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The main aspects related to the charge transfer reactions occurring at the interface between two immiscible electrolyte solutions
(ITIES) are described. The particular topics to be discussed involve simple ion transfer. Focus is given on theoretical approaches,
numerical simulations, and experimental methodologies. Concerning the theoretical procedures, different computational simu-
lations related to simple ion transfer are reviewed. The main conclusions drawn from the most accepted models are described and
analyzed in regard to their relevance for explaining different aspects of ion transfer. We describe numerical simulations implemen-
ting different approaches for solving the differential equations associated with the mass transport and charge transfer. These nume-
rical simulations are correlated with selected experimental results; their usefulness in designing new experiments is summarized.
Finally, many practical applications can be envisaged regarding the determination of physicochemical properties, electroanalysis,

drug lipophilicity, and phase-transfer catalysis.

1. Introduction

Two solvents with low mutual miscibility define an interface
between them with differentiated physicochemical proper-
ties. Studies covering electrochemical properties of the inter-
face between two immiscible electrolyte solutions (ITIES)
have acquired an enormous importance due to the bio-
mimetic features of these processes [1-5] and their impli-
cation in practical applications like electroanalysis [6] ion
extraction [7], phase-transfer catalysis, and electrocatalysis
[8, 9]. Nowadays, however, interest in ITIES is mainly based
on the latter aspects. The first electrochemical study of ITIES
was carried out by Nernst and Riesenfeld in 1902 [10-12].
These authors were mainly interested in measuring the trans-
port numbers in nonaqueous solvents. A summary of the
main aspects of these works can be found in [13]. However,
exhaustive electrochemical experiments were not performed
until the 1970s, when several works started with studies
of ion transfer reactions at ITIES using electrochemical
methods [14-19]. These contributions and the theoretical
considerations reported by Koryta and coworkers about the
polarizability of ITIES [20, 21] triggered the undertaking
of numerous studies on electrochemistry at ITIES and it

gradually became a new independent research area [3, 4, 9,
13, 22-45].

After the pioneering works published during the 1970s,
several research branches have evolved due to original papers
devoted to different aspects of electrochemistry at ITIES.
Heterogeneous charge transfer can be divided into ion trans-
fer and electron transfer, while ion transfer can be either
simple or assisted by a ligand dissolved in the system. The
thermodynamic analysis of these two phase systems has also
provided the main clues that we have nowadays about the
interfacial structure. All the types of transfer mentioned
depend on the microscopic features of the liquid|liquid
interface, a topic which has shown a concomitant evolution.

To study the global ion transfer mechanisms at ITIES,
several electrochemical methodologies have been employed,
including potential-sweep voltammetry, chronopotentiom-
etry, polarography with dropping electrolyte electrode, and
electrochemical impedance spectroscopy. In situ spectro-
scopic techniques have also proven to be very useful as they
can yield complementary information [9].

Theoretical calculations have provided valuable contri-
butions to, and insights into, the interfacial structure and ion
transfer mechanism across ITIES [46]. Several authors have



used computer simulations to model the interface and the
ion transfer processes [47-77] (vide infra, Section 4). Sev-
eral reports using molecular dynamic simulations showed
that ion transfer into the organic phase is accompanied by
a hydration shell of water molecules [47, 57, 65, 70, 74-77].
Similarly, continuum models have also been employed to
understand ion transfer between immiscible liquids [3, 78].
From the experimental viewpoint, it is well known
that water molecules are coextracted into water|immiscible
organic solvents when hydrophilic ions are transferred [79].
Accordingly, such phenomena can be elucidated in terms of
selective hydration of ions in mixed solvents [80]. This con-
cept has a fundamental significance for understanding the
role of water in the transfer of hydrophilic ions between
two immiscible liquids. To estimate theoretically the free

energy transfer (AG?r’,Df—ﬁ ) values of hydrophilic ions, Osakai
et al. [79, 81, 82] and Séanchez et al. [83] proposed a new
model in which a strongly hydrophilic ion transfers across
the oil|water interface as a hydrated ion.

