliminate two lines
of blocs around each line delimiting the lane. On the other
hand, to solve the case of the reflections, we use the surface
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criterion knowing that the blocs representing the reflections
are usually detected as isolated blocs. All remaining blocs
correspond to the swimmer motion detected in the frame i,
as shown in Figure 9.

Figure 10 shows the different stages of the process of
localizing the region of interest using the method a contrario
for swimmermotion detection, starting with the noisemodel
calculated on the empty lane to the restriction of the region
of interest around the swimmer.

4.7. Discussion. ,e region of interest localization approach
introduced in this section can detect the appearance of the
swimmer in the lane as well as restrict the region of interest,
as shown in Figure 10. On the other hand, ourmain goal is to
develop an accurate automatic swimmer tracking and
evaluation system. For this, we use the method a contrario to
detect the swimmer, determine the exact time of his

appearance in the lane, and localize him globally throughout
the video. However, it remains to treat the aspect of tracking
accuracy. To do this, it is necessary to consider the various
difficulties that correspond mainly to contour deformation
and the occlusion of the swimmer. Indeed, the swimmer’s
head is the part that allows obtaining the best compromise
between visibility and rigidity (less deformation). For this
reason, we propose in the following section initializing the
tracking based on the detection of the of the swimmer’s head
using the Scaled Composite JTC approach.

5. Tracking Initialization Using the Scaled
Composite JTC Approach

We proposed in our previous work [1, 8, 9] an optimized
swimmers tracking system based mainly on the head as the
body part to be tracked. ,is system requires, as an input, a

b

b

Noise �reshold Important movement

Figure 7: Example of bloc classification according to a noise model. ,e central bloc is the threshold. ,e blocs in the left are classified as
noise. ,e blocs in the right are classified as an important movement that will be analyzed to determine its nature (swimmer or not).
Swimming Championships in Limoges, France, April 2015.

Figure 8: Blocs decomposition, classification, and thresholding. ,e white blocs represent areas with significant movement that may
correspond to a swimmer. Swimming Championships in Limoges, France, April 2015.

Figure 4: Lane extraction and mask application taking into account the four points: x1, x2, x3, and x4. ,emetric coordinates of these points
are known and pixel coordinates are calculated using the calibration results. Swimming Championships in Limoges, France, April 2015.

Figure 5: Frame difference between the frame and (i) the first frame of the video sequence containing an empty lane. Swimming
Championships in Limoges, France, April 2015.

Figure 6: Successive frames difference between the frames i− 1 and i. ,e high intensities correspond to the movement of the swimmer or
the water. Swimming Championships in Limoges, France, April 2015.

6 International Journal of Optics



region of interest around the swimmer to be tracked and a
reference image of his head.,e first input data can be found
by applying the region of interest localization approach

based on the method a contrario. While the second will be
the subject of this section where we propose an automatic
technique for the detection of the swimmer’s head based on

Figure 9: Refining detections by the elimination of false blocs corresponding to the reflections and the movement of the lines delimiting the
lanes. Swimming Championships in Limoges, France, April 2015.
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Figure 10: Localization of the region of interest based on the method a contrario. Image 1: noise model obtained from the difference
between two images of the empty lane. Images 2, 5, and 8: frame difference between two successive frames. Images 3, 6, and 9: blocs
decomposition and thresholding compared to a threshold relative to the noise model. Images 4, 7, and 10: swimmer localization. Swimming
Championships in Limoges, France, April 2015.
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the correlation technique NL-JTC [10, 12] applied on a
standard scaled composite reference constructed from a
pregenerated database. Finally, the detected swimmer’s head
will be used as a reference for optimized tracking system
proposed in the previous work.

5.1.DatabaseGeneration. To detect the swimmer’s head, it is
necessary to have a prior description of this part of the body
to be tracked. To do this, we generated a learning database
based on video sequences that we recorded during national
and international competitions (Swimming Championships
Limoges, France, 2015, World Swimming Championships,
Barcelona 2013 and Kazan 2015). ,ese videos were
recorded using two 4K cameras to have more details on the
images and extract the swimmer’s head efficiently. Our
database contains swimmers’ heads extracted in different
real situations occurring during swimming.

