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TheReal TimeAnalyzer (RTA) utilizing DC- andAC-voltammetric techniques is an in situ, onlinemonitoring system that provides
a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when
predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component
Regression- (PCR-) and Partial Least Squares- (PLS-) based methods can handle data sets even when the number of variables
significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of
the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of
data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in
electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS,
Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific
data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous
variable selectionmethods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.

1. Introduction

Electrochemically deposited copper from an acidic bath is
a commonly used method of on-chip production of inter-
connects for microelectronics [1]. The strict requirements
of chip manufacturing demand rapid and void-free filling
of high-aspect ratio topologies of sub-100 nm features (as
small as 18 nm, currently). Rapid superconformal filling is
achieved by using multicomponent plating solutions that
contain inorganic and organic constituents of various chem-
ical characteristics present at concentrations which differ by
several orders of magnitude. The narrow tolerances allowed
for the final product require accurate and reliable control of
the plating solution with similar or even narrower tolerances.

Accurate and prompt concentrationmonitoring and con-
trol of multicomponent electroplating baths are indispens-
able in satisfying process specifications for the manufactur-
ing of electronic components while minimizing production

costs. The Real Time Analyzer, utilizing numerous voltam-
metric techniques, is an in situ, onlinemonitoring system that
provides a complete chemical analysis of electrometallization
solutions. The fully computerized instrumentation requires
no specially trained chemical operators and practically elim-
inates the need for a chemical analytical laboratory.

Typically used organic additives include (i) suppressors
(like polyethers) that inhibit the rate of copper deposition at
the tops of the trenches and vias by increasing the copper
ion reduction overpotential by surface absorption interaction
with chloride ion [2, 3]; (ii) accelerators, disulfide molecules,
which facilitate the reduction process of copper, most prob-
ably by anion-induced adsorption of copper complex(es) at
the metallic surface [4–6]; and (iii) levelers, high molecular
weight amines or amides, that act as secondary suppres-
sors to control the grain size of the deposited copper and
inhibit overplating [7]. In combination, these additives can
achieve accelerated, bottom-up electrodeposition of copper
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in submicron inlaid features, which permits void-free inter-
connect wiring in damascene structures. This paper presents
a description of RTA data analysis using the example of a
suppressor. Although the presentation deals with suppressor
analysis, the approach presented is general and is utilized by
the RTA for determining the concentration of all plating bath
components.

The organic additives undergo significant changes of
concentration during bath usage [4, 8, 9]. Therefore, their
concentrations should be closely and accurately monitored
and replenished in order to maintain their concentrations at
the level corresponding to the optimumplating performance.

Ni and Kokot [10] explored the question of whether
chemometrics methods enhance the performance of electro-
analytical methods and provided evidence for a strong affir-
mative reply to this question. Despite numerous undisputable
benefits, the application of chemometrics to electroanalysis
has not been used nearly as widely as in spectroscopy or
chromatography.

Wikiel et al. [11] and Jaworski et al. [12–16] extensively
studied the application of soft modeling techniques for the
development of analytical models aimed at accurately and
robustly predicting the concentrations of deliberately added
bath constituents. Also, Wikiel et al. [17] and Jaworski et al.
[18] employed various soft modeling techniques for deter-
minant analyses implemented online as early fault detection
routines for industrial electroplating solutions.

Specific waveforms are developed to produce voltam-
mograms having regions which show linear dependence of
the current on the concentration of the analyte of interest,
while being practically immune to varying concentrations of
all other bath constituents. Sometimes, the voltammograms
recorded for a single waveform contain several portions
(ranges of points of voltammogram) meeting this objective.
For such a waveform, its data can be divided into meaningful
blocks in order to improve the interpretability. The ability of
building amultivariate analyticalmodel utilizing information
contained in each of the ranges (blocks) of the voltammogram
leads to increased diversity within the data as compared
to single-range-based data sets. The diversity among the
data results in a greater robustness of the calibration model
calculated based on that data.

Hierarchical Principal Component Regression (HPCR)
[12, 19], Hierarchical Partial Least Squares (HPLS) [12,
19], Consensus PCR (CPCR) [12, 19], and Multiblock PLS
(MBPLS) [12, 19] methods provide tools for handling vari-
ables arranged into meaningful blocks, which can be decom-
posed and subsequently (HPCR, CPCR) or simultaneously
(HPLS, MBPLS) regressed against the dependent variables
(concentrations).

The chief goal of this presentation is to show that
the variable selection methods whose applications are well
established in spectroscopy can also be transferred to elec-
troanalytical data. Specifically, this objective is achieved
by an introduction of a rigorous, multistep procedure for
selecting the blocks of the voltammogram to be subsequently
used for analytical model developments and a choice of
proper data decomposition technique in order to compress

the multivariate voltammetric data and reasonably extract
information.

Wikiel et al. [11] and Jaworski et al. [12] introduced a tech-
nique coupling SimpleModeling ofClassAnalogy- (SIMCA-)
based modeling power [20] and Least Squares Regression
(LSR) for the selection of portions of voltammograms for
further factor and regression analyses. The aim of this paper
is to extend the criteria for determination of optimum ranges
of voltammograms by a novel application of techniques such
as Uninformative Variable Elimination- (UVE-) PLS [21,
22], UVE-PCR [23], and PLS-Variable Importance in the
Projection (VIP) [24, 25] along with Interval PLS (IPLS) [26],
Interval PCR (IPCR), and Moving Window PLS (MWPLS)
[27] in electroanalysis. These variable selection techniques
have been used in spectroscopy (predominantly near infrared
and infrared [22, 26, 27]), chromatography, and mass spec-
trometry, but with the exception of IPLS [28] they have not
been applied to electroanalysis. In recent years, the use of
variable selection methods in trace analysis of metals by
anodic stripping voltammetry (ASV) surfaces sporadically
[28, 29], sometimes being combined withMultivariate Linear
Regression on aligned ASV peaks rather than chemometric
data compression techniques [29].Themarginal utilization of
variable selection techniques in electroanalysis has persisted
despite promising results in 1999 [30] obtained by application
of genetic algorithm as a variable selection method in the
multivariate analysis with PLS of several polarographic and
stripping voltammetric data sets, where different interfer-
ences were present.

