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The environment and food safety are major areas of concern influencing the development of biodegradable packaging for partial
replacement of petrochemical-based polymers. This review is aimed at updating the recent advances in biodegradable packaging
material and the role of virtual technology and nanotechnology in the tomato supply chain. Some of the common biodegradable
materials are gelatin, starch, chitosan, cellulose, and polylactic acid. The tensile strength, tear resistance, permeability,
degradability, and solubility are some of the properties defining the selection and utilization of food packaging materials.
Biodegradable films can be degraded in soil by microbial enzymatic actions and bioassimilation. Nanoparticles are incorporated
into blended films to improve the performance of packaging materials. The prospects of the fourth industrial revolution can be
realized with the use of virtual platforms such as sensor systems in authentification and traceability of food and packaging
products. There is a research gap on the development of a hybrid sensor system unit that can integrate sampling headspace
(SHS), detection unit, and data processing of big data for heterogeneous tomato-derived volatiles. Principal component analysis
(PCA), linear discriminant analysis (LDA), and artificial neutral network (ANN) are some of the common mathematical models

for data interpretation of sensor systems.

1. Introduction

The global population is about 7.8 billion in 2020 and is esti-
mated to reach 10 billion in 2050 [1]. The increasing popula-
tion, urbanization, variability in diet, and climate change put
pressure on food security including postharvest of fresh pro-
duce. The major loss of fresh produce occurs at the posthar-
vest stage [2]. The fresh produce including tomato fruit is
perishable due to high moisture content [2]. Generally, post-
harvest losses (30-50%) of the fresh produce are associated
with handling, storage, and packaging. The bulk nature of
produce along the supply chain makes it difficult to monitor
and control losses. Nevertheless, digital technologies includ-
ing smart packaging innovations are considered suitable for
tracking and controlling postharvest losses. The application
of these smart logistic technologies finds use in product

traceability systems on information that relates the product
to its genetic factors and environmental conditions [3]. Fur-
thermore, IFPRI [3] stressed that digitalization focused on
the ecosystem including agricultural production, processing,
transportation, and market system can enhance the food
value chain and improve competitiveness. This necessitated
the concept of digitalization of logistic systems including
food packaging and market services. However, the use of syn-
thetic plastic materials in food packaging can have an adverse
effect on climate and the environment [4]. Hence, eco-
friendly packaging materials are increasingly becoming the
alternative. Muller et al. [4] reported that polylactic acid
and starch are potential materials to replace synthetic poly-
mer films, i.e., plastics food packaging materials. Moreover,
Jeevahan et al. [5] reported that edible biofilms are compost-
able and can be manufactured from the polysaccharides,
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proteins, and lipids. The production of edible biofilms is a
recent approach to generate biodegradable food packaging
safe to humans and the environment. In addition, Guerrini
et al. [6] reported that biodegradable films have physico-
chemical and mechanical properties suitable to replace com-
mon polymerplastic applications. However, the food
industries are facing a range of challenges from climate
change, increasing consumer safety demands, and subse-
quent issues relating to government policies and legislative
requirements [7]. The environmental concerns associated
with the nonbiodegradable nature of plastic biopolymers
are impacting negatively on the ecosystem. In view of this,
there is an increasing demand to replace synthetic plastic
materials with biodegradable materials. This review is aimed
at gathering recent advances in biodegradable packaging film
materials and their performance on the quality of tomato.
The role of virtual technology and nanotechnology in the
tomato supply chain is highlighted in response to fourth
industrial revolution.

2. Importance of Food Packaging

The economic value of packaging is reflected in the packag-
ing conversion industry, packaging supply chain, and in the
retail industry. In 2015, the packaging industry recorded rev-
enues of $839 billion worldwide [8] and was projected to
grow by 3.5% by 2020. Western Europe and Americas are
the largest consumers of packaging. The packaging industry
contributes ~2% to gross domestic product (GDP) of the
South African economy. The global demand for bio-based
food packaging material is forecasted to reach ~1 million
tons per year by 2020 [9]. The packaging material is consid-
ered as the major component in the sustainable development
goal number 12 focused on themes (climate action, ocean
action, plastic pollution in the ocean, food loss and waste,
and sustainable transport) that relate to sustainable con-
sumption and production. Food packaging provides protec-
tion and preservation of food by making a physical barrier
against contamination due to foreign matter and
environmental-related factors. This ultimately contributes
to extended shelf life of food product. Other functions
include mechanical and physical strength, convenience, and
communication through product labeling [10, 11]. The
actors in the value chain specific to food packaging include
food processors, farmers, retailers, and researchers [12].
Postharvest strategy of minimizing loss through the packag-
ing of tomato along the supply chain results in extended shelf
life, improved income, livelihood, and food security [13].
Recent development in novel food packaging is driven by
consumer’s demand for convenience, ready to eat food, shelf
stability, and maintenance of food quality [14]. The plastic
polymers have been utilized for food packaging material pro-
duction due to their availability and simplicity of manufactur-
ing [15]. The petroleum polymers are hardly degradable and
thus causing defects in the ecosystem [15]. Moreover, O’Brine
and Thompson [16] reported that polymer plastic materials
may take over 100 years to decompose. Similarly, Webb
et al. [17] reported that polymer plastics that are landfilled
could take longer than 20 years with no change in the plastic
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property. Hence, there are developments to replace
petroleum-derived plastic with biodegradable materials. The
innovation and development of food packaging from renew-
able, compostable, and biodegradable to active and intelligent
packaging were reported [18, 19]. In addition, barrier proper-
ties, compatibility materials, and shelf life extension properties
of the innovative packaging determine selection and utiliza-
tion [18, 19]. The environmental safety concerns are limiting
the use of plastic films for packaging in the food industries.
Consequently, biopolymer films are receiving attention due
to their biodegradable properties.