This paper aims at compiling the literature on the differ-
ent aspects of electrochemistry at ITIES with special empha-
sis on the simple ion transfer under diverse experimental
conditions. Section 2 summarizes the main experimental
aspects related to the study of charge transfer at ITIES involv-
ing electrochemical devices and other methodologies and
includes, up to our knowledge, a complete bibliographic
compilation of the experimental systems involving simple
ion transfer. Section 3 deals with details about the different
mathematical techniques that can be applied to simulate the
charge transfer at ITIES. Section 4 summarizes the results
obtained by computer simulations. Finally, Section 5 con-
siders recent progress in the practical application of charge
transfer at ITIES.

2. Experimental

2.1. Electrochemical Setup. To perform quantitative measure-
ments of current or potential at the interface between two
immiscible electrolyte solutions, a nonconventional electro-
chemical cell must be used [43]. In addition, a four-electrode
setup instead of the usual two or three electrode systems can
provide reliable results of electrochemical measurements of
ion transfer at ITIES.

The first quantitative study of ion transfer at a
liquid|liquid interface was the one carried out by Gavach and
Henry [15]. In that work the authors perform measurements
of the overpotential of a two-compartment cell defining
a nonpolarizable liquid|liquid interface under galvanostatic
conditions. The composition of the organic phase was tetra-
butylammonium tetraphenylborate dissolved in nitroben-
zene while the aqueous phase was tetrabutylammonium bro-
mide solution. In a latter work, Koryta et al. [21] studied the
same non-polarizable interface and a similar one containing
tetraethylammonium bromide as the aqueous electrolyte by a
polarographic method. In this case the cell design was almost
identical to a drop mercury electrode, but containing an
aqueous reference electrode close to tip of the capillary
which reduces the resistance of the aqueous phase. In these
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works the potentials to which the interface is subjected
contain a term due to the high resistance of the organic
solution, known as solution or ohmic potential drop which
can hinder any measurement at a polarizable liquid|liquid
interface. In order to minimize this potential term to obtain
feasible quantitative electrochemical measurements, Samec
et al. [37, 84] reported the first use of a four-electrode
potentiostat. In this system two counter electrodes and
two reference electrodes were used, one for each phase. In
this work, the authors obtained a cyclic voltammogram of
tetramethylammonium transfer and quantified the diffusion
coefficient at both phases and the heterogeneous standard
transfer kinetic constant for this cation. When both reference
electrodes are inserted into Luggin capillaries close to the
interface, the ohmic potential drop decreases but is still not
close to zero. The remaining ohmic potential drop value can
be almost eliminated by an electronic correction. In this
sense, Samec et al. [85] obtained feasible results for the
transfer of Cs* ion from water to nitrobenzene without
ohmic potential drop interference, implementing a positive
fedback loop in the experimental setup, often used for the
elimination of the ohmic potential drop in the voltammetric
measurements with three-electrode systems. Currently, this
four-electrode system with a feedback correction of the
ohmic potential drop is the experimental device most widely
used to perform electrochemical experiments at ITIES.

It should be noted that ohmic potential drop correction,
as described by Samec et al. [85], implies that the voltage that
is feedback positively to the potentiostat must be adjusted
manually until equalling the ohmic potential drop that needs
to be compensated. This latter problem has been overcome
by Baruzzi and Uhlken [86], who reported the use of a four-
electrode potentiostat with the current interruption tech-
nique for the elimination of the ohmic potential drop by
sampling the double layer voltage. The current is interrupted
periodically during the electrochemical scan. While the
current is interrupted, the voltage drop across the solution
is zero, and thus the real interfacial voltage can be sampled.
Thus, the ohmic potential drop is totally eliminated. This
methodology can also correct variations in the ohmic poten-
tial drop during the heterogeneous ion transfer.

Micro-liquid|liquid interfaces are useful to study ion
transfer reactions because the diffusion fields are controlled
by the geometry of the system and because the ohmic poten-
tial drop is minimized. These are small-sized interfaces, with
low charging current and high mass-transfer rate necessary
for fast kinetic measurements. About thirty years ago, Taylor
and Girault [87] and Ohkouchi and coworkers [88] intro-
duced micrometer-sized liquid|liquid interface (u-ITIES)
supported at the tip of a glass micropipette or within a micro-
hole made in a thin membrane (supporting film) using the
ablation laser technique [89].

