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Environmental concerns and energy security uncertainties associated with fossil fuels have driven the world to shift to renewable
energy sources. However, most renewable energy sources with exception of hydropower are intermittent in nature and thus need
storage systems. Amongst various storage systems, supercapacitors are the promising candidates for energy storage not only in
renewable energies but also in hybrid vehicles and portable devices due to their high power density. Supercapacitor electrodes
are almost invariably made of carbon derived from biomass. Several reviews had been focused on general carbon materials for
supercapacitor electrode. This review is focused on understanding the extent to which different types of biomasses have been used
as porous carbonmaterials for supercapacitor electrodes. It also details hydrothermal microwave assisted, ionothermal, andmolten
salts carbonization as techniques of synthesizing activated carbon from biomasses as well as their characteristics and their impacts
on electrochemical performance.

1. Introduction

As climate change concerns escalate and the depletion
of fossil fuels becomes more eminent, renewable energy
sources have gained momentum as viable cost-effective
and environment-friendly energy sources. However, most
renewable energy sources are intermittent and thus need
storage strategies. Currently, secondary batteries are themost
used storage systems. Batteries have high energy density but
low power density. Since batteries store energy chemically,
both the electrolytes and electrodes undergo physicochemical
changes during charging and discharging, thereby leading to
low cyclability and short lifespan. These limit their applica-
tions in energy storage. Contrary to batteries, supercapacitors
have high power density and cycling stability [1–3]. Nonethe-
less, their utility in energy storage is limited by their low
energy density, relatively high effective series resistance, and
high cost. This review is focused on the status of maximum

energy density attained and low cost electrode materials
made so far for supercapacitor electrodes.

Supercapacitors have energy density lower than that of
lead acid and lithium ion batteries; however, they have higher
power density and exhibit long life cycles, high cyclability,
and low safety concerns compared to secondary batteries [3–
5]; they have attracted the attention as new energy storage
system. The general description of comparison between bat-
teries, conventional capacitors, and supercapacitors is given
in Table 1.

Most research studies are currently focused on increas-
ing the energy density of supercapacitors. Supercapacitors
consist of electrode materials, separators, and electrolytes.
The energy density and power density of a supercapacitor
can be increased by increasing both specific capacitance (𝐶)
and operating voltage (𝑉) window as well as reducing the
equivalent series resistance (R). The voltage window can be
increased by a good choice of electrolyte, while the specific
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Table 1: Performance comparison of different electrochemical storage systems [6].

Parameter/current performance Lead acid batteries Supercapacitors Conventional capacitor
Energy density 30–40Whkg−1 1–10Whkg−1 <0.1Wh kg−1

Power density 1000Wkg−1 <10000Wkg−1 <100000Wkg−1

Life cycle 1000 >500000 >500000
Charging time 1–5 h 0.3–30 s 10−3–10−6 s
Discharging time 0.3–3 h 0.3–30 s 10−3–10−6 s
Charging/discharging efficiency 70–85% 85–98% 95%
Operating temperature −20−100∘C −40–65∘C −20–65∘C

Electrode
Electrode

(+
) (−
)

Current
collector

Current
collector

Pores
Pores

+charge

−ions
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Figure 1: Schematic representation of a supercapacitor cell (repro-
duced with the permission from the author [7]).

capacitance of the supercapacitor can be improved by either
finding new electrode materials or optimizing the existing
materials [4] in terms of interconnected porosity, electrical
conductivity, and surface area among others.

In principal, supercapacitors store energy based on two
capacitive behaviors: Electrical Double-Layer (EDL) capac-
itance and pseudocapacitance. While the former is due to
electrostatic interaction, pseudocapacitance is due to faradic
phenomenon involving fast and reversible electrochemical
reactions. In pseudocapacitance, the redox reactions are
between the electrolyte and the electrodematerials.Theprod-
ucts of redox reactions are therefore electrons which are then
transferred through electrode/electrolyte interfaces [4]. The
EDL has the advantage that electrochemical kinetics is not
limited by polarization resistance andno swelling of the active
materials is experienced. The energy is stored in two porous
electrodes with current collector on each electrode; the stored
energy is released when charges accumulated at the electrode
discharge as shown in Figure 1. The number of charges
stored in the electrode is proportional to the surface of the
electrode, and energy stored is proportional to the amount of

charge stored. Therefore, materials with high surface area are
regarded as good candidates for supercapacitor electrode.