In particular, the criteria that we have taken into account
for the generation of the database to cover most scenarios are

Age: senior and junior
Gender: men and women
Type of the swim: crawl, backstroke, butterfly, and
breaststroke
Direction of swimming: going and coming

Figure 11 presents sample images of heads/caps of dif-
ferent swimmers in various situations.

5.2. Application of the NL-JTC Technique. Knowing that the
color of the caps worn by swimmers may vary, we opt for
their form to ensure a relevant and standard description of
the swimmer’s head. For this reason, we choose the NL-
JTC correlation technique which is known in the literature
of contour-based detection [10, 21, 22]. ,e input plane of
the NL-JTC technique includes a reference and a target
image.

,e first image consists of a standard reference of the
swimmer’s head that we generate from a specific database
(this process will be detailed subsequently). ,e second
image represents the region of interest around the swim-
mer’s head which is extracted using the method a contrario
detailed in the previous section. Once the input plane is
generated, we apply the NL-JTC technique, as shown in
Figure 12 and we get a correlation plane. ,e analysis of this
latter allows us to take the decision concerning the existence
of a target having a shape similar to the head of the swimmer.
,is decision is made on a short sequence in the beginning of
the race based on the PCE criterion (Peak to Correlation
Energy) to select the best targets. Next, we will detail the
reference image generation process, the target image, and
the final decision.

5.3. Scaled Composite Reference. Using the pregenerated
database, we choose n reference images of swimmers’ heads
relative to our case. In practice, we set n� 3 to have three
different forms of swimmers’ heads corresponding to the

same situation, namely, the swimming type, direction,
age. . .. ,en, the selected reference images are converted
into grayscale. ,is is essential for the application of the NL-
JTC technique and has no influence on the detection results
because the cap color information is discarded.

,en, we apply the composite filter [2, 23, 24] on n
images in order to generate a single image representing a
rich contour description and containing different swimmers
heads.,e basic idea of the composite filter (see Figure 13) is
to calculate a weighted sum of n images as shown in the
following equation:

REF(x, y) � 􏽘 αi ∗ ref i(x, y), (6)

with αi the weighting factor that can be used to favor the
reference refi.

Finally, this composite reference must be scaled
according to the size of the head of the concerned swimmer.
,is latter is unknown, in the aim of estimating it, we
calculate the ratio between the standard width of the head
and the width of the lane. ,en, based on this ratio, the lane
width in pixels and the calibration function, we estimate the
dimensions of the concerned swimmer’s head in pixels as
shown in the following equation:

HeadSizepixel � LaneSizepixel ∗
HeadSizemeter

LaneSizemeter
. (7)

Using the result of this equation, we rescale our com-
posite reference in order to adapt it to our case and
depending on the width of the concerned lane. ,e gen-
eration process of the scaled composite reference is sum-
marized in Figure 14.

5.4. Localization of the Region of Interest. ,e localization of
the region of interest is an important step for developing an
accurate automatic approach for swimmers tracking. For
this, we rely on the method a contrario presented in the
previous section. ,is allows us to determine the moment
when the swimmer appears in the lane as well as to restrict
the region of interest. To do this, it is important to consider
the following information: the swimming direction and the
blocs corresponding to the swimmer motion. Indeed, to
localize our region of interest, we select a rectangle of 2m
length and 1.5m width that is limited by the last bloc
corresponding to the swimmer motion taking into account
the swimming direction. ,ese measures are then trans-
formed into the pixel domain and the region of interest is
extracted as shown in Figure 15.

5.5. PCE-Based Decision. Our objective is to accurately
detect the swimmer’s head and initialize the swimmer
tracking system developed in the previous work [1, 8, 9]. For
this, we apply the proposed Scaled Composites JTC ap-
proach to detect the swimmer in the first images of the video
sequence. ,is period is supposed to contain the following
events: empty lane, diving, and swimming recovery phase.
During the first event, we apply only the region of interest
localizing process. Once the swimmer motion is detected in
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the lane, we apply the Scaled Composite JTC approach to
detect and localize the swimmer’s head in each frame of this
period.,e length of this latter is set between 2 and 3 seconds
(50 to 75 images). ,en, for each potential swimmer’s head
detection, we calculate the PCE value that will be used as a
confidence factor. Finally, potential detections are classified
according to their PCE associated values and the final decision
corresponds to those with the highest PCE. In our case, we
validate three targets detected for initializing the optimized
swimmer tracking system that is proposed in a previous work.