u-ITIES supported at the tip of a micro-pipette can be
used to provide spherical diffusion patterns similar to those
observed at solid ultramicroelectrodes. This enhanced mass
transport produces a steady-state current when the trans-
ferring species enters the pipette, whereas classical linear
diffusion behaviour is observed when the ion exits the
pipette. Simple ion transfer reactions at the micro-pipette
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are characterized by an asymmetric diffusion regime. The
transfer of ions from the micro-pipette to the interface
(egress transfer) is controlled by linear diffusion, whereas
the transport of ions from outside the pipette to the surface
(ingress transfer) is controlled by a cylindrical diffusion field.
These two different processes can be easily distinguished
during cyclic voltammetric experiments, as the egress and
ingress transfers lead to a peak-shaped current response and
to a steady-state current, respectively. This asymmetry can
be used for the identification of the ion associated with
the current observed, particularly when trying to determine
which ionic species are responsible for limiting the potential
differences range available, the so-called potential window
[90, 91]. Studies of charge transfer processes at y-ITIES have
been reported by several authors during the last years [92—
146].

2.2. Methodologies Based on Forced Hydrodynamic Conditions.
The electrochemical study of ion transfer at ITIES has
allowed determinating relevant thermodynamic and trans-
port parameters, provided that the processes measured are
limited by mass diffusion. For the study of kinetic parameters
and mechanistic information, the mass transfer rate must
be increased. Different experimental approaches have been
employed in order to obtain a high mass-transport rate.

The imposition of a convective flow to increase the mass-
transport has also been reported. An electrolyte dropping
electrode, analogous to the dropping mercury electrode,
has been developed by polarization of the ITIES [21, 147].
Other hydrodynamic liquid-liquid cells based on the wall-jet
electrode configuration [148] and flow-injection have also
been analyzed [149, 150]. Organic gels have been used to
stabilize the ITIES in flow [151] and to channel configuration
[152, 153] experiments.

An alternative approach to the study of liquid|liquid
extraction processes involves the rotating diffusion cell
(RDC), introduced by Albery and co-workers [154-156] and
modified by Manzanares et al. [157] and Kralj and Dryfe
[158, 159], to study the simple and facilitated ion transfer
reactions by external polarization.

Manzanares et al. [157] employed an RDC to determine
the rate constant of ion transfer kinetics across the interface
between two immiscible electrolyte solutions. Tetrabutylam-
monium tetrakis-(4-fluorophenyl)-borate in 2-nitrophenyl
octyl ether (NPOE) was used as the organic electrolyte solu-
tion supported in the porous membrane. This membrane
was in contact with the aqueous electrolyte. The analysis of
the experimental results was based on a comparison with the
theoretical current-potential curves and on the Koutecky-
Levich plots. These authors showed that some experimental
limitations made the rotating diffusion cell suitable only for
a limited range of values of standard rate constant to be
determined. Particularly, the method requires an accurate
evaluation of the different contributions of ion permeability.

Hydrodynamic voltammetry is reported at ITIES, using
an RDC configuration. The voltammetry arises from laminar
flow, induced separately in the organic and aqueous phases of
the ITIES. The ITIES has been stabilized by a polyester track-
etched membrane material. This methodology has been used

to determine reaction mechanisms and kinetic parameters
for reactions involving liquid|liquid interfaces [158]. This
alternative procedure is extended to the study of facilitated
ion transfer [159].

On the other hand, Wilke et al. [160] have proposed a
new methodology consisting in alternatively stirring the
aqueous or the organic phase during the potential sweep to
elucidate ion transfer mechanisms across ITIES. The advan-
tages and possibilities of controlling the convective flux of
species towards the interface in either the organic or the
aqueous phase were analyzed using two well-known transfer
processes: the direct transfer of tetraethylammonium and
the facilitated transfer of K* assisted by dibenzo-18-crown-
6 (DB18C6). The convective flux in one phase produces
asymmetry in the diffusion fields, that is, a selective decrease
in the diffusion layer thickness on one side, which allows
distinguishing the direction of the ion transfer. This method-
ology presents two advantages: the possibility of obtaining
mechanistic information with a very simple experimental
setup and of using a standard four-electrode configuration
with almost no modification. Stirring the organic or the
aqueous phase requires only a Teflon bar whose rotation fre-
quency is controlled.