3. Overview of Biodegradable Packaging

The utilization of biodegradable materials on the markets of
North America, Europe, and Asia has grown in the range of
15-20% CAGR from 2012 to 2017 [20] but the market data
for Africa is not well established. Atarés and Chiralt [21]
reported the application of essential oil in biodegradable food
packaging films in Spain for the production of bio-based
packages with potential health benefits (antioxidants and
antimicrobial properties). The lipid nature of essential oils
can decrease water vapor permeability in hydrophilic mate-
rials and can also improve the structural, mechanical, and
optical properties of packaging films. The biodegradable
packaging films developed and tested on tomato fruit in Fin-
land for preservation objectives resulted in extended shelf life
[22]. In Malaysia, Ali et al. [23] demonstrated the use of gum
arabic as edible coating film for extending the shelf life and
postharvest quality of tomato. Starch edible coatings derived
from Colombian native potatoes were applied on Andean
blueberry (a wild fruit native to South America) resulting in
reduced respiration rate of ~27% [24]. However, previous
works recommended further research focused on the
improvement of the physical strength of biodegradable films
comparable to that of petroleum polyfilms [22]. Sanaa and
Medimagh [25] reported biomass materials that can be used
to produce biodegradable and biopolymer in Africa: the veg-
etable cellulose extracts from cotton fibers in South Africa;
Luffa Cylindrica in Nigeria; Washingtonian filifera in Algeria;
Napier grass in Botswana; Hibiscus sabdariffa in Kenya, Ethi-
opia, and Uganda. The biopolymers such as chitosan, cellu-
lose, and pectin were given attention in the manufacturing
sector of food packaging and the research community [25].
Moreover, in Ethiopia, the film produced from pectin and
chitosan extract and tested on tomato resulted in extended
shelf life (15-17 days) compared to the control (10 days). Fur-
thermore, in Nigeria, reports show that there is an intensive
production of biodegradable plastic film from blending cas-
sava starch and biodegradable polymer materials. Posthar-
vest loss of fresh tomato on the market was reported to be
9.50, 9.80, and 10.04% in Eastern, central, and southern Afri-
can countries of sub-Saharan countries, respectively [13],
with Kenya, South Africa, and Nigeria recording 10.10,
10.20, and 13.40% postharvest losses, respectively [13]. Nev-
ertheless, reduced postharvest losses among commercial or
emerging farmers of tomato were achieved with the use of
recyclable cardboard boxes of various sizes, bulk bins, plastic
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crates, and wooden crates for packaging and transportation
in the South African supply chain [26].

Food packaging films can be produced either by lamina-
tion, casting, coextrusion, or coating processes from the raw
plastic polymer, biopolymer, and biodegradable materials
[10] (Table 1). The food packaging film is extracted from bio-
polymers, including gelatin, starch, cellulose, and bio-derived
monomers such as polylactic acid [27]. The bacteria-derived
compounds include cellulose, xanthan, curlan, and pullulan
[19]. Chitosan is a natural polymer, nontoxic, edible, and bio-
degradable derived by deacetylation of chitin which is the
second most abundant biopolymer in nature after cellulose
[28]. Supplementation of different kinds of additives is rec-
ommended to improve the properties of the biodegradable
film [27]. The edible biodegradable films can be stabilized
by material components of hydrophilic nature such as pro-
teins or polysaccharides. The production of films or coatings
involves casting film-forming aqueous dispersions and sub-
sequent drying. The essential oils (additives) are added to
film during dispersion phase, and the mixture is achieved
by homogenization or emulsification processes [21]. Thus,
the dried polymer can be a structural matrix of the film and
lipid droplets [21] including hydrocolloids such as edible fats,
fatty acids, proteins, and polysaccharides [29]. Ivankovic
et al. [19] reviewed that there are three generation stages of
biodegradable polymers from which biodegradable food
packaging materials can be manufactured. Accordingly, the
first generation is low-density polyethylene (LDPE) film con-
sisting of 5-15% starch filters and autoxidative additives. The
second-generation films are composed of 40-70% pregelati-
nized starch, low-density polyethylene (LDPE), and hydro-
philic copolymer additives. The third-generation materials
are produced from biomaterials and can be classified into
(a) polymer extracted from biomass such as starch, chitin,
chitosan, plant proteins, and soybeans; (b) polymers synthe-
sized from bio-derived monomers including polylactate and
other polymers; and (c) biomonomers and polymers pro-
duced from natural or genetically modified organisms. The
nanocomposite materials were identified to possess superior
characteristics such as high performance, lightweight, and
environmentally friendly compared to plastic food packag-
ing materials [30]. The low cost, renewability, and availabil-
ity of biopolymer are some of the desirable considerations
applicable for thermoplastic starch-based food packaging
materials [31].

The fruits coated with gum arabic soybean gum, jojoba
wax, and glycerol resulted in delayed in changes of weight
loss, firmness, and titratable acidity including delayed soften-
ing of tomato [23, 32]. The tomato fruits coated with 10-15%
gum arabic film yielded less weight loss during storage period
than the control sample [23]. This suggests that gum arabic
film exhibited effective semipermeable barrier against O,,
CO,, moisture, and solute movement, which probably
decreased respiration, water loss, and oxidation reaction
rates. de Jesus Salas-Méndez et al. [33] reported that the mix-
ture of edible coatings (whey protein, glycerol, and candelilla
wax) and Fluorensia cernua extract coated on tomato inhib-
ited ~40% growth of pathogenic fungi. The mixture of
0.75% chitosan and 2 mM cinnamic acid coated on tomatoes

yielded high firmness after 12 days of storage [34]. The film
made from chitosan colloids and grapefruit seed extract
(0.5-1%) inactivated Salmonella on cherry tomatoes during
storage [35].

3.1. Preservation Mechanism of Edible Coatings. Quality dete-
rioration of fruits is in function of biochemical processes in
the cell structure, cell wall composition, and intracellular
materials. Cellulase and polygalacturonase are two major cell
wall hydrolase enzymes and were shown to correlate with
softening and ripening of fruits [36]. Edible coating of fruits
can delay ripening by lowering permeability of O, resulting
in increased intracellular CO,. High levels of CO, can limit
the activities of cell wall hydrolase enzymes and allow reten-
tion of the firmness during storage [23]. This effect of a low-
oxygen environment is readily used for optimizing storage
conditions and transport and for prolonging the shelf life of
several fruit commodities [37]. Decreasing respiration rates
of coated tomatoes could be responsible for delayed ripening
and can result in reduced changes in physiological weight
loss, color, titratable acidity, and retention of firmness [23].
The antimicrobial properties of edible coatings [38] can pro-
tect the fruit against firmness-degradative agents such insects
and mites [39] which are carriers of fungal and bacterial
spores [40] and can cause spoilage and softening of ripe
tomato fruits [41]. The biodegradable packaging materials
applied on fruits including tomato are decomposable and
can be degraded by microorganisms in the soil [6, 42, 43].