Modern chemometrics is a mature scientific discipline
presenting the researcher with a vast number of powerful
data decomposition techniques. Although some techniques
appear more advanced than the others because of their
mathematical complexity, the most suitable methods should
be properly chosen depending on the kind of data to be
analyzed in order to develop a sound and robust analytical
model.

2. Experimental

Voltammetric experiments were performed utilizing the
Real Time Analyzer (Technic, Inc., Cranston, USA), a fully
computer-control electroanalytical system. Measurements
were conducted inside a compact flow-through electrochem-
ical cell (electrode compartment of the Multi-Task Electro-
chemical Probe (MTEP)) submersed in the temperature-
controlled (25 ± 0.2∘C) plating solution. The volume of the
inner cell compartment was about 20mL. The solution to be
analyzed was circulated inside the probe using a software-
controlled diaphragm pump (KNF Neuberger, Balterswil,
Switzerland).

The electrochemical cell was a classical three-electrode
systemwith a working electrodemade of platinum (Johnson-
Matthey) wire (1mm diameter; 10mm length), an auxiliary
platinum (Johnson-Matthey) foil electrode forming a cylin-
der around the working electrode, and an in situ generated
reference electrode made of copper metal deposited onto a
platinum (Johnson-Matthey) wire, immediately before the
measurement.
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All inorganic chemicals were of Analytical Grade (J.T.
Baker, Phillipsburg, NJ). A proprietary organic additive
system (Enthone, West Haven, CT) was used in this study.

All calculations were performed in the MATLAB R2012b
(The MathWorks, Inc., Natick, MA) environment. The pro-
cedure for PLS and scaling routines were taken from the
PLS Toolbox 6.5.4. (Eigenvector Research, Inc., Manson,WA,
http://www.eigenvector.com). The procedure for MWPLS
was taken from iToolbox (University of Copenhagen,
Denmark, http://www.models.life.ku.dk/iToolbox). All other
procedures were written by the authors.

3. Results and Discussion

3.1. Composition of Training and Validation Sets. The sub-
ject of this investigation was the ViaForm� copper plating
bath which consisted of six components: copper (II) ion
(from copper sulfate), sulfuric acid, chloride ion, suppressor,
accelerator, and leveler present for the target concentrations
of 0.785M, 0.820M, 1.50mM, 7.00mLL−1, 7.00mLL−1, and
0.76mLL−1, respectively.

The specific objective was to create a calibration model
for suppressor in the presence of varying concentration of
accelerator and leveler. The concentrations of suppressor,
accelerator, and leveler were varied linearly on four levels
within the ranges of 5.00 to 9.00mLL−1, 5.00 to 9.00mLL−1,
and 0.38 to 1.13mL L−1, respectively. The training set was
composed as a 5-level-3-component linear orthogonal array
exploring uniformly distributed 25 combinations of sup-
pressor, accelerator, and leveler concentrations. Additionally,
the training set was augmented by the voltammetric data
recorded for three standard solution containing suppressor,
accelerator, and leveler concentrations at the low, target, and
high limits. The inorganic bath components, copper (II) ion,
sulfuric acid, and chloride ion, were held constant at their
target levels.The voltammetric data were recorded for each of
the 28 solutions in triplicate resulting in 84 samples (𝐼 = 84).
The composition of the entire training set is presented in
Table 1.

In order to assess the predictive abilities, the calibration
model was externally validated on the validation set. The
external validation set consisted of 27 data sets obtained for
9 solutions containing suppressor, accelerator, and leveler
varied linearly on three levels within the ranges of 5.50 to
8.50mLL−1, 5.50 to 8.50mLL−1, and 0.47 to 1.04mLL−1,
respectively. The validation set was a 3-level-3-component
linear orthogonal array exploring uniformly distributed 9
combinations of suppressor, accelerator, and leveler concen-
trations.The composition of the validation set is presented in
Table 2.

Waveform design is a preliminary step of the plating bath
analysis utilizing voltammetry [11]. This procedure aims to
obtain waveforms which are bath specific and are designed
to produce a current response that changes linearly with the
concentration of the analyte. It is important in waveform
development to minimize the influence of the concentration
changes of components other than the analyte on the current
response of the voltammogram of the particular analyte.

Table 1: Composition of the training set solutions.

Calibration solution # Suppressor
mL L−1

Accelerator
mLL−1

Leveler
mL L−1

C1 5.00 5.00 0.38
C2 5.00 6.00 0.57
C3 5.00 7.00 0.76
C4 5.00 8.00 0.94
C5 5.00 9.00 1.13
C6 6.00 5.00 0.57
C7 6.00 6.00 0.76
C8 6.00 7.00 0.94
C9 6.00 8.00 1.13
C10 6.00 9.00 0.38
C11 7.00 5.00 0.76
C12 7.00 6.00 0.94
C13 7.00 7.00 1.13
C14 7.00 8.00 0.38
C15 7.00 9.00 0.57
C16 8.00 5.00 0.94
C17 8.00 6.00 1.13
C18 8.00 7.00 0.38
C19 8.00 8.00 0.57
C20 8.00 9.00 0.76
C21 9.00 5.00 1.13
C22 9.00 6.00 0.38
C23 9.00 7.00 0.57
C24 9.00 8.00 0.76
C25 9.00 9.00 0.94
C26 5.00 5.00 0.38
C27 7.00 7.00 0.76
C28 9.00 9.00 1.13

Table 2: Composition of the validation set solutions.