Figure 1 shows cyclic voltammograms corresponding to
the transfer of tetraethylamonium (TEA™) in quiescent and
stirred aqueous phases. In this case, the cation mass transport
rate in the aqueous phase is the current controlling process.
When the shape of the current-potential profile is compared
with the response in the unstirred solution, a stationary cur-
rent in the forward sweep and a higher current peak in the
backward sweep are observed. The rate of mass transfer of the
ion in the aqueous phase is enhanced with stirring; a limiting
current is reached if the stirring frequency is high enough.
The shape of the backward peak is not affected; however, as
the amount of substance transferred to the organic phase is
higher than that in the absence of convection, the negative
peak increases [160].

Fernandez et al. [161] employed this methodology to
elucidate the mechanism of the electrochemical transfer of
a hydrophilic arenediazonium ion (Fast Red TR) followed by
the azo-coupling reaction in the organic phase with 1-naph-
thylamine, a lipophilic reactant. Fujii et al. [162] performed
measurements of ion transfer reaction at a rotating liquid
membrane disk electrode (LMDE) and a rotating liquid
membrane ring-liquid membrane disk electrode (LMRE-
LMDE). The authors evaluated in this work the ion transfer
kinetics and the analytical applications of this methodology.
Finally, Fernandez et al. [163, 164] characterized the transfer
mechanism of antibiotics and their acid degraded products
using the forced hydrodynamic conditions.

2.3. Other Techniques. In a heuristic way similar to that used
for the studies in electrochemistry at solid electrodes, several
techniques have been applied to analyze the charge transfer
at ITIES.

Optical second harmonic generation (SHG) is a surface-
sensitive and surface-selective technique that has been
used to study photo-induced electron transfer and elec-
trochemical adsorption processes of resonant molecules at
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FiGurek 1: Cyclic voltammograms for the transfer of TEA*. Quies-
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KCl1.0 X 1072 M + 8.0 x 107 M TEABr. v = 0.025V s~ 1.

liquid|liquid interfaces [165-167]. SHG requires a noncen-
trosymmetric medium. For this reason, at a liquid|liquid
interface only the first few molecular monolayers that break
the symmetry of the interface contribute to the SHG res-
ponse. Enhanced sensitivity was obtained when these mea-
surements were carried out in total internal reflection mode
which allowed the direct optical measurements of the accu-
mulation of base electrolytes at the ITIES upon externally
applied potentials [168—170].

The application of scanning electrochemical microscopy
(SECM) has been extended to studies of electron transfer
across the ITIES [171-173]. The kinetics of electron transfer
and ion transfer is determined directly by SECM.

In situ electron paramagnetic resonance (EPR) spec-
troscopy coupled to electrochemical measurements was
employed by Compton and co-workers [174, 175] to study
the charge transfer across ITIES. These authors analyzed the
EPR adsorption data obtained from the different radical ions
generated at the water|1,2-dichloroethane interface. Webster
and Beaglehole [176] used in situ ellipsometry to characterize
the properties of the water|1,2-dichloroethane interface
during an electrochemical potential step experiment. By
com-paring the polarization states of the beam before and
after it is reflected off from the interface, many optical
material properties can be determined, such as the interfacial
thickness and refractive index. As the case with many other
properties, the surface refractive index is often different from
that of the bulk for sensitive studies. The ellipsometric res-
ponses provided spectroscopic evidence of ion transfer and
accumulation processes by measuring changes in the refrac-
tive index and variation in the dielectric constant in the
interface region. Webster and co-workers [177, 178] have
developed the neutron reflection methodology for the
investigation of the roughness of liquid|liquid interfaces.
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The authors presented an experimental setup for the gen-
eration of thin aqueous films in contact with 1,2-dichlo-
roethane. These thin films were characterized using SECM.

Schlossman and co-workers [179-183] have pioneered
the use of X-ray scattering techniques to understand the
alkane|water and the nitrobenzene|water interfaces. Recen-
tly, Schlossman and coworkers [184-187] have used syn-
chrotron X-ray reflectivity to study ion distribution at the
liquid|liquid interface between a nitrobenzene solution of
tetrabutylammonium tetraphenylborate and a water solu-
tion of tetrabutylammonium bromide. These structural
measurements are well described by the ion distributions
predicted by a version of the Poisson-Boltzmann equation
that explicitly includes a free energy profile for ion transfer
across the interface. This profile is described either by a sim-
ple analytic form or by a potential of mean force from mole-
cular dynamics simulations. These X-ray measurements of
the liquid|liquid interface indicate that the interfacial liquid
structure is specifically important in determining interfacial
ion distributions.