The improvement of supercapacitor performance can
be attributed through discovery of new electrode materials,
understanding of ions behavior in small pores, and designing
hybrid system by combining faradic and capacitive elec-
trodes.

2. Materials for Supercapacitor Electrodes

2.1. Carbon Materials for Supercapacitor Electrodes. Different
materials have been investigated as electrode materials for
supercapacitors, the materials conducting polymers, porous
materials, and metal oxides. The parameters like optimum
pore size and high surface area of the electrodematerials for a
given electrolyte determine the performance of supercapaci-
tor in terms of power density and energy storage capability
[8]. High surface area is important because the energy in
electrochemical storage systems is stored on the surface,
while the pores size facilitates the storage and transport of
charges. Carbon materials are more attractive because they
are available in different forms (such as fibers, powders, nan-
otubes, and nanospheres) and are rich in dimensionality [2].

The microstructure and surface chemistry of carbon
can be adjusted easily, thus altering the electrochemical
performance of the material [9]. It has been reported further
that carbon materials based electrodes have reasonably high
electrical conductivity, high thermal stability, excellent cor-
rosion resistance, tailorable pore distribution, relatively high
surface area, low cost, and satisfactory compatibility with a
number of materials in making composites [2, 10].

2.1.1. Activated Carbons. Porous carbon is prepared through
different methods depending on the intended application.
One of the mainly used methods for supercapacitors is
activating the carbon either chemically or physically. Acti-
vated carbon is synthesized through carbonization of carbon
precursor followed by activation at temperature around 600–
800∘C in an inert atmosphere. The type of carbon precursor
is one of the determining factors of the properties of the
activated carbons.

Physical activation involves two processes; first is pyrol-
ysis, in an inert atmosphere, of the carbon precursor at
temperatures between 400 and 1000∘C, and second is gasi-
fication, where the porosity and surface area are developed
using oxidizing gases such as carbon dioxide or air and



International Journal of Electrochemistry 3

steam between 700 and 1200∘C [11–13]. Pyrolysis is intended
to remove all volatile materials in the precursor, while
gasification opens some closed pores by burning away the
tar-like pyrolysis product within the pores. Furthermore, the
active sites increase as more organics are burned away by
oxidizing agent [14].

In contrast, chemical activation involves using potassium
hydroxide [15–19], sodium hydroxide [20, 21], phosphoric
acid [22–24], zinc chloride [19, 25, 26], and nitric acid and
sulphuric acid [27]. Phosphoric acid and zinc chloride act
as dehydrating agent, while potassium hydroxide is an oxi-
dant. In comparison to physical activation method, chemical
activation has the following advantages: (1) the pores are
well developed and pore size is controllable, (2) materials
with high surface area are produced, (3) yield carbon is high,
(4) it involves only one step, and (5) it has lower pyrolysis
temperature [14]. For energy storage applications such as
supercapacitors, the first two advantages strengthen the use
of chemical activation.

For KOH activation, which is mainly applied to super-
capacitor electrode materials preparation, the ratio of alkali/
carbon varies from 1 : 1 to 5 : 1 depending on the concentration
of the impregnating solution [19].The excessKOH is removed
by suspending the activated carbon in 0.1MHCl solution and
then washed with water until pH of 7 is achieved. Samples are
then oven-dried ready to be used in electrochemical testing
and other characterizations. Activated carbons sometimes
exhibit a high Brunauer-Emmet-Teller (BET) surface area
which exceeds 2500m2 g−1 and pore volume which is close to
2 cm3 g−1 [28]. The majority of pores in the activated carbon
are micropores and only small number of mesopores; this
is because at higher temperatures most of mesopores break
and the pore diameter decreases [29].

