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This work is intended to define a new possiblemethodology for the TiO
2
doping through the use of an electrochemical deposition of

cobalt directly on the titaniumnanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution.
This method does not seem to cause any influence on the nanotube structure, showing final products with news and interesting
features with respect to the unmodified sample. Together with an unmodified photoconversion efficiency underUV light, the cobalt
doped specimen reports an increase of the electrocatalytic efficiency for the oxygen evolution reaction (OER).

1. Introduction

The publication of the fundamental work of Gong et al. [1], in
which the authors created the basis for the development of a
new synthesis model for the titania nanotubes based on the
anodic oxidation of a titanium foil in fluoride based solutions,
opened the way to a new methodology able to combine a
simplicity of preparation of the material with a complete
control of physical characteristics of the nanosystem [2–
5]. Besides, its particular geometric shape is particularly
appropriate for application as photo-anode in the photo-
electrolysis of water [6]. For this reason, many studies have
been directed towards this field, obtaining elevated values of
UV photoconversion efficiency for these nanosystems [7, 8].
In the meanwhile, a large range of different applications
for this material has been discovered. In fact, for example,
it is reported that the electrical resistance of the titania
nanotubes was highly sensitive to the chemisorbed hydrogen
molecules hydrogen sensing [9, 10], creating a new route in
the hydrogen sensing research field [11, 12]. But many other
similar examples of the wide versatility of the TiO

2
nanotube

arrays are available in literature, as the dye-sensitized solar
cells [13–17], lithium batteries [18], and also in different
biological and medical researches, like the osteoblast growth
[19–22] or drug elution [23–25]. As regards the application
of the TiO

2
nanotube arrays as photo-electrodes for water

photoelectrolysis, it is important to emphasize that although
many important results have been reached in this field, the
commercialization of such nanosystem is still far because of
the high band gap of titania, which limits the light adsorption
only to limited UV region [6]. In addition, also the titania
electrocatalytic activity for the OER is very low if compared
with that obtained on conventional metallic electrodes (Pt,
Ni, etc.). These problems limit the use of this material due to
the low current density produced both in conventional mode
or in photo-assistedmode. For this reason, a different strategy
based on the use of cocatalyst able to enhance the activity for
the O
2
evolutionmaintaining the photo-activity constant can

be useful.This type of electrode could be used indifferently in
a photo-assisted or in a conventional electrolyser in absence
or in the presence of a UV light source. In the past, most
researchers focused their attention on the doping of these
nanostructures mainly in order to shift the light absorption
to lower energy region [26–39]. As alternative, the use of
cocatalyst to enhance reactivity was first observed for the
photoconversion of H

2
O to H

2
and O

2
using the Pt-TiO

2

system [40]. The addition of metals to a semiconductor can
change the photocatalytic process by changing the semicon-
ductor surface properties.Themetal can enhance the yield of
a particular product or the rate of the photocatalytic reaction.
On the other side, the metal can be important also because
of its own electrocatalytic activity. In our case, the functions

Hindawi Publishing Corporation
International Journal of Electrochemistry
Volume 2014, Article ID 904128, 7 pages
http://dx.doi.org/10.1155/2014/904128



2 International Journal of Electrochemistry

of oxidation cocatalyst are applied to O
2
evolution from the

electrocatalytic water oxidation. Representative water oxida-
tion inorganic cocatalysts include ruthenium oxide, cobalt
oxide, and iridium oxide [41]. Deposition of IrO

𝑥
, CoO

𝑥
, and

RuO
𝑥
cocatalysts on n-semiconductors seems all to enhance

the activity for O
2
evolution and CoO

𝑥
was found to be

the best one. As example, Surendranath et al. described the
self-assembly of a highly active cobalt-based oxygen evolving
catalyst that forms as a thin film on inert electrodes when
aqueous solutions of Co2+ salts are electrolyzed in presence
of phosphate or borate [42]. These authors evidenced that
this catalyst can be interfaced with light absorbing and
charge separating materials to affect photoelectrochemical
water-splitting. In addition, it can be formed in situ under
mild conditions on a variety of conductive substrates and it
exhibits high activity at high pH and room temperature.

In the past, Shrestha et al. loaded self-organized TiO
2

nanotubes grown by anodization of Ti-substrate in glycerol-
water electrolyte containing fluoride with Ni oxide nanopar-
ticles by a simple chemical bath precipitation technique.
Unfortunately, the photocurrent inUV light region decreased
significantly which was possibly due to the blockage of UV
light by Ni oxide particles [43].