Quasi-elastic laser scattering (QELS) has been intro-
duced as a suitable method for the study of the structure and
dynamical properties of the ITIES, essentially of the time-
resolved and equilibrium surface tension and viscoelastic
properties [38, 188, 189].

Vibrational sum frequency (VSF) spectroscopy can be
used to study the water structure and bonding charac-
teristics at different liquid|liquid interfaces; the water|1,2-
dichloroethane interface has proved to be the system with the
most notable spectral differences in the OH stretch region.
The VSF experimental spectrum of the H,O-DCE interface
gave a low signal in the OH stretch region with none of
the distinct spectral features found in the other interfaces
studied. It was thus concluded that the H,O-DCE interfa-
cial region was likely to become more diffuse than other
liquid|liquid interfaces, with water molecules exhibiting a
random orientation at this interface [190—193].

2.4. Representative Experimental Data. If two immiscible
electrolyte solutions « and f§ are in contact with each other,
the ions can partition between the two adjacent phases
because of the difference in the ion energy in both phases.
The simple ion transfer taking place at this interface can be
represented as

FF(a) = I%(B), (1)

where I% is an ion that can be transferred from a-phase to
B-phase and z; is the charge of the species i.

For a given species 7, at constant temperature and pres-
sure, the thermodynamic equilibrium establishes equality
between the electrochemical potentials i in each phase:

i =it 2)

The electrochemical potential involves a chemical and an
electrical term:

i =l +ziFg, (3)
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where z; is the charge number of the ion, F is the Faraday
constant, ¢/ is the Galvani (or inner) potential of the phase j

(j = aor ), and g is the chemical potential defined as
‘uf = y?‘j +RT1n<a{), (4)

0,j . .
where y1;”’ represents the standard chemical potential, R and
T are the universal gas constant and the absolute tempera-

ture, respectively, and a! is the activity of i in the j-phase.
At the liquid|liquid interface, the equilibrium condition
(2) is fulfilled and the following relationship can be obtained:

U+ ZiF¢* + RTIn(af) = ” +zF¢# + RT1n(df).
(5)

From this expression, the Galvani potential differ-
ence, qus, between the phases o and f3 can be expressed as

0,0 — 8 B

a AGtr,i RT ai
A/3¢ - ZiF * Z,'F ln(a;x)’ (6)
where Agg = (¢* — ¢F) and AG?r’,of/3 = (W = 4% are the
standard Gibbs energy of ion transfer from phase « to phase

B. AG?r’zﬁﬁ is the difference standard Gibbs energies of solva-

tion of the ion i in the phases f§ and a. If « corresponds to the

aqueous phase, ions with a large positive or large negative

AG?r’,ofaﬁ are denoted as hydrophilic or hydrophobic ions,

respectively.
Rewriting (6), we obtained the following Nernst equation
for ion transfer:

B
RT a;
Ajp = Afe? + ——1In| — |, (7)
A L (ai )
where Aggb? = AG?r’zdﬁ /z;F is the standard Galvani potential
difference of ion transfer for species i.

The standard molar Gibbs energy of ion transfer,

O,a— o .
AGtrf’; 4 , for an individual ion, contrary to the electrolyte as a

whole, is not accessible to a direct measurement and, in order
to be estimated, some kind of nonthermodynamic assump-
tion must be made. Most frequently the “TATB assumption”
[3, 9, 29, 40, 194-199] is made stating that the anion and
the cation of tetraphenylarsonium tetraphenylborate have
equal standard Gibbs transfer energies. On the basis of this
assumption a scale for standard Gibbs transfer energies of
ions from one solvent to another can be obtained using
standard Gibbs transfer energies of salts calculated from
partition coefficients.

During the last thirty years, the transfer of several ions
through the ITIES was studied extensively using different
electrochemical techniques. The transfer processes are fast so
that, in most cases, they are reversible and diffusion con-
trolled. Therefore, in the first place thermodynamic data on
standard Gibbs transfer energies and on diffusion coefficients
were obtained from the measurements. Standard Gibbs
transfer energy values for a huge number of ions in different
solvents have been compiled by Girault; this database is
available on-line [200].

The simple ion transfer of various ions in different sol-
vents has been extensively studied. The rest of this section
lists the transfer of ions in the most commonly used sol-
vents to perform electrochemical measurements at ITIES in
chronological order with their corresponding references.