Due to the availability, cheap cost, and ability to become
highly porous after carbonization, different kinds of biomass
feedstock have been used as precursors for carbon. Under-
standing the biomass derived porous carbon materials and
their properties is of importance in order tomatch the carbon
properties with those of supercapacitors. Porous carbon
materials are classified depending on their pore width; those
with < 2 nm pore width are classified as microporous, those
with 2 to 50 nm pore width are classified as mesoporous,
while those with pore width greater than 50 nm are classified
asmacroporous [4, 30]. For supercapacitors application, both
micropores and mesopores play an important role. Microp-
ores are important in storing charges, while mesopores store
and facilitate charge transfer. The reported surface areas and
capacitance exhibited by different biomass derived carbon
materials are as described in Table 2. Generally, the higher
the specific surface area of activated carbon is, the higher the
active surface area is. However, despite high specific surface
areas attained for activated carbons, that is, around 2500
to 3000m2 g−1, some activated carbons exhibit low specific
capacitance as depicted in Table 1. This might be due to wide
pore size distributions, pore size, type of the electrolyte used,
scan rate, mass, or surface area of the electrode. Small pore
size of 0.68 nm limits the electrolyte from accessing the entire
active surface area of activated carbon [31].

Though it is suggested that the specific capacitance and
BET surface area of activated carbon have close correlation, it
is not the case for all carbon precursors as shown in Figure 2.
The relationship between surface area and capacitance is not
always obvious due to the fact that capacitance is contributed
by other factors such as pore size, electrical conductivity, and
pore distribution and interconnectivity [31, 54].

The increase in the fraction of pore size which cannot
be accessed by the electrolyte (when the average pore size is
below 0.68 nm) in organic electrolyte is expected to decrease
the capacitance [31]; however, an anomalous behavior is
observed, where the capacitance increases with the pores
having pore size of less than 1 nm in acetonitrile organic
electrolyte [63]. Figure 2 shows that there is no direct
correlation between capacitance and the pore size of the
electrodematerials. Actuallymany factors have a huge impact
on the capacitance: the materials surface chemistry, method
of preparing electrodes, the electrolyte used, and electrode
testing method.

Apart from plant wastes, animal wastes have been studied
as potential carbon precursors for supercapacitors electrode.
To date, cow dung [55], animal bones [56], chicken egg
membranes [58], and human hair [59, 64] have been reported
in the literature. The physical and electrochemical properties
of these wastes are described in Table 3.

In order to know how fast energy can be stored in a unit
volume of materials volumetric capacitance is of importance.
Factors affecting the volumetric capacitance were reviewed
byWang and coworkers [65]. Surprisingly, a good number of
researches overlook this parameter when evaluating the suit-
ability of materials for supercapacitor electrodes application.
At the same time, few authors had taken into account the vol-
umetric capacitance for characterizing the biomass derived
carbon. Xie et al. [66] composited corn straw and soy protein
to obtain a surface area of 1412.9m2 g−1 with gravimetric
capacitance and volumetric capacitance of 321.1 F g−1 and
213 F cm−3, respectively, at 20A g−1 in 6M KOH. When soy-
bean was chemically activated after carbonization and tested
for supercapacitor electrodes, gravimetric capacitance and
volumetric capacitance of 260 F g−1 and 210 F cm−3, respec-
tively, was obtained in H

2
SO
4
[67]. In the same study, gravi-

metric capacitance and volumetric capacitance of 176 F g−1

and 102 F cm−3, respectively, was obtained in Li
2
SO
4
elec-

trolyte. It was further revealed that volumetric capacitance
decreased with activating temperature increase and it was
an opposite trend for the gravimetric capacitance. The low
volumetric capacitance at high temperature may be caused
by low conductivity of biomass derived carbons as the high
surface area decreases the density sites. Eukaryotic organism
(Auricularia) was used as precursor for synthesizing porous
carbon which exhibited bulk density of 0.96 g cm−3, surface
area of 1103m2 g−1, volumetric capacitance of 360 F cm−3, and
cyclic stability of 99% after 10000 cycles were obtained [68].
It has been reported that the heteroatom functional groups
of biomass derived carbon enhance volumetric capacitance.
For example, high volumetric capacitance of 468 F cm−3, high
packing density of 1.1 g cm−3, and capacitance retention of
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Figure 2: Variation of reported capacitance, pore size, and BET surface area of activated carbon materials derived from different plant
precursors.