Validation solution # Suppressor
mLL−1

Accelerator
mLL−1

Leveler
mL L−1

V1 5.50 5.50 0.47
V2 5.50 7.00 0.75
V3 5.50 8.50 1.04
V4 7.00 5.50 0.75
V5 7.00 7.00 1.04
V6 7.00 8.50 0.47
V7 8.50 5.50 1.04
V8 8.50 7.00 0.47
V9 8.50 8.50 0.75

In some cases, it is possible to obtain a waveform produc-
ing voltammograms whose several portions can be utilized
for calibration calculation. Figure 1 presents a waveform
whose current response linearly varies onlywith the changing
concentration of suppressor.

http://www.eigenvector.com/
http://www.models.life.ku.dk/iToolbox
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Figure 1: Multicyclic staircase voltammograms (Δ𝐸 = 10mV, Δ𝑡 = 1ms) of the training set corresponding to various concentrations of
suppressor: 5.00 (dark blue, soln. C1 in Table 1), 6.00 (magenta, C8), 7.00 (red, C15), 8.00 (light blue, C19), and 9.00 (green, C21) mL L−1.
Magnified portion corresponding to the ninth cycle.

The voltammetric data throughout this paper are pre-
dominantly considered numerical input for chemometric
treatment aiming to select specific sections of the voltammo-
grams which are most informative for subsequent calibration
calculation. Therefore, the abscissa of the voltammograms in
this paper is the index point of the voltammogram rather
than the applied potential as is usually used. The values of
the index points of the voltammogramare transformed values
of the applied potential. The index points of voltammograms
are a linear function of the voltammetric current sampling
time. For the voltammogram of Figure 1, the current is
sampled at the end of each step of duration of Δ𝑡 = 1ms. For
instance, the 3350th point of the voltammogram is sampled
at 3.350 s of the duration of voltammetricmeasurement when
the applied potential is −208.7mV versus 𝐸Cu2+/Cu during the
forward potential sweep of 9th CV cycle. The index points
of the voltammogram are independent variables which are
necessary for a unique identification of variables and relevant
for subsequent chemometric selection. The applied potential
values are not unique identifiers of independent variables, as
the same potential values are applied several times during
multicyclic voltammogram. For instance, the same potential
value of −208.7mV versus 𝐸Cu2+/Cu is also applied at 3.398 s
of the voltammograms of Figure 1 corresponding to 3398th
index point of voltammogram during the reverse potential
sweep of 9th CV cycle. The relationship between applied
potential values and index point of voltammograms/time is
presented in upper left corner of Figure 1. In order to present
the entire voltammograms in Figure 1, scaling was applied
which prevents the detailed quantitative visual analysis of the
voltammograms. However, one can notice cyclical pattern
among these voltammograms. Each of the voltammograms
consists of ten distinctive cycles. Figure 1 also shows the

magnified portion of voltammograms focusing on the ninth
of the ten cycles.

The recorded current corresponds to the effect of suppres-
sor on copper ion reduction (index points 3340–3400) and
on copper metal oxidation (index points 3420–3460). Exam-
ination of the voltammograms shown in Figure 1 enables
estimation that the current response in some portions of
these voltammograms is linearly dependent on concentration
of suppressor, while being independent of concentration
variations of other bath constituents (see composition on C1,
C8,C15,C19, andC21 solutions in Table 1). Analogous conclu-
sions can be drawn while visually analyzing the individually
magnified last five cycles of voltammograms of Figure 1.

3.2. Determination of the Optimum Ranges for a Calibration

3.2.1. SIMCA Modeling Power and LSR. Wikiel et al. [11] and
Jaworski et al. [12] introduced a technique which proved to
be helpful for selecting the range(s) of voltammograms to be
taken for further decomposition and regression analysis.This
method was employed [12] for selecting applicable ranges
of various voltammograms to be subsequently analyzed
by hierarchical and multiblock decomposition/regression
techniques. This paper focuses on the applicable points
of voltammograms of a single waveform (Figure 1). The
method of determination of the optimum ranges of voltam-
mograms presented in this paper is significantly improved
and extended over that presented in [11–13] by introducing
a two-step (whole voltammogram, then optimization within
individual blocks) SIMCA-based selection by confirming
the ranges by several independent approaches to exclude
artifacts.

The initial stage of determining of the most promising
ranges of the voltammogram to be taken for the calibration
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calculation utilizes two independent procedures applied for
each index point of that voltammograms within the training
set data:

(i) correlation calculation based on the univariate LSR,
(ii) SIMCA -based on calculation of modeling power

[20].

The LSR-based method provides information about
which range(s) of the voltammogram shows the greatest
correlation with the concentration of the component to be
calibrated. It also determines the range where the current
responses depend only on changes in concentration of the
component of interest. In this method, the regression equa-
tion for each index point of the training set voltammograms
of Figure 1 is calculated by the least squares method. The
regression equation obtained is employed to self-predict
concentrations for the training set. The self-predicted con-
centrations are correlated with the corresponding actual con-
centrations within the training set. The squared correlation
coefficients, 𝑟2𝑗 , are calculated for each 𝑗th point of the
voltammogram.

The SIMCA-based method gives information about
noise-to-signal ratio for each point within the chosen range.
This method [20] utilizes Principal Component Analysis
(PCA) calculated residuals to obtain the modeling power, 𝑅,
for each 𝑗th point of the voltammogram:

𝑅𝑗 = 1 − 𝑟V𝑗 (error)𝑟V𝑗 (x) , (1)

where 𝑟V𝑗(error) is the square root of the residual variance
for the number of factors of 𝐹 for the 𝑗th point of the
voltammogram:

𝑟V2𝑗 (error) = ∑𝐼𝑖=1 𝑒2𝑖,𝑗(𝐼 − 𝐹 − 1) , (2)

where 𝑒𝑖,𝑗 is the element of the matrix of residuals and 𝐼 is
the number of samples of the training set (in the example
discussed throughout the paper, 𝐼 = 84).𝑟V𝑗(x) is the square root of the meaningful variance for𝑗th point of the voltammogram:

𝑟V2𝑗 (x) = ∑𝐼𝑖=1 𝑥2𝑖,𝑗(𝐼 − 1) , (3)

where 𝑥𝑖,𝑗 is the element of the training set matrix X.
The modeling power, as implemented in the initial stage

of the method for selection of optimum ranges, provides
information about noise-to-signal ratio for each point of the
voltammogram. As 𝑅𝑗 approaches 1, this feature becomes
highly relevant; conversely, as it approaches 0, the feature
approaches zero utility in the model [20].