5.6. Experiments and Results. In order to prepare the video
and to facilitate the swimmer tracking, we have developed

two modules based on image preprocessing: the region of
interest localization module and the automatic detection of
the swimmer’s head for initializing the swimmer tracking
system. Next, we will present the evaluation of these
modules.

5.6.1. Evaluation the Region of Interest Localization. ,e
purpose of this module is to detect the swimmer motion in
order to restrict the region of interest. For this, we have
proposed in this paper an adapted approach based on frame
difference and a contrario approaches.

We noticed that our method was unable to detect the
swimmer motion in the case of minimal movement. To

(a) (b) (c)

Figure 12: Application of NL-JTC technique for the detection of the swimmer’s head. (a) Input plane containing a Scaled Composite
Reference and the region of interest provided by the a contrario localization process. (b) Correlation plane. (c) Detection and localization of
the swimmer’s head. Swimming Championships in Limoges, France, April 2015.

Figure 13: Principle of the composite filter. Left: reference images. Right: composite image which consists of a weighted summation of the
two reference images.

Figure 11: Examples of the training database. World Championships, Barcelona 2013 and Kazan 2015.
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overcome this problem, we proposed an adapted prediction
technique based on a set of relevant criteria: the swimming
direction, referential validated position, and mean speed.
,is prediction principle will be used in the following tests to
improve the localization process.

To evaluate this region of interest localization module,
we tested it on 5 crawl video sequences during the national
championships in Limoges 2015. Each sequence, containing
400 images with a frame rate of 25 frames/s, begins with
several frames of an empty lane before swimmer diving.
,ese frames allow us to establish a noise model for the
application of the method a contrario. As shown in Table 2,
this module will be evaluated using the percentage of suc-
cessful localizations (swimmer in the region of interest).

Table 2 presents the results of the region of interest
localization module based on frame difference and a con-
trario approaches in both modes: with and without pre-
diction. We notice that the application of the method a
contrario provides high localization percentages ranging
from 94.5% to 97%. In this context, the localized regions of
interest will be used, thereafter, to accurately detect the head
of the swimmer.,erefore, the region of interest localization
is a crucial step that needs to ensure the existence of the head
in the region of interest. In order to optimize the results, we
coupled the method a contrario with an adapted prediction
technique which allowed us to achieve very high localization
percentages close to 100%.

5.6.2. Evaluation of the Reference Initialization. ,e auto-
matic swimmers tracking system proposed in our previous
work [1, 8, 9] needs to have a relevant reference image of the
swimmer’s head to be tracked. However, since the color of
swimming caps may change, the only available information

is the shape of the head. Based on this, we proposed the
Scaled Composite JTC approach to detect and select auto-
matically the initial reference image of the concerned
swimmer.

In order to detect the best reference image for the
swimmer’s head to be tracked, we apply the proposed
method on short video sequences chosen at the beginning of
the race, because the swimmer’s head reappears quickly after
the diving phase. Among the targets detected, we choose the
three best targets to be used in order to initialize swimmers
tracking system.

To evaluate this reference initialization module, we
tested it on short sequences of 100 frames extracted from the
beginning of the previous 5 crawl video sequences. As shown
in Table 3, two criteria are used to evaluate this module: the
detection percentage on 100 frames of each video sequence
and the percentage of successful initialization of the 3 se-
lected reference images.

Table 3 shows high detection percentages between
78.31% and 86.44% for the 5 tested sequences although we
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(a) (b) (c) (d) (e) (f)

Figure 14: Generation of the Scaled Composite Reference. (a) Database containing head references. (b) Selection of images according to the
current situation. (c) RGB color space conversion to grayscale. (d) Application of the composite filter. (e) Rescaling the composite image
depending on the size of the concerned lane. (f ) Result: Scaled Composite Reference. Swimming Championships in Limoges, France, April
2015.

(a) (b)

2m

1,5m

Figure 15: Localization of the region of interest. (a) Difference image decomposed into blocs and thresholded. ,e rectangle represents the
region of interest centered according to the lane width, starting with the first bloc corresponding to the swimmer motion. (b) Projection of
the rectangle on the original image. Swimming Championships in Limoges, France, April 2015.

Table 2: Region of interest localization percentage using method a
contrario with and without prediction. Crawl-Swimming Cham-
pionships in Limoges, France, April 2015.