2.4.1. Water|Nitrobenzene Interface. The transfer across the
water|nitrobenzene interface has been studied in the follow-
ing anions: octoate [201] dodecylsulfate [201, 202]; picrate
(98, 201-215]; ClO4~ [98, 147, 201, 205, 207-211, 214,
216-234]; 1= [98, 147, 213, 217-219, 222, 226, 233, 235];
Br~ [98, 147, 207, 213, 214, 218, 225-227, 232, 233, 235]
SCN~ [98, 207, 213, 214, 217, 218, 224-228, 232, 233, 235];
NO; ™~ [98, 147, 207, 214, 216-219, 223, 225-228, 232-235];
104~ [147, 217, 218, 236]; BE,~ [147, 217, 218, 222, 224];
ClO;~ [147, 218, 236]; BrOs~ [147, 236]; SO4%~ [231, 237];
TCIPB~, TFPB~ [237]; carboxilate and sulphonate anions
[238]; hetero- and isopolyanions [239-248]; MnO,~ [209];
Fe(CN),>~ [223]; PFs [224, 232]; Cl- [214, 225-228, 233,
249, 250]; acetate [214, 225, 233, 236]; hydrogenmalo-
nate, hydrogenmaleate, hydrogensuccinate, hydrogencitra-
conate, hydrogenglutarate, phenolate, 2-nitrophenolate, 2-
methylphenolate, benzoate, salicylate, acetylsalicilate, 2-
clorophenolate [228]; formiate, propionate, butyrate, valeri-
ate, capronate, oenanthate, caprylate, pelargonate, caprinate
(228, 236, 251], 105, OCN—, SeCN—, CN—, N3, monoflu-
oroacetate, difluoroacetate, trifluoroacetate, monochloroac-
etate, dichloroacetate, monobromoacetate, dibromoacetate,
tribromoacetate, monoiodoacetate, cyclopropane carboxy-
late, cyclobutane carboxylate, cyclopentane carboxylate,
cyclohexane carboxylate, cycloheptane carboxylate [236];
TPB-, dipicrylaminate [213]; amino acid and peptide
anions [252, 253]; 3-nitrophenolate, 4-nitrophenolate,
2,4-dinitrophenolate, 2,5-dinitrophenolate, naphtoate, 4-
bromobenzoate, 4-chlorobenzoate, 3-chlorobenzoate, 4-
iodobenzoate, ketoprofen, suprofen, naproxen, pirprofen,
flurbiprofen, ibuprofen, carprofen, indomethacin, phenyl-
butazone, sulfinpyrazone, warfarin, phenobarbital, pheny-
toin [215]; CF3SO3™ [231]; 4-octylbenzenesulfonate, p-tolu-
enesulfonate [254]; F~ and H,PO,~ [250].

A huge number of cations have also been measured in the
water|nitrobenzene interface: tetrabutylammonium (TBA™)
[15, 19, 210, 212, 213, 217, 230, 255-260]; tetraethyl-
ammonium (TEA™") [19-21, 98, 202, 208-214, 218, 222, 254,
256, 259-266]; tetrapropylammonium (TPrA*) [19, 208,
211, 213, 218, 255, 256, 259, 263]; tetramethylammonium
(TMA™*) [20, 37, 84, 98, 202, 208-214, 218, 222, 230,
257, 259, 260, 262, 263, 266-269]; tetrapentylammonium
(TPenA*t) [224, 256]; Cs* [85, 98, 205, 213, 214, 216—
218, 260, 262, 268, 270-272]; acetylcholine [151, 205,
266, 273-276]; choline [202, 211, 263, 274, 275]; tris(2,
2'-bipyridine) Ruthenium (II), 1,1’-dimethyl-4,4’-bipyri-
dinium [205, 208, 275, 277]; 1,1'-diheptyl-4,4’ -bipyridinium
(275, 277]; tetraphenylarsonium (TPAs*) [210, 217, 278];
tetracycline [279, 280]; 7-chlortetracycline, doxycycline,
anhydrotetracycline [279]; aniline, o-phenylendiamine, p-
aminophenol, 2-phenylethylamine, tyramine, 3-hydroxityr-
amine, noradrenaline, methanephrine, phenylephrine, ben-
zylamine [265]; oxytetracycline [280, 281]; ferricenium