3.2. Biodegradation of Biodegradable Films. Soil microorgan-
isms can degrade biodegradable materials into natural com-
pounds such as water, carbon dioxide, and methane
including monomers such as amine, alcohol, and carboxylate
acid (Table 2). Biodegradability is in function of chemical
composition, nature of bonding, and water availability. The
appearance of IR spectra peaks for carbonyl signals is indica-
tive of enzymatic degradation of starch into maltose (disac-
charide) and glucose (monosaccharide) [44]. The microbial
action is enzymatic nature. The microbial cells exhibit sapro-
phytic growth utilizing plant-derived metabolites as sub-
strates [45]. The microorganisms secrete an array of
amylases and cellulases responsible for enzymatic hydrolytic
and oxidative breakage of glycosidic bonds in starch and cel-
lulose. The extracellular enzymes such as esterase, cutinase,
and lipase hydrolyze labile aliphatic ester linkages of plasti-
cizing films [46]. These enzymatic processes generate metab-
olites that are absorbed by microorganisms for energy
requirements. This is evident in the decrease and disappear-
ance of IR spectra carbonyl signals with time. Tai et al. [44]
showed significant peaks of carbonyls in 30 days and
decrease after day 45, which suggested starch/cellulose break-
down and metabolite absorption, respectively. Enzymatic
depolymerization of chitosan showed a sharp increase of
sugars with time during 15h and slower in 15-24h [47].
The slower decrease of metabolites is indicative of the sapro-
phytic phase. UV light irradiation with wavelength < 350 nm
can cause chain scission of polymer molecules and can also
accelerate enzymatic activity. Combined treatment of UV
irradiation and cellulase enzyme degraded 60% of cellulose
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TaBLE 1: Biodegradable packaging films and applications.
Biodegradable film Substrate Production Suitability for application Reference
Sugars or impure
Polylactic acid carbon substrates Two-stage degradation processes: Compositing and lamination Nilsuwan
(PLA) (starch, molasses, or (1) hydrolytic and (2) enzymatic P & et al. [54]
whey)
Corn starch, . L. .
Corn blueberries Starch extraction and production of pH indicator (rlc.h ln.anthocyamn, Luchese et al.
- changes color in different pH
starch/blueberry (Vaccinium blueberry powder .. [55]
conditions)
corymbosum L.)
Mixture of PLA, Mania et al.

[56]; Morales
and Calle [57]

Sun et al. [58]

De Queiroz
Antonino
et al. [59]

Bangyekan
et al. [60]

Yar et al. [61]

Bi et al. [62]

Koc et al. [63]

Tinoco et al.

Starch, Bacillus
subtilis natto CCT
7712

Cassava
starch/evan film

Production of microbial levan

[64]
Improving hydrophilicity Lei et al. [65]
Increases number of carbonyl and La Fuente
carboxyl groups et al. [66]
Edible film, coating, antioxidant, anti-
inflammatory, anticarcinogenic, anti- Mantovan
’ ) et al. [67]

AIDS, and hyperglycaemic inhibitor

DD: degree of deacetylation.

acetate compared to UV treatment (23%) in 7 weeks [48].
Biodegradation process is commonly characterized using
thermalgravimetric analysis (TGA) reflected in three-stage
degradation profiles; the first degradation corresponds to loss
of water and volatiles, the second stage relates to the forma-
tion of starch subunits of lower molecular weight, and the
third stage is associated with breakdown of starch compo-
nents [46, 49]. The degradation of biodegradation film is in
function of microbial activity in soil and water, hydrophilic
nature of plasticizer, surface area of the sample, crystallinity,
molecular weight of the sample, and temperature. The addi-
tion of plasticizers increases the number of polar groups and
water permeability in the samples and accelerates the interac-
tion of polar groups with water [50]. Plasticizers of biosurfac-
tant nature possess excellent surface/interface activity and
biocompatibility [51] and enhanced soil hydrocarbon bio-

degradation by lowering interfacial tension between soil
and water [52]. Increased yields of metabolites such as vola-
tile fatty acids were shown at optimal pH 10 under controlled
fermentation process [51]. Higher pH levels can inhibit aci-
dophilic bacteria and subsequently limiting the production
of metabolites. The pulsed electric fields treated zein-chito-
san-poly(vinyl alcohol) film had enhanced stability of films
against electrolyte and enzyme degradation [53].

3.3. Properties of Biodegradable Films

3.3.1. Structural Properties. The chemical structures and
composition of packaging materials can be examined using
Fourier transform infrared (FT-IR) spectroscopy and atomic
force microscopy (AFM) [72]. Diffraction method using X-
ray diffraction has been applied in the assessment and
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TaBLE 2: Degradation methods of biodegradable material films.
Film Biodegradable medium Biodegradability Reference
60% disintegration rate (CO, produced) in ~10 days; three-
o . stage TGAs: first degradation ~61-63°C [68], second Tampau
Starch Aerobic biodegradation degradation ~257°C, and maximum disintegration T, et al. [46]
~280-290°C
Degradation time 6-12 days exhibited changes in tonality
Cassava starch/verba mate Decomposition: vegetal and breakdowns materials. Three-stage TGAs: first Jaramillo
b compost degradation ~100-150°C [68], second degradation ~180- et al. [49]
60°C, and maximum disintegration T, ~250-350°C
Acid and alkaline Swelling capacity: ~1.6 in acid and <1.9-2.2 in alkaline ~ Jaramillo
Cassava starch/yerba mate stability treatment condition et al. [49]
Zein-chitosan-poly(vinyl alcohol) In vitro degradation Amine content: ~0.03 mM Scrine Eq in 30 min; amino acids  Giteru
polytviny (enzymatic susceptibility) increase between 60 and 260 min (0.08-0.04 mM Scrine Eq) et al. [53]
Zein-chitosan-poly(vinyl In vitro deeradation Amine content: ~0.02 mM Scrine Eq in 30 min; amino acids Giter
alcohol)—PEF treated (between 60— (enz rrlla t(;c :ii; iibczli ty) increase between 60 and 260 min (0.02-0.04 mM Scrine Eq). et al e[ 5113]
70 kJ/kg and 600-620 kJ/kg) ¥ P Y Higher energy yielded higher amino acids '
Combination of UV Kikkawa
Poly(L-lactide) irradiation and Erosion depth deepens with increasing degradation time et al. [69]
enzymatic degradation ’
Increased mass loss as a function of immersion time () at Scaffaro
PLA Hydrolytic degradation pH = 10, complete degradation in 288 h; other pH =4 and 7
. . et al. [70]
yielded no changes in mass loss
PLA/CRV Hydrolytic degradation ~ Faster kinetics of hydrolytic reactions compared to PLA eic:lffz[i;g]
Poly(vinyl alcohol)/chitosan Buried in (tihe soil for 30 60% weight loss at 30 days Yuetal.
ays (71]
Poly(vinyl alcohol)/chitosan SiO, Buried in (tf;;ssoﬂ for 30 ~40% weight loss at 30 days YT;I]aL