Figure 2 presents the parameters 𝑟2𝑗 and 𝑅𝑗, calculated for
the entire voltammograms (all points of the voltammograms)
of the waveform of Figure 1 recorded for the training set. It
can be seen that values of both parameters 𝑟2𝑗 and 𝑅𝑗, tend
to change abruptly with sharp oscillations between extremes
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Figure 2: Squared coefficient of correlation-for-suppressor-
concentration (𝑟2) (solid black line) and SIMCA modeling power(𝑅) (𝐹 = 1) (solid blue line with diamonds) calculated for entire
voltammograms of waveform presented in Figure 1.

related to useful and useless values for both modeling power
and regression. 𝑅𝑗 parameters were calculated based on the
PCA decomposition using the number of factors (𝐹 = 1)
as there is expected to be only one predominant source
of variance in the selected ranges, namely, the changing
concentration of suppressor. The preliminary selection of
ranges of the voltammogram (Table 3) was conducted based
on the criteria that the points of the voltammogram within
each range should changemonotonously and that every value
of 𝑟2𝑗 and 𝑅𝑗, within the range must not fall below 0.95 and
0.80, respectively. Also, each selected range was continuous,
including all points of the voltammogramwithin the limits of
the range.

The subsequent step (second step of the SIMCAmodeling
power) is to determine the optimum ranges of voltam-
mograms based solely on the modeling power technique.
The voltammograms of the training set for each of the𝐾 = 14 preliminarily selected ranges (Table 3) are then
analyzed individually. In other words, separate modeling
power analyses (each requiring another PCA decomposition)
are applied individually for each of the ranges rather than
for all of the points of the voltammogram (as the data of
Figure 2 was obtained). Figure 3 presents modeling power
values calculated individually for each of 𝐾 = 14 ranges of
Table 3 as compared to modeling power values calculated for
the whole voltammogram.

One can notice in Table 3 that the average 𝑅 values calcu-
lated within each range obtained by individual decomposi-
tion of each of the ranges (Figure 3) are systematically higher
than average𝑅 values corresponding to the same points of the
voltammogrambut obtained by a decomposition of the entire
voltammogram (Figure 2). This has an obvious explanation,
as the PCA decomposition of the entire voltammogram
needs also to model the variances within the portion of the
voltammograms which have no utility for the suppressor
calibration (e.g., those showing very low values of squared
correlation coefficient) (Figure 2).The lower values of average𝑅 obtained for the entire voltammogram decomposition
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Table 3: Preliminary estimation of the ranges of points of staircase voltammogram, variables 𝑗, of Figure 1 selected based on results of Figure 2.
The potentials are expressed versus 𝐸Cu2+/Cu reference electrode.

Data range index, 𝑘 Signal
Range of

voltammogram,
variables 𝑗

Width,
J

𝐸begin,
mV

𝐸End
mV

Average R (see (1)),
whole scan

decomposition

Average R (see (1)),
individual range
decomposition(1) Reduction 1401–1430 30 −268 −338 0.9414 0.9804(2) Oxidation 1476–1496 21 122 322 0.9204 0.9309(3) Reduction 1785–1826 42 −197 −287 0.9592 0.9663(4) Oxidation 1865–1888 24 102 333 0.9078 0.9085(5) Reduction 2173–2219 47 −168 −268 0.9379 0.9542(6) Oxidation 2256–2279 24 102 333 0.8871 0.9005(7) Reduction 2562–2612 51 −208 −248 0.9110 0.9455(8) Oxidation 2645–2670 26 82 333 0.8599 0.8895(9) Reduction 2952–3005 54 −137 −228 0.8867 0.9375(10) Oxidation 3038–3062 25 102 343 0.8518 0.8858(11) Reduction 3344–3399 56 −148 −198 0.8703 0.9351(12) Oxidation 3428–3454 27 92 353 0.8447 0.8755(13) Reduction 3734–3793 60 −134 −168 0.8564 0.9280(14) Oxidation 3819–3846 28 92 363 0.8436 0.8712
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Figure 3: SIMCA modeling power (𝑅) (𝐹 = 1) calculated indi-
vidually and independently from other ranges for each of 𝐾 ranges
(Table 2). Ranges corresponding to reduction and oxidation signals
are denoted with blue diamonds and green circles, respectively.

are the result of the compromise taken by decomposing
unselected data (ranges) and therefore incorporating unnec-
essarily additional numerical noise. However, the 𝑅𝑗 values
for some 𝑗 variables (usually for those close to the beginning
or end of the range) obtained via individual decomposition
of the preselected ranges may be lower than corresponding𝑅𝑗 values obtaining via decomposition of entire voltammetric
data (e.g., see Figure 3; several last variables of 13th range
are of lower 𝑅𝑗 than 0.80). The individual selection of the
ranges of voltammogram is shown in Table 4.This secondary
selection was achieved by individually analyzing modeling
power values for each of 𝐾 = 14 ranges and by selecting
points of the voltammograms corresponding to the values of𝑅 which must not be lower than 0.85.

As the values of modeling power, calculated via PCA
decomposition with a single factor, presented in Figure 3
approach one, it means that there is single predominant,
orthogonal variance within that data. This variance is caused
by the varying concentration of suppressor, as the squared
correlation coefficients calculated by LSR for these ranges of
voltammograms are also approaching unity (Figure 2). This
predominant variance is a focal point of the calculation of
the analytical model aiming to predict the concentration of
suppressor. Other, relatively small orthogonal variances are
also present in the data. They may be worth of exploring
for the final tuning of the analytical model but it should
be determined by cross- and external validations whether
they would be worth incorporating into the analytical model
optimized for suppressor-caused variance only. The trade-
off may be an unnecessary incorporation of numerical noise
which lowers the predictive ability of the model. In order to
avoid such a scenario, the final tuning of the model needs to
be conducted based on external validation.