91% after 10000 cycles were achieved when functionalized
porous carbon was synthesized from soybean [69].

The differences in the reported capacitance are attributed
to themethod of testing. It is reported that the three-electrode
cell gives higher capacitance results compared to its two-
electrode counterpart [70]; thus there is a need to establish
standardized best practice of determining the capacitance of
the material. Although the testing method may be the same
for different studies, differences in mass loading, electrode
thickness, type and amount of binder, and type of current
collector have huge impact on the capacitance obtained.

The presence of surface functionalities and heteroatoms
such as O and N on carbon also play an important role in the
pseudocapacitance behavior of the electrode [71, 72]. Oxygen
comes from both the activation and biomass itself, while
nitrogen can come from the biomass or is introduced into
the carbon through doping [73]. It has been reported that the
capacitance of O and N containing carbonized chicken egg
shell membrane is 297 F g−1 with cyclic efficiency of 97% after
10000 cycles [58].The activated carbon from the same precur-
sor has specific capacitance of 203 F g−1, despite the fact that
the specific surface area was 7 times higher than carbonized
chicken egg shell membrane. It has been reported also that
oxygen- and nitrogen-rich activated carbon enhances the
specific capacitance differently. While oxygen-rich activated
carbon exhibits lower capacitance because the electrolyte

diffusion into pores is hindered by carboxyl surface, the
nitrogen-rich one exhibits higher capacitance [52, 74]. Fur-
thermore, it is reported that the adsorption and transport of
electrolyte ions are enhanced by doping activated carbonwith
heteroatom such as sulphur [72, 75, 76].Heteroatom increases
the wettability of the electrode which in turn increases the
capacitance; thus studies on doping different heteroatoms on
the activated carbon are emphasized.

Microwave assisted heat treatment is one of the methods
of activating carbon for supercapacitor applications. It is a
facile, controllable, fast, and energy-saving technique. When
carbon xerogel was activated chemically using microwave
radiation, microspores and mesopores were produced at a
time range between 6 and 30min [77]. Although microwave
radiation method produces well-modified surface chemistry
of activated carbons, it causes significant reduction in micro-
pore volume and size [78, 79].

Hydrothermal carbonization (HTC) is another way of
producing porous carbon for supercapacitor electrodes. In
this method, a mixture of water and carbon precursor is
thermally treated at temperature ranges of 150–300∘C and
300–800∘C for low and high temperature HTC, respectively
[80, 81]. Apart from high solid carbon yield, the method
also reduces the oxygen and hydrogen content [82, 83] and
produces materials with very high BET surface area. Jain and
coworkers obtained BET and mesopore areas of up to 2440
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Table 4: The preparation method and properties of porous carbon derived from coconut shells.

Preparation method BET surface area (m2 g−1) Capacitance (F g−1) Energy density (Wh kg−1) Reference
CPS 1559 228 38 [44]
OHCZ 2440 246 8.5 [87]
CZ 1266 — — [85]
CZP 2114 — — [85]

(a) SEMmicrography for water hyacinth
derived carbon [48]

(b) SEM images of water hyacinth
derived carbon activated using ZnCl2
[47]

(c) SEM images for water hyacinth
activated with KOH [49]

Figure 3: SEM morphologies of porous carbon derived from water hyacinth through different routes.

and 1121m2 g−1, respectively, after hydrothermal treatment
of coconut shells with ZnCl

2
and H

2
O
2
at temperature

of 275∘C [84]. When the same material was chemically
activated using ZnCl

2
at 500∘C for 3 h by Azevedo et al.

[85], BET surface area of 1266m2 g−1 was obtained. Elaigwu
and Greenway [86] compared the chemical and structural
properties of carbon derived from Prosopis africana waste
plant material prepared by conventional hydrothermal and
microwave assisted hydrothermal carbonization. They found
that thatmicrowave assisted hydrothermal carbonizationwas
faster in decomposing Prosopis africana as the degree of
structure alteration was achieved within a short time when
compared to the conventional approach [86].

The comparison can easily be depicted in Table 4,
where CPS represents combined pyrolysis and steam acti-
vation, OHCZ represents optimal hydrothermal treatment
and chemical activation with ZnCl

2
, CZ represents chemical

activation with ZnCl
2
, and CZP represents chemical activa-

tion with ZnCl
2
followed by physical activation. It is worth

mentioning that the precursor for all the above-mentioned
methods is the same (coconut shell).