TGA: thermalgravimetric analysis; CRV: carvacrol (CRV) essential oil (2-methyl-5-(1-methylethyl)-phenol); PEF: pulsed electric fields.

quantification of amorphous and crystalline structures in
starch. The crystallinity is strongly associated with amylopec-
tin molecule. Amylose is largely found in the amorphous
lamellae, and amylopectin forms crystalline lamellae of the
starch granule [73]. Crystallinity influences dispersion char-
acteristics such as swelling of starch in plasticizers [73]. The
IR spectrum is commonly characterized by the interaction
of chemical bonding with IR radiations. IR spectrum for
starch films exhibited broad band due to vibrational stretch-
ing of hydroxyl (-OH) groups linked inter- and intrachain.
The narrow bands were associated with stretching of C-H
bonds while the peaks related to carbonyl (C=0) groups
attached to the ring of glucose [74]. The surface microscopic
analyses of film structure were examined using scanning elec-
tron microscopy and transmission electron microscopy [75,
76]. Starch and PVA films exhibited homogenous and
smooth surfaces. The cross-section of the films was the char-
acteristic of heterogeneous and irregular (bubble like) struc-
tures which varied with degree of crystallinity. The film
blends (PVA/starch) are characteristic of microstructure
phase separation due to inadequate miscibility, differences
in crystallinity, and extrusion method. Compatibilizer com-
pounds such as formaldehyde and poly(ethylene glycol) are
blended with films to prevent phase separation blended films
[77]. Factors influencing phase separation include propor-
tional of starch and phosphate groups in the amylopectin

chain. Potato starch film did not exhibit phase separation
owing to the presence of higher content of phosphate groups
than other native starches. The thickness of the films deter-
mined using SEM was reported, and film blends showed
higher thickness than pure starch. The differences in thick-
ness were due to variation in molecular weight. Higher
molecular weight yielded higher thickness [78]. Biodegrad-
able edible packaging material (coating or film) has a recom-
mended thickness of less than 254 ym [9].

3.3.2. Permeability Properties. The polymer matrix must
exhibit effective permeability of gases for increased shelf life
of food products [29]. The shelf life and freshness of vegeta-
bles and fruits including tomato are directly related to the
transfer of water between the produce and the surrounding
atmosphere. Thus, the primary role of packaging is to reduce
the transfer of water. The poor moisture barriers in edible
films were due to the hydrophilic nature of polysaccharides
[29]. Lipids are hydrophobic in nature, and their inclusion
in chitosan and polysaccharide films contributes to improved
water vapor barrier properties. The entanglement of hydro-
gen bonding between NH, group of chitosan and OH group
of plasticizers (e.g., CAP and PVA) increased hydrophobicity
of blended films (CAP/chitosan and PV A/chitosan) resulting
in six reductions in water transfer rate [79]. Furthermore, Yu
et al. [79] demonstrated that the addition of silica



nanoparticles into biodegradable films decreased permeabil-
ity of moisture. Depending on the respiratory requirements
of the product and polar molecular of packaging material
ingredients, oxygen permeability properties can be altered
by incorporating PVC, chitosan, and silica. Oxygen perme-
ability values were reduced by ~26% when silica was incorpo-
rated into PVA/chitosan biodegradable films [79]. The
equilibrium-modified atmosphere packaging (EMAP) finds
intensive application in the packaging of fresh fruit and veg-
etable including tomato. The EMA packaging optimizes gas
transport properties according to the respiratory require-
ments of fresh produce. The equilibrium atmosphere is
attained when the exchange of gases through the film is in
steady state with the production or consumption of gases
due to the respiration and transpiration processes of the fresh
produce [72]. The gas transport properties can be adjusted by
perforation through macroperforation and microperforation
using mechanical and laser procedures, respectively [72].
Among the alternative biopolymers, starch and polylactic
acid (PLA) are the major materials of interest in the research
community.

3.3.3. Mechanical Properties. Zhou et al. [80] developed bio-
degradable polylactic films using pea starch and polylactic
acid for cherry tomato packaging film. However, biodegrad-
able polylactic film exhibits poor mechanical properties com-
pared to petroleum polylactic films [80, 81]. The biopolymers
such as starch are associated with brittle films. The incorpo-
rated hydrophilic plasticizers such as polyols (glycerol, sorbi-
tol, and polyethylene glycol) into film-forming dispersions
decreased intermolecular forces and increased mobility of
polymers resulting in increased flexibility and extensibility
[82]. The mechanical properties (compression test, tensile
strength, and strain) including film-forming capacity of the
film are associated with polymer crystallinity and amylose
content [82], molecular weight properties, and their distribu-
tion and concentration of additives. Plasticizing agents such
as polyvinyl alcohol (PVA) and cellulose acetate phthalate
(CAP) can change the mechanical behavior owing to the for-
mation of inter- and intramolecular hydrogen bonds. The
blend of starch and PV A yielded biodegradable film with bet-
ter mechanical performance [83]. The film blend of chitosan-
CAP and nanoZnO recorded higher tensile strength than
pure chitosan film [84]. The increase in tensile strength in
film blends is indicative of better interaction among the com-
ponents of the film. The tensile strengths of the films
increased with increasing diblock copolymer [85]. Inclusion
of plasticizers and nanoparticles into starch films increased
and decreased elongation at break, respectively (Table 3).
Nanofillers provide reinforcement and increase interfacial
bonding interaction in the film matrix. Lower molecular
weight yielded higher tensile strength and elongation at break
of starch films. The decrease in brittleness can be achieved by
blending PLA with plasticizers such as polycaprolactone
(PCL) [86]. However, the PLA-PCL blends exhibited poor
gas barrier properties but can be improved using suitable
fillers such as highly dispersed nanoparticles [86]. There is
a need for increased research objectives to improve the
mechanical properties of the biodegradable polylactic film
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using nanoparticles in response to the respiratory require-
ments of tomato fruits. Rhim et al. [87] reported that draw-
backs in biodegradable polylactic film limit their full
utilization in the food industry. Some of the limitations are
thermal instability, low heat sealability, brittleness, low-
melting length, and high water vapor and oxygen permeabil-
ity [87]. Moreover, the hydrophilic nature of some biode-
gradable biopolymers was characterized with low water
vapor barrier and consequently exhibiting weak mechanical
properties [88, 89].