In this work, we electrodeposited very small amount
of cobalt on TiO

2
nanotubes grown by anodization of Ti-

substrate in ethylene glycol electrolyte containing fluoride,
using an in situ method already tested in the past on nickel
anodes [44, 45]. We have found that cobalt-titania nanotube
arrays own different features with respect to the starting
structure. The photoconversion efficiency did not change;
the energy gap and the levels of conduction and valence
band were equal. In contrast, the catalytic activity for the
OER increased greatly at the same level of a conventional
metallic electrode.We retain the fact that thismethodology, if
optimized and deepened, could open a new route to the best
effective doping of the titania nanotube arrays able to work
both in photo-assisted mode and conventional mode.

2. Experiment

2.1. Materials and Photo-Electrode Preparation. A small disk
of commercially pure grade-3 titanium (Titania, Italy) has
been used as substrate for the nanotube growth. The cir-
cular sample had a diameter of 15mm with a thickness of
0.5mm and was arranged to show an active circular area
of 1 cm2. The unmodified sample (TiO

2
/Ti) was prepared

with the methodology previously developed in different
articles [8, 44]. Briefly, after 3min. pickling in an HF (Carlo
Erba)/HNO

3
(Carlo Erba) solution made by a volumetric

ratio of 1 : 3 and diluted in deionised water until 100mL,
the titanium disks have been set in a three-electrode cell
containing a 1M KOH solution (Carlo Erba) and subjected
to a prefixed and optimized density current (1mA/cm2)
generated by a potentiostat/galvanostat (Solartron 1286) for
3min. The counter-electrode was a platinum sheet, while
the reference was a standard calomel electrode (SCE). The
anodic growth of the nanotube arrays has been obtained
in a two-electrode cell with a platinum counter-electrode,
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Figure 1: Scheme of anodization system.

using a glycol ethylene (Ashland) solution with 1%wt. H
2
O

and 0.2%wt. NH
4
F and applying 60V for 3 h by means of a

potentiostat/galvanostat PS251-2 (Aldrich). The current has
been measured with a Keithley 2000 multimeter and has
been acquired with a MadgeTech Volt101 digital recorder
placed in series with a calibrated resistance (300Ω) (Leeds
and Northrup) (Figure 1).

After the anodization, the sample was washed in glycol
ethylene and left overnight in a dry room. Then, after a heat
treatment at 90∘C in vacuum for 3 hours, the sample has been
placed in a tubular furnace (Lenton) for 1 h at 580∘C with a
slope of 1∘C min−1 in air. This step transforms amorphous
TiO
2
nanotubes into a crystalline anatase phase, which shows

a higher photo-sensibility.
After the physical and electrochemical characterizations,

the same TiO
2
/Ti sample was loaded with cobalt in order to

obtain modified nanotube arrays Co-TiO
2
/Ti. Using Figure 1

system, cobalt’s atoms have been electrodeposited on the
TiO
2
/Ti specimen.The electrodes were placed at a distance of

1 cm in a KOH 2.5M solution containing Co (NO
3
)
2
× 6H
2
O

(Carlo Erba) corresponding to 20 ppm of cobalt and TiO
2
/Ti

electrode was anodized at 0.2mA for 18 h.
After the deposition the sample was washed in distilled

water and left overnight in a dry room. Then, the doped
sample has underwent again the physical and electrochemical
characterizations in order to evaluate the difference.

2.2. Surface Analysis. Thematerial structure was investigated
with a Rigaku Miniflex diffractometer. The patterns were
obtained using a Cu K𝛼 radiation from a rotating anode
source operating at 30 kV and 15mA. The specimens were
scanned at 0.02∘ s−1 in the continuous scan mode over the 2𝜃
range 20–120∘.

The morphology of samples was investigated with a
scanning electron microscopy JEOL JSM5510LV.

2.3. Electrochemical Measurements. The electrochemical
measurements were performed using a system similar to
the one described by Shankar et al. [7]. Briefly, it is made of
a Pyrex cell with a 1.5 cm diameter quartz window, where
the light, emitted by UV (Ultravitalux Osram) lamp, is
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Figure 2: Experimental setup.

placed at distance of 4.5 cm. The source has a spectrum
with peak intensity in the UVA region at 360, 400 nm and
the UV intensity, which is measured on the sample by a
photo-radiometer HD2302.0 (Delta OHM) over the spectral
range 220–400 nm, is 24Wm−2. Along the optical path to the
cell, a lens was interposed in order to collimate the radiation
of the light source. The active surface of the sample (1 cm2)
was immersed in a KOH 1M solution and placed at 0.5 cm
from the quartz window (Figure 2). Photocurrents and
“open-circuit potential” (OCP) measurements were made in
the cell of Figure 2 via a potentiostat 1287 (Solartron). The
measurements of photo-current were performed with a scan
rate of 20mV s−1 in the range of potential −1.23 ÷ 1.70V
versus NHE in conditions of presence and absence of UV.
The OCP measures were recorded in the presence and
absence of UV.