The porosity of the carbon is also influenced by type
of activation; for example, when firewood and pistachio
were carbonized and activated using steam and KOH, KOH
activated carbon had 9.2–15.3% mesopores, while steam
activated carbon had 33.3–49.5% [88]. On the other hand, the
surface capacitance has been reported to increase with the
increase in mesopore content [89].

Electrochemical performances of different biomass
derived carbon materials have also shown strong correlation
between capacitance, morphology, and the method used to
prepare the carbon. For instance, water hyacinth (WH) has
been used to prepare porous carbon by different authors;
however, their results differ probably due to their methods,
morphology obtained, and/or surface area [47, 48, 90].
Senthilkumar and coworkers [48] activated the WH derived
carbon using ZnCl

2
and obtained the porous carbon with

no particular shape (Figure 3(a)); the specific capacitance
of 472 F g−1 was obtained in aqueous electrolyte H

2
SO
4
.

Kurniawan and coworkers [47] developed microspheres
(Figure 3(b)) through subcritical water carbonization
followed by KOH activation and microwave treatment; the
specific capacitance was 179.6 F g−1 in aqueous electrolyte.
From the same carbon precursor, Syarif and Pardede [90]
developed porous carbon through hydrothermal treatment
followed by microwave pyrolysis, the carbon has a shining
bead chain andwaffle structures with cavities, the capacitance
obtained in aqueous electrolyte (H

2
SO
4
) was 0.0218 F g−1,

no conductive and activating agent was added, and the
capacitance increased 10 times when graphite was added to
the carbon in the ratio of 3 : 7. Carbon sheets (Figure 3(c))
were produced byWu and coworkers [49] through acid (HCl)
treatment and pyrolytic carbonization and KOH activation
of water hyacinth biomass. Micropores and mesopores were
developed which in electrochemical testing achieved specific
capacity of 273 F g−1 at current density of 1 A g−1.
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Table 5: Specific capacitances and surface area of porous carbon synthesized through salt carbonization of different of different biomasses.

Precursor Salt Carbonization
temperature

Surface area
(m2 g−1)

Specific
capacitance (F g−1)

Current
density (A g−1) Electrolyte Reference

Firewood Na
2
CO
3
-K
2
CO
3

850 818 189 0.5 1MH
2
SO
4

[98]
Chitosan from shells
of shrimps ZnCl

2
600 1582 256 0.5 6MKOH [99]

Peanut shells Na
2
CO
3
-K
2
CO
3

700 160 1 1MH
2
SO
4

[100]
Bamboo shells Na

2
CO
3
-K
2
CO
3

850 843 204 1 1MH
2
SO
4

[101]

Boiled coffee beans Na
2
CO
3
-K
2
CO
3

CaCl
2

800
850

436
550

161
93.4

0.5
0.4 1MMeEt

3
NBF
4

[102]

It was further shown that the capacitance of water
hyacinth derived carbon electrode increased from 472 to
912 F g−1 when potassium iodide (0.08MKI) was added to
1MH

2
SO
4
electrolyte, signifying the effect of electrolyte [48].

The addition of KI in the electrolyte enhanced the capacitance
because KI can produce redox pairs (3I−/I

3

−, 2I
3

−/3I
2
, and

others) during electrochemical processes, which in turn
could easily access the small micropores and mesopores.
Through hydrothermal treatment, interconnected graphitic
carbon nanosheets can also be produced. For example, Wang
and coworkers [51] developed nanosheets from hemp back
fibers with high specific surface area up to 2287m2 g−1
with capacitance retention of 72–92% at current density of
100A g−1. The study also revealed that the materials were
stable at different temperatures of 20, 60, and 100∘C.