3.3.4. Solubility Properties. The solubility values of biode-
gradable films are in function of hydrophilic nature of poly-
mers. The solubility of starch film (0.208 g 4. oived/S drv film)
and PVA (0.19 8 gissotved/8 dry fim) decreased in the film blend
of PVA/starch (0.11 g gissolved/8 dary fim) [90]. This suggested a
decrease in the hydrophilicity of the film matrix. The entan-
glement of hydrogen and hydroxyl bonding between poly-
mers can lead to structural reorientation, thus exposing the
hydrophobic nature of the film matrix and subsequently,
decreasing water affinity. Nevertheless, Pelld et al. [91]
reported higher water affinity of films in blended potato
starch/PVA than those of pure films (Table 3). This was
ascribed to an increase in -OH groups. Sajjan et al. [92]
reported that lower solubility values are indicative of films
with good stability in aqueous medium and are recom-
mended for packaging applications especially for storage.

3.3.5. Optical Properties. The color parameters (L*, a*, and b*
) and color difference (AE) are commonly measured using
CIE system [93] while transmission of light and transparency
[94] can be measured using UV Vis Spectrophotometer [93].
Prolonged exposure to UV and visible radiations can discolor
and deterjorate the packaged food products. In view of this,
transparency and UV-screening ability of packaging films
are vital parameters in quality control. Generally, synthetic
plastic films (low-density polyethylene and polypropylene)
were reported to have lower screening ability against UV
radiation [84]. The blended films loaded with nanoparticles
exhibited higher absorption peaks (wavelength) than pure
films. The higher surface area of nanoparticles increased the
UV absorption capacity of the polymer matrix [75]. The
nanocomposites (ZnO and nanoclay) increased the opacity
of starch films, suggesting that nanoparticles are UV blockers
and thus minimize the penetration of light.

4. Advances in Packaging Technology

The packaging technologies for food applications include
active, intelligent, smart, modified packaging, controlled
packaging, and biodegradable coatings.

4.1. Active Packaging. Inclusion of antimicrobial components
is an aspect of innovative food packaging technologies such as
active and intelligent packaging [96-101]. Active packaging is
material components with the capacity to protect the pack-
aged food from microbial proliferation [102] and provide
information about the quality during transport and storage.
The petroleum-based polymeric materials are commonly
applied in active packaging [103]. However, environmental
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TaBLE 3: Properties of pure and blended biodegradable packaging films.

Tensile

Thickness

1N 0,
Samples OTR WVTR (g/day/L) Solubility (MPa) EB (%) (um) Reference
Potato starch 0.28 5 100 182 Gomez‘%lgfpa etal
PVOH 025 35 650 109 Gomez"?égfpa etal
Potato starch: PVOH 0.24-0.35 6-15 110- 133-177 Gomez-Aldapa et al.
450 (83]
Polylactic acid (PLA) 200 66 45 2.5 100 Ivonkovic et al. [95]
PLA 38 16
PLA-CRV 24 29 57
Chitosan Mw = 300 kDa 13x 107 gm-'s"'Pa’! 20 20 71 Liu et al. [78]
Chitosan Mw = 150 kDa 14x 10 gm-'s'Pa’* 23 24 70 Liu et al. [78]
Chitosan Mw = 50 kDa 16x 107" gm-'s'Pa’! 25 28 69 Liu et al. (78]
_ 11 o 1
Chitosan-kojic film 3-9x }ga’l gm-'s 25.55 29465  90-124 Liu et al. [78]
Chitosan film 6.6 5 50 Khambhan et al. [85]
Chitosan-nano* 5-6 7-12 15-25 Khamhan et al. [85]
Chitosan 82 52 Suyatma et al. [28]
Chitosan-PLA 52-72 3.6-4.9 Suyatma et al. [28]
Chitosan 1850 438 8 ~13 Indumathi et al. [84]
Chitosan/CAP 1832 390 ~9 29 Indumathi et al. [84]
Chitosan/CAP-ZnO 11‘;92(31' 120-160 9-11 15-26 Indumathi et al. [84]

*Methoxy poly(ethylene glycol)-b-poly(e-caprolactone) diblock copolymer, cellulose acetate phthalate (CAP); O, TR: oxygen transfer rate at 0% RH; WVTR:
water vapor transfer rate at 100%; CRV: carvacrol (CRV) essential oil (2-methyl-5-(1-methylethyl)-phenol).

and safety concerns have driven research and development in
packaging towards bioactive materials [103]. Active materials
are intentionally added to packaging material or packaging
headspace to prolong shelf life through a controlled release
of antimicrobial compounds [104]. Active food packaging
was developed to respond to the food market demand for
improved quality of fresh produce and maintaining safety
[96]. Tomato fruits preserved using active packaging resulted
in extended shelf life [96], improved safety, and maintained
sensory properties [97, 98]. Essential oils with antimicrobial
and antioxidants activity are incorporated into food packaging
films to produce active packaging materials and thus contrib-
uting to the preservation of the food [105]. Essential oils
inhibit the growth of microorganisms [105]. Moreover, Azmai
et al. [106] reported that coating with chitosan and cinnamic
acid improved the quality attributes such as firmness and total
soluble solids, reduced physiological weight loss of tomato,
and prolonged the shelf life. However, global migration of
compounds from packaging material into food is a food safety
concern and can cause contamination [107]. Bradley et al.
[108] postulated that intelligent food packaging can cause tox-
icological risk, environmental contamination, and problems
with recovery and recycling of the packaging materials. The
package of active biodegradable corrugated cardboard tray
tested on cherry tomato was reported to extend the shelf life
of tomato for a month [96].