3.2.2. Uninformative Variable Elimination. The uninforma-
tive variables (index points of voltammogram) increase the
bias and imprecision of the latent variables [21, 22]. While
introducing UVE-PLS, Centner et al. [21] pointed out “in the
original PLS method all variables are used; PLS is a so-called
full-spectrum method. However, one can wonder whether it
is useful to include all variables, because some of themmay be
noisy and/or contain nonrelevant information.” Elimination
of uninformative variables leads to more parsimonious and
more robust models and to better prediction [21, 22]. In
the UVE method the random (and therefore uninformative)
variables are appended to the original data matrix X(𝐼×𝐽)

resulting inmatrixZ(𝐼×2𝐽) to calculate a reliability criterion for
each original and each added random variable 𝑗 and to retain
only the experimental variables for which the value of the
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Table 4: Individual (range by range) selection of the ranges of points of staircase voltammogram, variables 𝑗, of Figure 1 determined based
on results of Figure 3. The potentials are expressed versus 𝐸Cu2+/Cu reference electrode.

Data range index, k Signal
Range of

voltammogram,
variables 𝑗

Width,𝐽 𝐸begin,
mV

𝐸End
mV

(1) Reduction 1401–1430 30 −268 −338(2) Oxidation 1478–1496 19 142 322(3) Reduction 1785–1826 42 −197 −287(4) Oxidation 1871–1888 18 162 333(5) Reduction 2173–2219 47 −168 −268(6) Oxidation 2263–2279 17 172 262(7) Reduction 2563–2612 50 −158 −248(8) Oxidation 2655–2670 16 182 333(9) Reduction 2955–3002 48 −168 −228(10) Oxidation 3048–3062 15 202 343(11) Reduction 3345–3395 51 −158 −238(12) Oxidation 3441-3454 14 222 353(13) Reduction 3735–3786 52 −148 −238(14) Oxidation 3834–3846 13 242 363

reliability criterion is larger than the values obtained for the
random variables. The appended artificial random variables
are multiplied by a small constant (1 × 10−10) in order to
have a negligible influence on the model while retaining the
same random variation within artificial variables. The goal of
UVE-PLS andUVE-PCR is not variable selection in the sense
that one tries to find the best subset of variables for fitting
or prediction of a model but elimination of those variables
that are useless. Therefore, UVE-PLS (UVE-PCR) is not an
equivalent but a supplementary technique to the coupled LSR
and SIMCA modeling power.

Because the latent variables are liner combinations of the
original ones, the PLS and PCR models can be expressed as

y = Z × b∗ + e, (4)

where b∗ is the regression vector described for the PCR by
the following equation:

b∗ = B × 𝛽, (5)

where𝛽 is the vector of Inverse Least Squares (ILS) regression
coefficients for PCR:

𝛽 = (A𝑇A)−1 A𝑇y. (6)

For each 𝑗th variable the reliability regression criterion for
UVE-PCR [23] and UVE-PLS [21, 22] is defined as

𝑐𝑗 = 𝑏∗𝑗𝑠 (𝑏∗𝑗 ) , (7)

where 𝑏∗𝑗 is a mean and 𝑠(𝑏∗𝑗 ) is a standard deviation from
the vector of 𝐼 𝑏∗𝑖𝑗 coefficients obtained by (leave-one-out)
jackknifing (𝑖 = 1, . . . , 𝐼).
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Figure 4: Regression reliability, 𝑐 (see (7)), calculated by UVE-PLS
(blue diamonds) and UVE-PCR (red solid line) (both for 𝐹 = 1) for𝐽 = 3911 points of mean centered voltammogram augmented by 𝐽
artificial random variables.

The UVE-PLS and UVE-PCR (number of latent variables
for decomposition, 𝐹 = 1) were applied to the all 𝐽 points of
the voltammograms of Figure 1 and augmented 𝐽 variables
corresponding to random noise data.The results obtained for
regression reliability are shown in Figure 4.The performance
of UVE-PLS and UVE-PCR is equivalent.

For each variable 𝑗, the greater the absolute value of
regression reliability 𝑐, the more informative the 𝑗th variable
for the model. By visual comparison of data in Figures 2
and 4, it can be seen that the elevated absolute values of
regression reliability overlap with modeling power and 𝑟2
approaching unity. The cut off criterion is determined by the
maximum absolute value of regression reliability calculated
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Table 5: Extreme values of parameters calculated for individually selected ranges of points of staircase voltammogram, variables 𝑗, (Table 4)
using UVE-PLS, UVE-PCR, PLS-VIP, IPLS, IPCR, and MWPLS for 𝐹 = 1.
Data range
index, k

Range of
voltammogram/

variables j

UVE-PLS
Min Abs(c)

UVE-PCR
Min Abs(c) Min PLS-VIP

IPLS
Max

RMSECV

IPCR
Max

RMSECV

MWPLS
Max

RMSECV(1) 1401–1430 615 606 1.47 .350 .350 .313(2) 1478–1496 331 334 1.47 .356 .357 .334(3) 1785–1826 424 423 1.47 .245 .245 .268(4) 1871–1888 281 281 1.47 .274 .275 .301(5) 2173–2219 335 334 1.47 .224 .225 .237(6) 2263–2279 250 251 1.47 .276 .278 .276(7) 2563–2612 285 285 1.48 .286 .286 .213(8) 2655–2670 231 232 1.48 .327 .328 .252(9) 2955–3002 237 241 1.48 .131 .131 .174(10) 3048–3062 225 227 1.47 .221 .223 .232(11) 3345–3395 230 230 1.49 .162 .162 .162(12) 3441–3454 224 226 1.47 .227 .229 .214(13) 3735–3786 222 222 1.49 .237 .237 .142(14) 3834–3846 225 226 1.47 .317 .317 .198

for the random variables (right half of the Figure 4) which
are 32.6 and 31.7 for UVE-PLS and UVE-PCR, respectively.