3. Results and Discussion

3.1. Co Electrodeposited TiO
2
Nanotube Arrays. The loading

of the TiO
2
/Ti specimen is based on the evidence that in situ

activation of Ni anodes with cobalt ions in KOH electrolyte
during water electrolysis results in a marked increase of
electrocatalytic activity [45]. In a basic environment, the
cobalt is precipitated as hydroxide (pKps = 14.8); however
at high pH as in the case in question there is the formation of
the complex Co (OH)3−, where the constant of complexation
is 𝛽 = 6.3 × 10−5:

Co2+ + 2OH− ←→ Co (OH)
2

(1)

Co (OH)
2
+OH− ←→ Co (OH)−

3
(2)

From equation of the equilibrium constant of complexation
(2), we obtain the concentration of the cobalt ion in the
form of complex which is equal to about 1.5 ppm. In previous
works, bymeans of atomic absorption, a cobalt concentration
of about 2 ppm was measured [45, 46].

So, we haveCo(OH)−
3
ion release in theKOHsolution that

can be used as doping agent for the TiO
2
nanotubes cathode.

Obviously, during the long-time electrolysis the main anode
reaction is the oxygen evolution (OER) but cobalt atoms can
be electrodeposited into the nanotubes surface in the form of
cobalt oxide according to the reaction:

3Co (OH)−
3
←→ Co

3
O
4
+OH− + 4H

2
O + 2e− (3)
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Figure 3: XRD pattern of nanotube TiO
2
/Ti and Co-TiO

2
/Ti

obtained through electrosynthesis route; (A) anatase, (R) rutile, and
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Figure 4: SEM top view of sample Co-TiO
2
/Ti.

The XRD pattern of nanotube TiO
2
/Ti, obtained through

electrosynthesis route, is depicted in Figure 3. From com-
parison with the Co-TiO

2
/Ti-substrate pattern (black trace),

no difference can be noted and all features typical of the
titanium metal and TiO

2
are observed. Particularly, a few

peaks ascribable to titanium oxidematerial anatase and rutile
can be recognized [47, 48]. The results indicate that Co
doping does not introduce changes in the TiO

2
structure.

This result is confirmed by the SEM analysis for the
Co-TiO

2
/Ti reported in Figure 4. The structure of titanium

oxide nanotubes is clearly highlighted by the top view image.
No difference can be noted with typical TiO

2
/Ti nanotube

structure already evidenced in previous works [8, 44].

3.2. Analysis of the Photoelectrochemical Performance. Fig-
ure 5 shows the open-circuit potential (𝐸ocv) for TiO2/Ti and
Co-TiO

2
/Ti with UV on and off. When applying the UV,

𝐸ocv decreases sharply and it reaches a steady state at a lower
potential. After switching off the light source, 𝐸ocv increases
rapidly in the first seconds and then slowly until a new steady
state level. In UV on condition, the doped electrode shows an
𝐸ocv of −0.49V versus NHE while the undoped one −0.54V.
The low decrease of potential indicates a minimal effect on
the degree of band bending for the doped 𝑛-type metal oxide
semiconductor.

Figure 6 shows the curves of photocurrent and photo-
electrochemical performance of TiO

2
/Ti and Co-TiO

2
/Ti.
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Table 1: Photo-electrochemical characteristic of TiO2/Ti and Co-TiO2/Ti anodes.

Sample 𝐸ocv 𝜂 𝐸fb ≈ 𝐸CB 𝐸
𝐵

𝑖@1.5V
V vs NHE % V vs NHE (eV) V vs NHE mAcm−2

TiO2/Ti −0.56 7.98 −0.61 (−4.05) −1.01 0.40
Co-TiO2/Ti −0.49 8.22 −0.55 (−3.99) −0.95 3.13
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Figure 5: Open-circuit potential at UV on and off for TiO
2
/Ti (red)

and Co-TiO
2
/Ti (blue).
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Figure 6: UV photocurrent density and efficiency versus voltage for
TiO
2
/Ti (∘) and Co-TiO

2
/Ti in UV (×) and in dark (—).