>



[282]; 1,1’-dipentyl-4,4"-bipyridinium, 1,1’-dibenzyl-4,4’-
bipyridinium [277]; 1,1’-dibutyl-4,4"-bipyridinium, 1,1’-
diethyl-4,4’-bipyridinium, 1,1’-dipropyl-4,4’-bipyridinium,
[208, 277]; tetrahexylammonium (THexA*) [237, 260];
Li* [130, 214, 270]; Na* [130, 213, 214, 230, 270]; K*
(130, 213, 214, 230, 260, 270, 271]; Rb* [213, 214, 260, 270];
rhodamine B [283]; ethyltrimethylphosphonium, trimethyl-
propylphosphonium, butyltrimethylphosphonium [208,
212]; ethylenediamine, N-methylethylenediamine, N-ethyl-
ethylenediamine, N-propylethylenediamine, N,N-dimethyl-
ethylenediamine [284]; trimethylammonium, ethyltrime-
thylammonium, diethyldimethylammonium, trimethylpro-
pylammonium, triethylmethylammonium, butyltriethyl-
ammonium, triethylpropylammonium, ethyltripropylam-
monium [263]; butylammonium, pentylammonium, hexyl-
ammonium, heptylammonium, octylammonium, [222];
1,10-phenantholinium  [285]; tetramethylphosphonium
(TMP?") [212]; lidocaine [266, 286, 287]; acetyl--methyl-
choline, carbamylcholine, carbamyl-f-methylcholine, pilo-
carpine, homatropine, atropine, scopolamine, hezametho-
nium, succinylcholine, tubocurarine, epinephrine, norepin-
ephrine, dopamine, phenylephrine, isoproterenol, tolazoline,
yohimbine, ergotamine, phenoxybenzamine, oxyprenolol,
alprenolol, propanolol, pindolol, benzocaine [266]; tetra-
caine, procaine, dibucaine [266, 286]; dicaine [287]; anti-
pyrine, aminopyrine, 4-aminoantipyrine [244]; minocycline
[288]; TI* [130, 260], Ag", H" [130]; oxybuprocaine, prilo-
caine, mepivacaine, bupivacaine [286]; NpO,*, UO,*",
NpO,**, PuO,** [289]; pyridinium [290]; alanine, valine,
leucine, phenylalanine, tyrosine, lysine, histidine [252];
tetraheptylammonium (THepA*), tetraoctylammomium
(TOA™) [260]; polyammonium ions [291]; tryptamine,
serotonin and tryptophan [292].

2.4.2.  Water|1,2-Dichloroethane Interface. The transfer
across the water|1,2-dichloroethane interface has been stud-
ied in the anions that follow: I~ [217, 222, 226, 227, 293—
295]; ClO4~ [210, 217, 222, 226, 227, 294-297]; NO;3;~
[217, 222, 227, 294] SCN~ [217, 226, 227, 294]; 104
(217]; BFs~ [217, 222]; picrate [210, 294, 298-300]; dode-
cylsulfate [301]; sulphonate anions (RSOs™) [222]; TPB~
[91, 294, 295, 297, 299, 302]; Cl~ [226, 227, 249, 293, 295];
Br~ [226, 227, 293-295]; rose bengal [303-305]; hetero- and
isopolyanions [306]; trifluoroacetylacetone [307]; eosin B
[305, 308, 309]; methyl-orange, ethyl-orange [310]; pheno-
late, 2-nitrophenolate, 3-nitrophenolate, 4-nitrophenolate,
2,5-dinitrophenolate [311]; lauric acid, diclofenac [312]; 2,4-
dinitrophenolate [294, 300, 311]; anionic drugs [215, 313];
1-pyrene sulfonate anion [314]; bromophenol blue [315];
erythosine B, eosin Y [316]; 4-octylbenzenesulfonate,
p-toluenesulfonate [254]; sulforhodamine 101 [317]; PFs~
[297]; tetrakis(pentafluorophenyl)borate, HO~ [295],
AuCly ™ and AuBry~ [318].