Table 5 lists in columns three and fourminimum absolute
values of regression reliability calculated for individually
selected ranges of variables 𝑗 (Table 4), for UVE-PLS and
UVE-PCR, respectively.The sameminimum value of 222 was
obtained for range of 𝑘 = 13 with both methods, UVE-PLS
and UVE-PCR. As this value lays significantly above the cut
off level, both methods UVE-PLS and UVE-PCR confirm the
correctness of choosing the ranges of Table 4 for building of
an analytical model.

3.2.3. Variable Importance in the Projection. PLS-VIP is a
combined measure of how much a variable contributes to
describe the two sets of data: the dependent (y) and the
independent variables (X) [24, 25], which in the studied case
correspond to concentration of suppressor and voltammetric
current values, respectively. For the number of factors 𝐹 =
1, the expression describing VIP value for the 𝑗th variable is
given by

VIP𝑗 = √𝐽 𝐽∑
𝑗=1

( 𝑤𝑗‖w‖)2, (8)

where 𝑤𝑗 is the PLS weight value for variable j and ‖w‖ is
the Frobenius norm of the weight vector w defined by the
following expression:

‖w‖ = √ 𝐽∑
𝑗=1

𝑤2𝑗 . (9)

The weights in a PLS model reflect the covariance
between the independent and dependent variables and the
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Figure 5: Variable Importance in the Projection by PLS (PLS-VIP)
(see (8)) calculated for 𝐽 = 3911 points of autoscaled voltammograms
for 𝐹 = 1.
inclusion of the weights is what allows VIP to reflect not
only how well the dependent variable is described but also
how important that information is for the model of inde-
pendent variables. Since the average of squared VIP scores
equals unity, values smaller than one indicate nonimportant
variables.

The PLS-VIP (number of latent variables for decomposi-
tion,𝐹 = 1) was applied to all points of the autoscaled voltam-
mograms of Figure 1 and autoscaled dependent variables y
(concentrations). The results obtained for VIP are shown in
Figure 5 and Table 5. All index points of the voltammogram
(variables 𝑗) preselected with modeling power and LSR
(Table 4) are also of highest importance in the projection
based on PLS-VIP analysis, with the minimum value of VIP
of 1.47 obtained for numerous individually selected ranges
(Table 5). As this value lies significantly above the cut off
level of one, the application of PLS-VIP also confirms the
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Figure 6: RMSECV calculated with IPLS for 125 nonoverlapping
intervals of width of 31 variables and 1 interval of 36 variables of
mean centered voltammograms for 𝐹 = 1.
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Figure 7: RMSECV calculated with IPCR for 125 nonoverlapping
intervals of width of 31 variables and 1 interval of 36 variables of
mean centered voltammograms for 𝐹 = 1.
correctness of choosing the ranges of Table 4 for building of
an analytical model.

3.2.4. Interval Partial Least Squares and Interval Principal
Component Regressions. In IPLS [26] and IPCR the voltam-
mograms are divided into a number of nonoverlapping,
consecutive intervals and PLS and PCRmodels are developed
for each of these intervals. The aim is to find intervals
which give better predictions than the predictions obtained
when using the full voltammogram. The comparison of
interval performance is mainly based on the Root Mean
Square Error of Cross-Validation (RMSECV). The RMSECV
values obtained for the training set voltammograms with
IPLS and IPCR for the arbitrarily chosen interval of the
width of 31 points of the voltammograms (variables 𝑗) is
presented in Figures 6 and 7, respectively. The points of
the voltammograms were divided into 125 nonoverlapping
consecutive intervals and an addition last interval with a
width of 36 to accommodate all 𝐽 = 3911 index points of
voltammogram (125 × 31 + 36 = 3911).
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Figure 8: RMSECV calculated with MWPCR for a moving one-
step-at-a-time interval of 31 points of mean centered voltammo-
grams for 𝐹 = 1.

It can be seen in Table 5 that the ranges of points
selected for calibration for the voltammograms in Table 4
correspond to the lowest values of RMSECV in Figures 6
and 7. However, there are two problems with using IPLS
and IPCR for variable selection related to the specificity of
voltammetric data of Figure 1. First, some of the selected
ranges in Table 4 (especially that for oxidation processes) are
very narrow (𝑘 = 14, 𝐽 = 13, 0.33% of total number of variables
J).The second problem is related to the fact that these narrow
ranges are neighboring points of voltammograms of very
poor correlation andhave no utility to themodel (Figures 2, 4,
and 5). These two facts may lead to a situation where there is
insufficient representation of “proper” variables in a selected
interval to obtain a RMSECV value lower than that obtained
for cross-validation of entire voltammogram.

In order to address the issues outlined in the paragraph
above, MWPLS was implemented. This technique allows a
sufficient representation of “proper” variables neighboring on
both sides, the variable for which the RMSECV is calculated.
The results obtained with MWPLS are presented in Figure 8.
One can notice in Table 5 that even the maximum values
of RMSECV obtained with the MWPLS for the individually
selected ranges of Table 4 correspond to the minor values of
the graph of Figure 8. All three methods, IPLS, IPCR, and
MWPLS, confirm the selection ranges in Table 4.

There must be an agreement about the outcome of the
selection of variables for all methods presented (LSR, two-
step SIMCA modeling power, UVE-PLS (UVE-PCR), PLS-
VIP, IPLS, IPCR, and MWPLS) in order to accept these
variables for further model development. As Andersen and
Bro [31] pointed out, it is always instructive to compare
the results from several types of variable selection to assess
whether they complement each other.