Ionothermal carbonization is another method of synthe-
sizing porous carbon from biomass, where only one step is
required.The ionic liquids possess high chemical and thermal
stability, low melting point, electrical and ionic conductivity,
and negligible vapor pressure.Thismethod has been reported
to produce carbon with high surface area and large pore
volume [91]. A high surface area (2160m2 g−1) and total
pore volume of 1.74 cm3 g−1 were obtained when carbon
was synthesized from glucose [92]. In this study, KCl-ZnCl

2

system molar ratio was varied to act as template/solvent
during carbonization; it was further revealed that the higher
content of KCl increased the pore size and surface area. The
gravimetric capacitance obtained was 206 F g−1. Lin et al.
[93] synthesized microporous and mesoporous carbon from
fructose through one-step ionothermal method using iron.
The surface area of 1200m2 g−1, pore volume of 0.8 cm3 g−1,
and specific capacitance of 245 F g−1 at current density of
1 A g−1 were obtained. In the study different masses of fruc-
tose were dispersed in 10mL of 1-butyl-3-methylimidazolium
tetrachloroferrate [Bmim][FeCl

4
]. [Bmim][FeCl

4
] was used

as template, solvent, and catalyst with advantage that it can
be reused after recovery. Other biomass derived structured
carbons were produced ionothermally from carbohydrates
[94], sugar bagasse [95], and bamboo [96]. However, these
carbons were not tested for supercapacitor applications.

Molten salt carbonization (MSC) is another method
of synthesizing porous carbon from biomass, in which
the molten salt cracks the large molecules of biomass. In
MSC, the salt involved is melted at its melting point; then
biomass is immersed into the molten salt and carbonized at

temperature greater than 400∘C in inert atmosphere. After
carbonization, the furnace is cooled to room temperature
and the product is washed with HCl and distilled water
in order to remove salts within the product. It is reported
that the particle size of the biomass alters the yield [97].
Table 5 shows different biomasses carbonized in different
salts and the obtained gravimetric capacitance and specific
surface area. It is difficult to tell the best biomass or salt
because the carbonization temperature and electrolyte for
electrochemical testing are different.

2.1.2. Carbon Aerogel Derived from Biomasses. Carbon aero-
gel is another form of carbon used in supercapacitor elec-
trodes, whereby the porous carbon is produced through
pyrolysis of organic aerogels [103]. The porosity is a result
of a combination of interconnected colloidal particles. The
porous carbon materials can be composites, monoliths,
powders, microspheres, or thin films. The aerogels carbon
materials have been reported to exhibit higher surface area
compared to activated carbon [104]. Carbon fiber aerogels
with surface areas ranging from 1536 to 2436m2 g−1 and pore
size ranging between 1.0 and 4.0 nm exhibited high specific
capacitance of 282 F g−1 (1 A g−1) in 6M KOH electrolyte
[51, 105].

A green technology of fabricating sponge-like carbona-
ceous hydrogels/aerogels from watermelon was developed by
Wu and coauthors [106]. The study revealed that watermelon
can be polymerized and carbonized to form carbonaceous
mesosphere and nanofibers during hydrothermal reaction.

The cellulose from bagasse has been utilized as the
raw materials for carbon aerogel. Two procedures were
followed. Firstly, cellulose was dissolved in a solvent mixture
of NaOH/urea/H

2
O and super cooling in −12∘C. Secondly,

the gels were regenerated in water at room temperature
and then frozen at −80∘C [107]. The synthesized aerogels
exhibited large channels with average diameter in the range
of 50–100 nm. The specific capacitance of the assembled
supercapacitor was 142.1 F g−1 at current density of 0.5 A g−1.

In another study, the 3D N-doped carbonaceous aerogels
were produced through one-pot hydrothermal synthesis
using the soft tissue biomass of watermelon as a source
of aerogel. The method produced specific capacitance of
281 F g−1. It has been reported that nitrogen doped porous
carbon possesses higher specific capacitance compared to
the undoped porous carbon because of pseudocapacitive
behavior of nitrogen functional groups [108].
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Table 6: The capacitance, energy density, and stability of different composites.