The corresponding dark current for Co-TiO
2
/Ti is also

represented for comparison.
The photoconversion efficiency 𝜂, which is the light

energy to chemical energy conversion efficiency, is calculated
as [7]

𝜂 (%) = 𝑖ph
[𝐸
0

rev −
󵄨󵄨󵄨󵄨󵄨
𝐸app
󵄨󵄨󵄨󵄨󵄨
]

𝐽
0

× 100, (4)

where 𝑖ph is the photocurrent density (mA cm−2), 𝑖ph𝐸
0

rev
is the total power output, 𝑖ph|𝐸app| is the electrical power
input, and 𝐽

0
is the power density of incident light, which

is 2.4mWcm−2. 𝐸0rev is the standard reversible potential of
1.23V/NHE. The applied potential can be calculated:

𝐸app = 𝐸meas − 𝐸ocv, (5)

where 𝐸meas is the electrode potential (versus NHE) of the
working electrode, at which photocurrent was measured
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Figure 7: Square photocurrent versus electrode potential for
TiO
2
/Ti (×) and Co-TiO

2
/Ti (∘).

under illumination, and𝐸ocv is the electrode potential (versus
NHE) of the same working electrode at open-circuit condi-
tions under the same illumination and in the same electrolyte.

After doping, the efficiency of photoelectrochemical
remains virtually unchanged (∼8%) as well as the photo-
potential onset of 𝐸󸀠󸀠 for the discharge of the water around
−0.75V versus NHE and the potential onset of 𝐸󸀠 0.77V ver-
susNHE.However, at the same time there is a complementary
increase in the electrocatalytic activity highlighted by the
increase in current for higher potential to 𝐸󸀠 that reaches
680% at 1.5 V.

The flat band potential 𝐸fb has been determined for both
electrodes from the photocurrentmeasurements applying the
equation [50, 51]

𝑖
2

ph = (
2𝜀
𝑟
𝜀
0
𝑒𝛼𝐽
0

𝑁
𝐷

) (𝐸meas − 𝐸fb) , (6)

where𝑁
𝐷
denotes the donor density, 𝜀

𝑟
the relative dielectric

constant of the TiO
2
anodic film (55) [52], 𝜀

0
the vacuum

permittivity (8.86 × 10−14 F cm−1), 𝑒 the charge of an electron
(1.602 × 10−19 C), and 𝛼 the light absorption coefficient for
the material.

The flat band potential (𝐸fb), calculated in Figure 7 as the
intercept with the abscissa, remains constant showing that
the cobalt doping does not change the energy levels of the
conduction band and valence from the sample nanotube.

All the photoelectrochemical characteristics of TiO
2
/Ti

and Co-TiO
2
/Ti are summarized in Table 1.

In considering light receptor electrodes for photoelectro-
chemical cells an important criterion is the absolute position
of the valence (VB) and conduction bands (CB). In fact,
fast electron transfer across the electrolyte semiconductor
interface occurs when the appropriate band overlaps the
redox level of the electrolyte. This is important since recom-
bination of the photo-generated electron-hole pair competes
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with the electron transfer, and thus these relative rates
influence quantum efficiency. The absolute position of the
bands effectively controls the degree of band bending, 𝐸

𝐵
,

since the surface Fermi level, 𝐸
𝐹
, for the heavily doped 𝑛-type

metal oxide semiconductor essentially coincides with the CB
level. The value of 𝐸

𝐵
is generally taken as the difference

between 𝐸
𝐹
and the “Fermi level” of the electrolyte which is

taken as the redox potential 𝐸redox for the reaction occurring
at the photo-electrode [53]:

𝐸
𝐵
= 𝐸
𝐹
− 𝐸
𝐹-Redox (7)

For water oxidation in alkaline media (6) and for TiO
2
/Ti 𝑛-

type semiconductor photo-electrode 𝐸redox is the O2 | OH
−

potential:

2h+ + 2OH− 󳨀→ 1
2
O
2(g) +H2O(l) (8)

𝐸
∘
= 0.401V versus NHE (9)

The maximum open-circuit photo-potential value is 𝐸
𝐵
and

if it exceeds 1.23V, then it is possible to run water-splitting
without any other energy source other than the light. To
the extent that 𝐸

𝐵
falls short of 1.23V (plus any required

overvoltage) one requires an additional energy input assisting
the effect; an applied potential, 𝑉app, must be supplied to
provide the difference. Since 𝐸

𝐹
= 𝐸CB for the materials

of interest here, we can conclude from this discussion that
the CB position must be 1.23V above the O

2
| OH−.

This analysis evidences that Co doping does not change the
absolute position of the valence and conduction band, thus
leaving the photo-catalytic properties unchanged.

4. Conclusion

In this work, we have reported a preliminary study for a new
possible doping route for TiO

2
nanotubes.Thismethodology,

yet to be improved and optimized, shows as a first positive
feature the fact that the doping with Co into the TiO

2
nan-

otubes does not produce relevant changes in the electronic
structure, thusmaintaining the photochemical properties but
it improves greatly the electrocatalytic properties of the elec-
trode for the OER.The in situ activation of titania nanotubes
in alkaline environment with cobalt ions is a very cheap
method to produce electrodes able to work indifferently in
photo-assisted or conventional mode.
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