3.3. Selection of theMost SuitableDataDecompositionMethod.
Multivariate data decomposition techniques are employed
in chemometrics in order to compress vast amount of data
while extracting the significant information. The techniques
commonly used can be divided into three major groups:
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(i) two-way techniques: PCA and PLS; (ii) hierarchical and
multiblock techniques: HPCA [19], HPLS [19], CPCA [19],
and MBPLS [19]; and (iii) multiway techniques: Generalized
Rank Annihilation Method (GRAM) [32], PARAlell FACtor
Analysis (PARAFAC) [32], Multilinear PLS (N-PLS) [32],
and Tucker models [32]. There is also a hybrid method
calledMultiway PCA (MPCA) [33] described as “poorman’s”
multiway technique [34] as it relies upon a two-way PCA and
rearrangement by unfolding the original multiway data.

The structure of the voltammetric data of the training
set to be decomposed is described in Table 4. It consists
of fourteen (𝐾 = 14) blocks, each of them containing 𝐼 =
84 samples. The number of variables of each block 𝐽 varies
from 13 to 52 depending on the block number 𝑘. As the
data consists of several blocks, the two-way methods, PCA
and PLS, are not applicable. By extensive selection, this data
could be arranged into a three-way array of the dimensions(𝐼 × 𝐽min × 𝐾), where 𝐽min would correspond to that of the
narrowest (𝑘 = 14) range variables 𝐽𝑘= 14 = 13. For instance,
in order to fit such a three-way array every fourth variable
would need to be extracted from the widest range of 𝐽 = 52
points. Such a selection would mean a loss of 75% of the data
for the widest range already at the preliminary stage of the
data arrangement (prior to the actual analysis).

Qualitatively, the data of Table 4 can be divided into
two distinct groups, each consisting of seven ranges. The
division is based on the two electrode processes investigated:
reduction and oxidation. Although quantitatively different
(Figure 1), the qualitative difference among the data of various
blocks investigating, for instance, oxidation, may not be
predominant enough to consider these groups as members
of different slab, a layer (submatrix) of a three-way array.
Application of multiway techniques for the higher number of
factors for insufficiently dissimilar slabs may result in some
factors to be highly correlated.

One may consider application of MPCA for decompo-
sition of the multiblock training data of Table 4 following
their unfolding into two-way matrix X of the dimension(𝐼 × ∑𝐾𝑘=1 𝐽𝑘). However, even after columnwise autoscaling,
the variables will not be equally (or controllably) represented.
The data of the wider blocks will have a greater representation
than those of the narrower ones.

The hierarchical and multiblock data decomposition
techniques [12, 19] calculate for each of 𝐾 blocks the block
scores and block loadings using regular two-way decomposi-
tion techniques. Subsequently, all block scores are combined
into the super scores prior to the regression. The hierarchical
and multiblock data decomposition techniques are the most
suitable to be employed for treatment of voltammetric data
defined in Table 4. Application of these techniques to the
voltammetric data for suppressor avoidsmaking unnecessary
compromises or risking the accuracy and soundness of the
data representation, which otherwise may be needed when
arranging data in three-way arrays. The scaling employed
in this paper provides equal representation of each of K =
14 blocks, regardless of the width of that blocks (𝐽𝑘). Before
applyingCPCA,HPCA,HPLS, andMBPLS, the data is block-
scaled by dividing by the square root of the number of

variables in the block in order to equalize the representation
of various blocks [19]:

X𝑘 = X0𝑘√𝐽𝑘 . (10)

Westerhuis et al. [19] derived an algebraic proof of the
equivalence of the CPCA and MBPLS to the standard PCA
and PLS, respectively, when the same variable scaling was
applied for these methods. Westerhuis et al. [19] recom-
mended utilizing the standard PCA and PLS methods which
require less computation and give a better estimation for
the scores in cases where there are missing data because
correlations among all variables can be used for estimation of
the scores instead of only the correlations among the variables
in the specific block.

3.4. Validation of Analytical Models. Calibration calculations
were conducted using comparatively CPCR, HPCR, HPLS,
and MBPLS methods for the training set data (𝐼 = 84
samples). The predictive ability of the calibration models was
verified on the external validation set containing voltammo-
grams recorded for 𝐼𝑉 = 27 different samples. Prior to being
projected on the calibration model, the validation set was
scaled using the scaling parameters of the training set. The
optimum number of factors (𝐹) was determined for each
of the methods based on the analysis of Predictive Residual
Sum of Squares (PRESS) values calculated for the residual
concentrations of the external validation set employing the
following expression:

PRESS𝑓 = 𝐼𝑉∑
𝑖=1

(𝑦𝑂𝑉,𝑖 − 𝑦𝑂𝑉,𝑓,𝑖)2 , (11)

where 𝑦𝑂𝑉,𝑖 describes the original (not centered) actual con-
centration of 𝑖th sample in the validation set, while 𝑦𝑂𝑉,𝑓,𝑖
denotes the rescaled predicted concentration using 𝑓-factor
decomposition of 𝑖th sample of the validation set. The results
obtained are presented in Table 6.

Additionally, the predictive performance of the CPCR,
HPCR, HPLS, and MBPLS analytical models was compara-
tively assessed by determining the values of the following two
derived parameters: mean no-sign relative-to-target error of
prediction and mean no-sign relative error of prediction
(Table 6). The mean no-sign relative-to-target error of pre-
diction (MNSRTEP) is defined by the equation

MNSRTEP = 𝐼𝑉∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑦𝑂𝑉,𝑖 − 𝑦𝑂𝑉,𝑖󵄨󵄨󵄨󵄨󵄨𝐼𝑉𝑦𝑂𝑡 × 100%, (12)

where 𝑦𝑂𝑡 is the target-level concentration. In the case of
the specific bath composition in this investigation the target
concentration of accelerator was 7.00mLL−1.