4.2. Active Scavenging and Adsorbents. The liquid exudate
from fresh tomatoes influences sensorial and microbial qual-
ity [109]. The adsorbent pads are designed to take up the exu-
date and ultimately preserving integrity and quality of
packaged products [110]. The active scavenging systems
remove gases such as CO,, O,, and ethylene from the package
or container. The presence of oxygen in package accelerates
oxidation or spoilage. The decreased reactive oxygen species
was associated with delayed overripening and decreased sus-
ceptibility to Botrytis cinerea [111]. The role of scavenging
was achieved using flavonoids produced from different
tomato varieties [111]. Ethylene scavengers (KMnO,, acti-
vated carbon, clay, and zeolites) have been applied on fruits
and vegetables including tomatoes. The KMnO, transforms
ethylene into acetate and ethanol. Cherry tomato treated with
0.1% (v/v) ethanol during storage resulted in elevated ascor-
bic acid, sucrose, and fructose contents, inhibited ripening,
and improved sensorial quality [112]. The KMnO,-based
technology has been reported to have a limited commercial
application due to uncertainties on its effectiveness as post-
harvest tool and also concerns relating to health, environ-
mental, and safety [113]. However, KMnO,-promoted nano
zeolite was reported to show high ethylene removal efficiency
[114]. The condensation due to transpiring tomatoes can
lead to accumulation of moisture. The removal of moisture
can be achieved using active element (silica gel, polyacrylate



salts, zeolites, and microporous clays) in the packaging sys-
tem [115]. A sodium polyacrylate-cotton mixture applied as
moisture adsorbent in the form of sachets resulted in non-
condensation of water in active packaging system of tomato
fruits [115]. The preservative releasers based on the blend
of itaconic acid and chitosan enriched with tomato bioactive
extract yielded significant antimicrobial effects on packaging
films [116]. Other preservative releasers applied in packaging
system for tomato include silver zeolite, organic acids, spice/-
herb extract, vitamins C and E, sorbates, chlorine dioxide/-
sulfur dioxide, and benzoates and propionates [117].

4.3. Intelligent and Smart Packaging for Tomatoes. Intelligent
packaging is a packaging that comprises of external or inter-
nal indicators that give information about the history on
safety and quality of the product [104]. Vanderroost et al.
[118] reviewed that smart or intelligent packaging technolo-
gies offer the opportunity to record and detect changes in the
packaged product and its environment [118]. Intelligent
packaging tracks the history of the food along the supply
chain [97]. For instance, Bartkowiak et al. [119] reported that
the lactic acid-based time-temperature indicators [102] pro-
vided history on quality and time-temperature of lactic
acid-based food. Hence, this application can find use in
tomato and tomato-derived products that are acidic in
nature. However, a few of such technologies were commer-
cialized, partly due to higher cost of investment. Lee et al.
[97] suggested low-cost intelligent packaging material pro-
duction for food industries.

5. The Fourth Industrial Revolution in
Packaging and Tomato Supply Chain

The major technological drivers for the fourth industrial
framework (4IR) are physical, digital, and biological technol-
ogies [120]. The appropriate technology driver for packaging
and tomato supply chain is digital technology which includes
fields such as artificial intelligence and robotics, linked sen-
sors (Internet of Things), virtual and augmented realities,
additive manufacturing (3D bioprinting organic tissues),
advanced materials, and nanomaterials [121]. In agricultural
production, the digital technology finds application in areas
of smart sensing and monitoring, smart control, smart anal-
ysis, and planning [122]. The notable digital technology in
packaging and tomato supply chain is the use of sensors
and electronic nose for classification and discrimination of
germplasm of food crops, quality control, and verification
and authentification of geographical origin. Traditionally,
wet extraction and analysis is a common laboratory approach
of obtaining key trait information about tomato germplasm
in different agroecological zones; however, this approach
involves the use of chemicals which are detrimental to the
environment and human safety. Levin [121] outlined meth-
odological approach required to achieve smart sensing digital
systems in the quality analysis of food crops: (i) sample han-
dling systems, (ii) detection systems, and (iii) data processing
systems (Table 4).
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5.1. Sample Handling System. The conventional isolation
techniques for volatile compounds such as steam distillation
and solvent extraction can cause modification to quantity
and quality of flavor profiles in samples [123]. In addition,
these techniques are destructive and time-consuming. The
rapid techniques include the purge and trap headspace sam-
pling method [123, 124]. The headspace can be in static or
dynamic mode. This method involves trapping and concen-
trating volatile compounds on a solid support which is then
heated to release volatiles into gas chromatography (GC) or
GC/mass spectrometer (MS) systems containing sensing ele-
ments. The purge and trap and dynamic headspace sampling
were used to extract the flavor compounds from tomato
fruits [125, 126]. The static headspace sampling methods in
tomatoes [127] extracted a true reflection of flavor profile
but yielded low amounts of compounds, suggesting loss of
volatiles during sample handling and may result in undetec-
tion. Such shortcomings were eliminated with the use of cold
trapping static headspace. This cryofocusing technique
allows samples to be concentrated without heating. The
solid-phase microextraction (SPME) is a user-friendly pre-
concentration method. In this technique, volatile compo-
nents interact and react with fiber-coated probe inserted
into the headspace of a sample and then transferred to a
GC injection port where the volatiles are desorbed. The
SPME has been applied in the analysis and discrimination
of volatiles in tomato landraces [128]. The stir bar sorptive
extraction is another sampling technique in which a mag-
netic bar coated with polymers is suspended in the head-
space. This technique is similar to inside-needle dynamic
extraction method, a preconcentration technique in which
absorbing polymers are fixed inside the needle, and enables
the interaction of polymers with volatiles [129]. The mecha-
nism of volatile release, different types, and factors guiding
the selection of stir bar sorptive were reported [129].

5.2. Detection System. The detection system is the application
of an array of sensors operating as devices to identify chem-
ical compounds in the headspace. Chemical sensor trans-
forms chemical quantity into an electrical signal in function
of the concentration of specific atoms, molecules, or ions in
gaseous or liquid forms [124, 130]. The sensors applied in
e-nose are capable of responding to molecules or particles
which are volatile in nature and can vary with relative molar
masses. Several sensor arrays used in the development of e-
nose have been reported. Piezoelectric sensor is a device that
utilizes acoustic waves generated by piezoelectric materials
such as quartz or LiNbO, [130] to detect changes in pressure,
acceleration, temperature, strain, or force and converting
them to an electrical charge [131]. The acoustic (piezoelec-
tric) impulse response parameters (dominant frequency,
firmness index, and elasticity coefficient) yielded a good to
strong correlation with firmness parameters (compression
force and puncture force) of tomatoes during storage time
[131]. Electrochemical sensors are devices that convert elec-
trochemical reactions between an electrode and analyte into
an output signal specifically related to the concentration or
partial pressure of the gaseous species [132]. The types of elec-
trochemical sensors include potentiometric, conductometric,



International Journal of Food Science

TaBLE 4: Application of sensors in tomato and fruits.