Sequences Swimmers
Localization percentage

A contrario without
prediction

A contrario
with prediction

Crawl 1
Swimmer 1 95.25 100
Swimmer 2 97 100
Swimmer 3 95.75 99.5

Crawl 2 Swimmer 1 94.5 99.75
Swimmer 2 96 100
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have only applied the NL-JTC method for detection. ,is is
explained by the visibility of the swimmer’s head in this
period of swimming recovery after the diving phase. ,e
other cases of false detections correspond mainly to partial
and total occlusions of the swimmer’s head. Moreover, for
each of the five tested sequences, we choose the best 3
detections according to their PCE values, as shown in
Figure 16. In this figure, we presented the top 10 detections
for the sequence crawl 1 of Table 3. Among these detections,
we choose the best 3 having, respectively, the following PCE
values: 0.92, 0.9, and 0.87. ,is enabled us to achieve an
accuracy of 100% (on the true detections) among the images
chosen for the initialization of the swimmer tracking system
of initialization detections. Note that this accuracy is ob-
tained thanks to the multitarget initialization of the tracking
process of [1] that allows to select a set of images rather than
a single one.

6. Conclusion

In this paper, we proposed two independent modules to
optimize the swimmer tracking systems proposed [1, 8, 9]:
the region of interest localization module and the automatic
detection of the swimmer’s head for initializing the swimmer
tracking system. First we analyzed the different character-
istics of the Olympic pools dedicated to high-level com-
petitions. Among these characteristics, we were mainly
interested by the pool normed dimensions which allowed us
to segment the pool and extract the different objects in the
scene: water, lanes, and swimmers. For this, we have in-
troduced the DLT calibration method to model the rela-
tionship between metric and pixel coordinates. ,is helped
us to localize the pool boundaries in the image, the lines

delimiting the lanes, and to calculate accurate measurements
within the image.

,en, we proposed a region of interest localization
approach based on frame difference and a contrario ap-
proaches. To do this, we extracted the concerned lane. After
that, we calculated the difference image between successive
frames and decomposed it to blocs to analyze them locally.
Afterwards, we detect the swimmer motion, comparing the
blocs with a noise model. ,is approach is mainly used to
restrict the region of interest and to detect the exact moment
of the appearance of the swimmer in the lane.,e conducted
tests showed good results in terms of localization percentage.
However, we noticed some errors relative to the minor
movement of the swimmer in some cases. ,is can be solved
by coupling the proposed approach with an adapted pre-
diction technique which enhanced significantly the results.

In order to track the swimmer, we need to select au-
tomatically an initial reference of his head. For this, we have
proposed the Scaled Composite JTC approach which is
based on the NL-JTC technique. ,e basic idea consists of
creating a database of swimmers’ heads classified according
to different situations. ,en, three images are selected,
depending on the current situation, to generate a standard
reference using the composite filter. ,is composite refer-
ence is scaled according to the size of the concerned lane.
,en, the NL-JTC technique is applied on an input plane
containing the Composite Scaled Reference and the localized
region of interest. Finally, we choose, depending on the
values of PCE, three reference images that will be used to
initialize the tracking system proposed in our previous work
which is based on a fusion of contour and color description
of the target to be tracked [1, 8, 9]. ,e performed tests
showed the efficiency of the proposed initialization

Table 3: Evaluation of the Scaled Composite JTC for the initialization of the reference. Crawl-Swimming Championships in Limoges,
France, April 2015.

Sequences Swimmers Detection percentage

Crawl 1
Swimmer 1 83.33
Swimmer 2 86.44
Swimmer 3 85.71

Crawl 2 Swimmer 1 78.31
Swimmer 2 82.14

PCE = 0.92 PCE = 0.9

PCE = 0.66

PCE = 0.87 PCE = 0.73 PCE = 0.7

PCE = 0.62 PCE = 0.61 PCE = 0.53 PCE = 0.5

Figure 16: Validation of the initial references according to a PCE-based decision criterion. Detected targets are classified by decreasing
order of PCE values. ,e three validated targets are those with the highest PCE. Swimming Championships in Limoges, France, April 2015.
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approach, where we reached a percentage of 82.2% of de-
tections on 100 frames of 5 crawl video sequence and 100%
of succeeded initialization on the true detections.

Data Availability

,e dataset used to support the findings of this study are
available from the corresponding author upon request.
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