Themean no-sign relative error of prediction (MNSREP)
is described by the following equation:

MNSREP = 𝐼𝑉∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑦𝑂𝑉,𝑖 − 𝑦𝑂𝑉,𝑖󵄨󵄨󵄨󵄨󵄨𝐼𝑉𝑦𝑂𝑉,𝑖 × 100%. (13)
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Table 6: 𝑟2, PRESS, MNSRTEP, and MNSREP calculated for external validation set for various calibration models for different number of
factors. Selected optimum parameters are bolded.

Decomposition and regression Technique # of factors, F
(latent variables) 𝑟2 PRESS MNSRTEP MNSREP

CPCR 1 0.9948 0.5475 1.6381 1.7168
CPCR 2 0.9971 0.1972 1.0765 1.0820
CPCR 3 0.9971 0.1859 1.0152 1.0019
HPCR 1 0.9948 0.5470 1.6375 1.7161
HPCR 2 0.9972 0.1969 1.0761 1.0779
HPCR 3 0.9972 0.1892 1.0393 1.0302
HPLS 1 0.9954 0.5056 1.6003 1.6746
HPLS 2 0.9978 0.1855 1.0824 1.1048
HPLS 3 0.9967 0.3397 1.4312 1.5598
MBPLS 1 0.9949 0.5423 1.6323 1.7103
MBPLS 2 0.9969 0.2039 1.0997 1.1111
MBPLS 3 0.9890 0.6846 1.8698 2.0860

While examining the results in Table 6, one can see based
on PRESS, MNSRTEP, and MNSREP values that the vast
majority of the total variance has already been captured by
the first factor. The parameters 𝑟2, PRESS, MNSRTEP, and
MNSREP have practically the same values for 𝐹 = 1 for all
three techniques: CPCR, HPCR, and MBPLS. Although the
values obtained for HPLS are different than that for the other
methods, the difference is not significant.The introduction of
a second factor/latent variable introduces slight improvement
of the values of parameters PRESS,MNSRTEP, andMNSREP,
along with improvement of correlation. The incorporation
of the third factor/latent variable into the decomposition
worsens the values of all parameters: 𝑟2, PRESS, MNSRTEP,
and MNSREP for MBPLS and HPLS. Usually, the optimum
number of factors/latent variables should be determined
based on the first local minimum of the PRESS𝑓 value. In
the specific case discussed, the improvement of the (already
good) values of parameters PRESS,MNSRTEP, andMNSREP
by the addition of second factor justifies using of number
of factors 𝐹 = 2 for final tuning of the analytical model.
Therefore, our conclusion is to employ two factors/latent
variables for building of the analytical model, regardless of
the chosen chemometric technique for data decomposition.
The selected optimum parameters are presented in bold in
Table 6.

The performance of all four techniques is equivalent to
the exception of theHPLS andMBPLS results for𝐹= 3, which
are worse than that of the other methods. On the other hand,
the performances of HPLS and MBPLS for 𝐹 = 3 for take-
one-out cross-validatory calculation within the training set
(Table 7) are superior (especially for MBPLS) as compared
to other methods for the same number of factors/latent
variables used for decomposition. Usually, a combination of
better cross-validatory (or self-prediction) performance with
worse predictive performance of external data is evidence of
overfitting of the model. The PLS-based models tend to be
more overfit than the PCA-based ones. Again, by keeping
the number of factors low, one can significantly reduce the

Table 7: 𝑟2 and PRESS results for take-one-out cross-validation
within the training set for 𝐹 = 3.
Decomposition and
regression Technique

# of factors, F
(latent variables) 𝑟2 PRESS

CPCR 3 0.9929 1.2435
HPCR 3 0.9929 1.2375
HPLS 3 0.9938 1.0798
MBPLS 3 0.9964 0.6294
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Figure 9: Actual (black) and predicted with CPCR (red), MBPLS
(yellow), HPCR (blue), and HPLS (green) concentrations of sup-
pressor for external validation set for 𝐹 = 2.
probability of such occurrence (see the practically equivalent
performance of all techniques for 𝐹 = 1 and for 𝐹 = 2 in
Table 6).

Figure 9 presents a comparison of the actual concentra-
tions of suppressor with those predicted by CPCR, MBPLS,
HPCR, and HPLS for the external validation set of 27
samples for 𝐹 = 2 demonstrating equivalent performance
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of all techniques and providing evidence for the absence of
artifacts in the selected voltammetric data.

4. Conclusions

This paper has introduced several variable selection tech-
niques (UVE-PLS, UVE-PCR, PLS-VIP, IPLS, IPCR, and
MWPLS) to the field of electroanalysis which are well
established for analysis of spectroscopic data. Specifically, the
rigorous, multistep procedure of selecting the blocks of the
voltammogram to be used subsequently for analytical model
development based on LSR, two-step SIMCA modeling
power, UVE-PLS, UVE-PCR, PLS-VIP, MWPLS, IPLS, and
IPCR focused on individual blocks was introduced. To ensure
feasibility of the model, several variable selection methods
were utilized comparatively to verify that their results do
not contradict each other. Detailed criteria for choosing
the decomposition technique proper for the data in order
to compress the multivariate data and reasonably extract
information were presented.The optimization of the number
of factors based on external validation and cross-validation
was presented. As a general recommendation, a few variable
selection methods need to be implemented concurrently for
the investigated multivariate data set, as their consistent-to-
each-other performance provides an evidence for an absence
of artifacts in that data. All themethodology for data selection
can be automated and ultimately can lead to a fully automatic
data selection process that would reduce the time and effort
of method development significantly.

Electroanalytical chemists would substantially benefit
from utilization of the variable selection methods allowing
them to focus only on relevant portions of voltammetric
responses while eliminating those uninformative. Other-
wise, the incorporation of the irrelevant variables (both
random and systematic) into a multivariate model leads to
less precision (higher variance due to imbedded error). By
analogy to other disciplines of analytical chemistry, vari-
able selection should become a routine step of multivariate
data pretreatment in electroanalytical chemistry by utilizing
existing chemometric techniques. This paper proves that
existing variable selection methods can be transferred to
electroanalytical data.
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