Data

Sample Objective Sampling Detection . Reference
processing

Tomato e . Libra nose: Peris and Escuder-
(heat wave) Discrimination between ripeness states SHS 5 QMBs PCA Gilabert [130]
P Discrimination between ripeness states SHS PEN2:10  PCA,LDA, Peris and Escuder-
(heat wave) P MOS and PLS Gilabert [130]

N . . PEN 2: 10 PCA, LDA, Peris and Escuder-
Heat wave Discriminating shelf life during two storage treatments SHS MOS and PLS Gilabert [130]
Tomato . . s GCMS- .
plants Diagnosis of aphid-infested tomato plants SPME QP2010 SE PCA Cui et al. [162]
Tomato . . PEN 2: 10 PCA, LDA,
seedling Detecting damage caused by mold and blight SHS MOS and BPNN Cheng et al. [163]
g;zgxtlato Classification of odours SHS EN: 6 MOS PCA Kasbe et al. [164]
Date pits Assessing stability of 32 sensors PTHS PEN: 32 PCA Rahman et al.

sensors [165]
Tomato Monitoring flavors SHS PEI\I/\[I S:SIO PCA, LDA Xu et al. [166]
Tomato Field phenoprlng of key t.ralts (S.SC, glucose, fructose, TA, citric ~ ATR DTGS PLSR Akpolat et al. [167]
acid, ascorbic acid, malic acid, and lycopene) surface
. . PEN2: 10 ,

Tomato Evaluating ripening state SHS MOS PCA Gomez et al. [142]

PLSR: partial least squares regression; ATR: attenuated total reflectance; DTGS: deuterated-triglycine sulfate detector; SHS: static headspace; MOS: metal oxide

Sensors.

amperometric, and voltametric but they have limited detec-
tion limits [130, 132-134]. The recent areas of research in elec-
trochemistry involve the modification of electrochemical
sensors using conductive materials such as nanoparticles to
enhance their response and detection limits [135]. The sensi-
tivity of a conductive material-based sensor is defined by
change in the electrical conductivity of the semiconducting
material when exposed to test volatiles. Nanoparticles such
as spherical Cd,SnO, and Zn,SnO, provide large surface area
for the absorption and have high electron density [136]. The
electrochemical DNA sensor was developed to perform the
direct determination in intact genomic DNA extracted from
tomato seeds [137]. This suggests that electrochemical sensor
can be used to discriminate the bionature such as organic or
inorganic germplasm in tomato cultivars. Other detection sys-
tems include and optical and thermal sensors. The optical sen-
sors which include absorbance, reflectance, luminescence, and
surface plasmon resonance techniques [138] are nondestruc-
tive methods based on multispectral three-dimensional (3D)
imaging [139]. The fertilizer application and irrigation water
were optimized based on the reflectance characteristics of the
canopy such as leaf temperature, leaf relative water content,
and leaf chlorophyll content in the field of tomato [138]. Ther-
mal sensors detect heat produced by a specific analyte in the
chemical reaction. The different types of heat sensors include
resistance temperature detectors (RTDs), thermocouples,
thermistors, infrared sensor, and semiconductor sensors.
Thermal sensing depends on analyte change of state in
response to temperature and light. The signals of optothermal
window/light-emitting diode correlated strongly with color-
related quality parameters of tomato-derived products [140].

The problem associated with e-nose is that they tend to pro-
duce limited information by targeting specific measurements.
In real time, the food ground matrix (fresh or processed) is a
complex of interacting volatile constituents. Peris and
Escuder-Gilabert [130] proposed a sensor hybrid system to
generate different sensor outputs in a single spectrum. Never-
theless, this would require the application of more complex
electronics combined with standardized sensor outputs. The
problem associated with e-nose such as masking of sample
constituents, influence of moisture, and nonlinearity of signals
were solved by integrating e-nose system with mass spec-
trometry. The MS-e-nose integrated systems are a new
technology that introduces volatile compounds into the ion-
ization chamber of MS-based instrument that produces an
output of ion-fragmentation patterns [130] representing a
chemical footprint for volatile compounds in a sample.
The MS-based e-noses find application in qualitative analy-
ses of alcoholic beverages.

5.3. Data Processing System. The sensor array output of sam-
ples is processed using pattern recognition techniques [141].
The interaction of volatile compounds with sensing elements
produces changes in the electrical resistance of the sensor.
The changes in electric signals are different depending on
the sensor kinetics and thus a variety of signals collected
and remitted into data acquisition and processing unit in
which a volatile fingerprint can be interpreted using appro-
priate mathematical recognition techniques such as principal
component analysis (PCA), linear discriminant analysis
(LDA), and artificial neutral network (ANN). The discrimi-
nation of geographical origin and identification of different
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FIGURE 1: Traceability of tomato fruits in function of environmental conditions including soil fertility, geographical source, type of
germplasm, type of coating, and postharvest distribution and storage conditions.

olive oil varieties were achieved based on metal oxide semi-
conductor sensor using PCA and LDA and yielded ~98%
and 96% recognition success rates, respectively [141]. Opti-
mization of recognition pattern requires the use of an array
of sensors commonly in the range from 1 to 32 sensors.
The sensors are evaluated using a loading analysis of PCA
to identify significant patterns and their corresponding sen-
sors. PEN2 with 10 different metal oxide sensors (MOS)
was used to recognize the ripening state of tomato [142],
and PCA biplot loadings showed that sensor MOS 2, 6, and
8 were located on the extreme positive coordinates of the
biplot but MOS 2 had variance of ~95% (please see figures
in Gomez et al. [142]). This indicated that the three sensors
were extremely distinguished; however, MOS 2 exerted
higher influence on the ripening pattern of tomato. In addi-
tion, sensors 6 and 8 clustered together, which is an indicative
of similarities in their response to ripening.