Carbon precursor Composite Method of
preparation

Capacitance
(F g−1)

Energy
density
(Wh/kg)

Power
density
(W/kg)

Stability
Current
density
(A g−1)

Reference

Flax textiles MnO
2
nanosheet/carbon

cloth In situ 683.73 46.54 45500 94% (at
1000 cycles) 2 [118]

Kenaf stem Porous carbon/MnO
2

416 17.3 198–3175 86% (at
1000 cycles) 16 [119]

Mollusc shell Macroporous
carbon/NiCO

2
O
4

1696 8.47 88% (at
2000 cycles) — [120]

2.2. Metal Oxides and Carbon/Metal Oxide Composites. The
energy density of a carbon material is a function of both
capacitance and electrical conductivity exhibited by the
electrode. Though activated carbons have low capacitive
behavior, their high electrical conductivity qualifies them for
supercapacitor electrode. On the other hand, transitionmetal
oxides (TMO) have high capacitance but low conductivity.
Metal oxide electrodes have poor cyclic stability due to the
cracks caused by the strain in themetal oxide during charging
and discharging processes [109].

Studies on the application of ruthenium oxide (RuO
2
)

[110], manganese (IV) oxide (MnO
2
), cobalt (II, III) oxides

(Co
3
O
4
), nickel oxide (NiO) [111], molybdenum trioxide

(MoO
3
), molybdenum (IV) oxide (MoO

2
), and vanadium

nitride (VN) as the electrochemical active materials have
been conducted [112]. Though RuO

2
has excellent capac-

itance, its high cost, toxic nature, and low porosity limit
its application. Nickel oxide, cobalt oxide, and manganese
dioxide are inexpensive and thus derive interest in improving
their electrochemical performance.

Efforts have been made to composite biomass derived
carbon and metal oxides so as to capture the strength of the
two in increasing the energy density without sacrificing the
high power density. An important consideration related to
porous carbon/metal oxide is their performance in terms of
capacitance, stability, power, and energy densities. Sawdust
derived carbonwas directly composited with FeCl

3
and TiCl

2

and the composite was oxidized in concentrated nitric acid
[113]. From this study, it was revealed that the metal oxide
loading and surface functionalities affect the voltammograms
shapes. Moreover, with exception of RuO

2
, the conductivity

of other transition metal oxides is poor, resulting in low
power and energy density. This is because the IR loss is
very large at high current density caused by both the charge
transfer resistance of the electrode and sheet resistance [114].

Based on its pseudocapacitive behavior, RuO
2
has been

found to be an excellent electrode. RuO
2
/carbon composite

prepared by Lin et al. [115] exhibited a specific surface
area of 520m2 g−1 at current density of 1 A g−1 and specific
capacitance of 256 F g−1. In another study, colloidal method
was used to prepare a nanostructured composite of RuO

2

and carbon. The specific capacitance of RuO
2
/carbon com-

posite electrode (40% RuO
2
) was reported to be 407 F g−1

as calculated from cyclic voltammetry. When the contribu-
tion of double-layer capacitance resulting from carbon was
subtracted, the specific capacitance of RuO

2
⋅ 𝜒H
2
O was

approximately 863 F g−1. The volumetric capacitance of the
composite increased as the weight of RuO

2
increased to

40wt.% and then dropped due to increased particle size
of RuO

2
[116]. However, due to the high cost of RuO

2
,

its practical application in supercapacitors is limited; thus
exploitation of alternative metal oxides is very necessary.

The specific area and specific capacitance have been
reported to increase when carbon is composited with
metal oxide. Specific surface area of NiO/carbon composite
increased from 150m2 g−1 for NiO to 700m2 g−1 when NiO
was composited with carbon, while the specific capacitance
increased from 20 to about 100 F g−1 [117].

Apart from activated carbon being composited with
metal oxides, attempts have beenmade to composite aerogels
made frombagasse with Fe

2
O
3
.The aerogel/Fe

2
O
3
composite

exhibited high specific capacitance of 333.1 F g−1 at current
density of 1 A g−1 with excellent cyclic stability of 96% at
1000 cycles [106].The variation of specific capacitance, energy
density, and power density of different composites can be seen
in Table 6.

It has been shown that the composition with lowest
metal oxide content displays the highest capacitance. This
is attributed to the fact that, at high metal oxide content,
the fraction of accessible active surface area is low and the
resistance is high.