5.4. Applications of Virtual Platforms in Traceability. The
conductivity of sensors is in function with changes in physi-
cochemical characteristics of the product. The sensor PEN2
e-nose (Airsense Analytics, GmBH, Schwerin, Germany)
was used to detect quality changes (soluble solids content,
pH, firmness, and vitamin C) in juice extracted from cherry
tomato [143]. In the same study, Hong and Wang [143] ana-
lyzed the sensorial characteristics of tomato juice using a-
Astree e-tongue (Alpha MOS Company, Toulouse, France).
Berna et al. [144] compared two electronic nose systems,
quartz microbalance-based electronic nose (E-nose) and a
mass spectrometry-based electronic nose (MSE-nose) against
gas chromatography (GC) as a standard reference in the
analysis of aroma differences among tomato cultivars. The
MSE-nose produced variation while E-nose hardly discrimi-
nated the differences among the cultivars [144]. The elec-
tronic sensories (e-nose and e-tongue) are commercial
ready on the markets; however, their application would
require validation studies specific to genetic factors, geo-
graphic locations, growth traits, and changes in postharvest
handling and logistics. Other studies reported analysis of
sourness, saltiness, and umami using electronic nose and
electronic tongue coupled with gas chromatography-mass
spectrometry (SPME/GC-MS) [145].

The unpredictable changes in supply chain, dynamics in
quality, and regulatory system requirements for food safety
and sustainability would require networked processes of vir-
tualization to enable centralized operational management of
food supply chains [146]. This is aimed at achieving a food
supply chain that can be monitored, controlled, planned,
and optimized in real-time using the Internet-based virtual
objects instead of on-site physical observation [146]. The
RFID (radio frequency identification), EPC global (Elec-
tronic Product Code), and ebXML (Electronic business using
eXtensible Markup language) are some of the electromag-
netic or electrostatic coupling technologies commonly
applied to virtualization of supply chain traceability for com-
mercial products including food and petroleum-based plastic
materials. The European Union regulatory requirements for
traceability of food contact materials are mandatory [147].
South Africa is among the major regional tomato producer
in sub-Saharan Africa and ranks among the major exporters
of fresh produce including tomato to the EU [148, 149].
However, no information relates to the traceability of biode-
gradable packaging materials in the South African tomato
supply chain. The authentification of biodegradable packag-
ing can be assured by developing a footprint characteristic
of a material component to enable digital differentiation
between biodegradable and synthetic plastic packaging mate-
rials. The biodegradable packaging materials are considered
suitable for organically produced agricultural products
including tomato. Literature showed that there are several
benefits of supply chain traceability including enhanced
integrity of a supply chain, easy tracking of product from
farm to consumer, tracing of products to their origin, avoid-
ing the risk of inappropriate labeling of products, and
improves effectiveness of product audits.

There are concerns with packaging labeling regarding the
misrepresentation of package, package ingredients, and false
statements aimed at making an economic gain. This desire to
gain a profit by mislabeling of products is a concern in the
markets. Consumers are increasingly becoming aware of
the value of food quality and safety. The contaminants result-
ing from nonbiodegradable packaging materials represent an
important food safety topic [150, 151] and can lead to
decreased consumer confidence in finished/processed food
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products. Subsequently, such safety concerns have stimulated
interest in authentification and traceability for compliance
with the regulations, consumer protection, and competition.
The packaging products must reflect the origin of the mate-
rial ingredients, details of postharvest treatments, and the
geographic location (Figure 1). Turci et al. [152] reported that
the internal traceability has been established as the reliable
approach of preventing fraudulent or deceptive labeling and
also to certify originality and quality of tomato products on
the market and their postharvest influencing factors including
packaging material nature. The commonly documented
parameters for authentification and internal traceability for
tomatoes are protein [153], metabolite [154], and DNA
[152]. There is a need to identify nanoparticle makers for
traceability and authentification of biodegradable materials.

The nanosensor signals expressed in nanometers are
developed to detect changes in structural and functional
properties of materials at nano level (1nm=10"") [155]
and are embedded in food packaging material to monitor
freshness of perishable products [156] during production,
processing, and distribution. The suitability of nanomaterials
is in function of good mechanical and electrical properties
[157] and high surface area [155]. The tracking of food ingre-
dients using nanosensor through the processing chain [158]
suggests the potential application of nanodevices to monitor
the ingredients of biodegradable materials. The structural
differences between natural biopolymers and synthetic poly-
mers [159] can be streamlined at nanoscale to develop differ-
entiating markers. The data on structural and functional
properties of material components in response to electro-
magnetic behavior can lead to the development of nanode-
vices to enable the identification of material ingredients and
formulations. The biodegradable materials can be degraded
by enzymatic action of living organisms (bacteria, yeasts,
and fungi) and storage conditions (humidity and water).
There is a gap in research for mathematical modeling relating
to impact of degradability agents on the durability and
mechanical integrity of biodegradable materials. The net-
work of nanosensors can be implemented to achieve product
monitoring and environmental conditions. The RFID and
wireless sensor network (WSN) integration was suggested
[160] to capture environmental information along with
product tagging and thus assuring the end-user on meeting
the system requirements throughout product delivery and
storage such as maintaining the required temperature and
humidity [160]. The loss of sensor data occurs due to cor-
rupted network or hardware failure [160, 161]. The missing
data can be predicted by data mining techniques [160] using
interpolation methods: k-nearest neighbors (KNN) [161],
global refinement method Delaunay Triangulation, PCA,
multichannel singular spectrum analysis (MSSA), and com-
pressive sensing [161]. The RFID-WSN can be integrated
with data mining techniques to incorporate the data due to
changes in the storage conditions. The novel environmental
space-time improved compressive sensing (ESTI-CS) algo-
rithm [161] achieved environmental reconstruction with a
minimal error of 20% for 90% corrupted network. However,
there is limited information on the implementation of nano-
sensor technology in integrated sensor system.
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6. Conclusions and Recommendations

The demand to replace synthetic plastic with biodegradable
packaging materials is increasing. The development of biode-
gradable packaging is influenced by several factors including
policy and legislative changes and world demand for food
and energy resources. The biodegradable materials are asso-
ciated with poor properties (high brittleness and low trans-
parency). Nevertheless, the wuse of nanocomposite
ingredients can improve brittleness and other physical prop-
erties. There are limited studies focused on interactions
between the polymers and the food products. In addition,
there are few studies that point to toxicities associated with
the global migration of ingredients from a biodegradable
package into the food. The appreciable use of digital plat-
forms in the tomato industry to attain objectives of 4IR
would require great amount of data to develop a hybrid sen-
sor response in function of production (agronomy and
genetic traits), postharvest treatment, storage conditions
(temperature and relative humidity), quality traits, and geo-
graphical origin of genetic factors. There is a need to develop
fingerprint markers to enable differentiation and authentica-
tion of biodegradable materials.
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