2.3. Activated Carbon/Conducting Polymers. Conducting
polymers have also been used as electrode materials for
supercapacitors due to their good electrochemistry, simplic-
ity in doping, and easy preparation. However, during the
charge-discharge cycles, the sites in polymers responsible
for redox are not stable; thus resulting in low life cycle of
the conducting polymers electrode. Wang and coworkers
coated activated carbon with polyaniline (PANI) through
polymerization of aniline using cyclic voltammetry. It was
revealed that the PANI electrode and PANI-activated carbon
composite maintained cyclic stability of 65 and 92%, respec-
tively, at 50 cycles and high specific capacitance of 587 F g−1
[121].

Lin and Teng demonstrated that the capacitance of a
carbon electrode can be increased by at least 50% if 5 wt.%
of polyaniline is deposited on the carbon [122]. It has been
further reported that the composite made from natural
bamboo and polyaniline attained high energy density of
47.5Wh kg−1, demonstrating that the composite was a good
candidate for supercapacitor [123].
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2.4. Activated Carbon/Carbon Nanotubes Composites. The
electrochemical performance of activated carbon derived
from biomass when composited with carbon nanotube
(CNTs) has also been investigated. A coconut shell derived
activated carbonwas compositedwithCNTs.The capacitance
of the coconut derived activated carbon alone was 92 F g−1,
while that of carbon nanotube alone was 25 F g−1. However,
when the two were composited, the capacitance decreased to
88 and 50 F g−1 at 15 and 50wt.% CNTs content, respectively
[124]. The test was conducted in the nonaqueous electrolyte
(NEt
4
BF
4
1.5M in acetonitrile).These results imply thatCNTs

are not good for composites.
A carbon nanotube/self-adhesive carbon grain composite

has been studied by Farma and coworkers [125]. The carbon
grains were derived from oil palm empty fruit bunch fibers
of different palm species. The specific capacitance obtained
was 55, 77, and 85 F g−1 for composites carbonized at 600,
700, and 800∘C. The composite exhibited BET surface area
of 434, 415, and 485m2 g−1, though both the surface area and
specific capacitance decreased when the CNTs were added;
the equivalent series resistance (ESR) decreased by a factor of
around 84, which in turn increased the power density as low
ESR increases conductivity. Also specific capacitance fading
was reduced significantly.

Porous structures from activated carbon, carbon aerogels,
carbon nanotubes, and composites favor the accessibility of
ions in an electrode. However, the type of an electrolyte used
which is not the main focus of our review has significant
effect. Aqueous, nonaqueous, and organic electrolytes are the
mostly used electrolytes in energy storages.

3. Conclusion

In this review, different carbon forms produced from various
biomass have been discussed. It has been shown that the
capacitance and energy density of biomass based super-
capacitor electrode depend on carbon nanostructures pro-
duced from individual carbon precursor. The influence of
the pore structure (size and distribution), surface area, and
heteroatoms present on the carbon has been discussed. From
the perspective of this review, the following conclusions were
drawn:

(1) The variation of physical characteristics not only
necessitates finding new materials for supercapacitor
electrodes but also argues for improvement of already
studiedmaterials be it throughmethod of preparation
or compositing with other materials.

(2) Though hydrothermal treatment route of producing
carbonaceous material for supercapacitor electrode
seems to be more efficient, the high temperatures and
pressure involved increase the cost. Therefore, there
is a need to search for catalysts to lower reaction
temperature.

(3) Most biomass derived electrodes have been demon-
strating high cyclic capability; thus promising future
commercial use.

(4) The gravimetric capacitance attained by majority of
the biomass derived carbon materials is not high
enough; thus there is a need for compositing with
othermaterials to improve the capacitance and energy
density. The synergetic effect between metal oxides
and biomass derived carbon needed to be optimized
as the oxide contributes in the composite by providing
high capacitance, while carbon ensures high conduc-
tivity and good rate capability.

(5) Despite the achievements in synthesis of biomass
derived carbonmaterials for supercapacitors, an opti-
mization of the structure of materials is desirable to
increase both gravimetric capacitance and volumetric
capacitance.

(6) The hydrothermal, ionothermal, and salt carboniza-
tion methods have shown high suitability in synthe-
sizing of porous carbon materials; besides, a com-
bination of methods may be suggested for further
enhancement of the materials and energy storage
devices.
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