Cations studied in this solvent are TBA*™ [210, 217,
218, 257, 259, 295, 299, 319-322]; TMA*t [110, 139,
210, 218, 259, 320, 321, 323-325]; tris(2,2’-bipy-ridine)
ruthenium (II) [275, 326-329]; 1,1’-dimethyl-4,4"-bipyri-
dinium, 1,1’-diheptyl-4,4'-bipyridinium [275, 277]; Cs*
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(217, 270, 271, 295, 324, 330, 331]; tetraphenylarsonium
(TPAs™) [210, 217, 321, 324]; 1,10-phenanthrolinium [332-
334]; 4,7-dimethyl-1,10-phenanthrolinium, 2,9-dimethyl-
1,10-phenanthrolinium,  4,7-diphenyl-1,10-phenanthroli-
nium [332]; TEA* [160, 210, 218, 254, 259, 296, 321,
323, 325, 335-337]; H* [218, 293, 295, 322, 331]; TPrA*
(218, 259, 321, 323, 325]; 1,1'-diethyl-4,4’-bipyridinium,
1,1’-dipropyl-4,4'-bipyridinium, 1,1’-dibutyl-4,4"-bipyridi-
nium, 1,1’-dipentyl-4,4'-bipyridinium, 1,1’-dibenzyl-4,4’-
bipyridinium, [277]; tris(2,2’-bipyridine) M (II) (M = Fe,
Os, Ni, Co, Cu and Zn) [328]; Li* [270, 293, 295, 322, 324,
331]; Na®™ [270, 293, 299, 322, 324, 331]; KT [270, 271,
322, 324, 331]; Rb* [270, 324, 331, 338-340]; rhoda-mine
B [283]; acetylcholine [341]; lidocaine, dicaine [287];
tris-(2,2’-bipyrimidine) ruthenium (II), tris-(2,2'-bipyra-
zine) ruthenium (II) [329]; carteolol, pilocarpine, cloni-
dine, neostignine, papaverine [342]; metoprolol [342, 343];
sotalol [342, 344]; timolol, [342-344]; propanolol [342—
345]; erythromycin [346, 347]; ferrocene, 1,1'-dimethyl-
ferrocene, decamethylferrocene [348]; quinidine [349, 350];
Pb%*, Cd**, Zn?*, Cu®* [351, 352]; amfepramone, N-methyl-
ephedrine, N,N-diethylaniline [353]; quinine [353-355],
3,5-N,N-tetramethylaniline [353, 356]; trimetazidine [353,
357]; acebutolol, alprenolol, atenolol, bisoprolol, carazolol,
carvedilol, metipranolol, oxprenolol, penbutolol, pindolol
[343]; pyridine [312, 358]; nicotine, hydralazine, N-(p-
methylbenzyl)hexylamine, phenylalanine [312] arenedia-
zonium ions [161, 359, 360]; phenosafranin [361]; sildenafil
[362]; NH4* [322, 325, 331]; polydiallyldimethylam-
monium, polyethylenimine [363]; cetirizine, hydroxy-
zine [364]; TPenA*, S-butyrylthiocholine, carbamoyl-
choline, 1-ethylquinoline, homidium, N-methylderamcic-
lane, methylhomatropine, methylquinidine, 14-methyl-
rutecarpine, neostigmine, propantheline, pyridostigmine,
trantheline, homatropine [321]; clonazepam, flunitraze-
pam, chlordiazepoxide, diazepam, alprazolam, bromazepam
nitrazepam, oxazepam, lorazepam, midazolam [365]; dopa-
mine [366]; thionine [367]; 7-chlortetracycline, oxytetra-
cycline [368]; tetracycline, anhydrotetracycline [163, 368];
chlorpromazine, triflupromazin, methotrimeprazine, per-
phenazine, fluphenazine [369]; promazine [369, 370];
prometrine [371]; triazine herbicides (atrazine, simazine,
ametryn, prometryn, atratone and terbutryn) [372]; dendri-
mers [373-375]; tylosin A, tylosin B [164]; THexA*, TOAY,
bis(triphenylphosphoranylidine)ammonium (BA*) [295];
boldine [376]; Co?*, Mn?**, Ni?* [352] and dioxouranium
(UO,*") [377].

2.4.3. Water|o-Nitrophenyloctylether Interface. The transfer
across the water|o-nitrophenyloctylether interface has been
studied in the following anions: ClO4~ [378-382]; picrate
(215, 378, 380, 381, 383, 384]; TPB~ [322, 379, 382, 383];
Cl~ [380-382]; Br~ [380, 382]; I [380, 381], NO;~, SCN~
[380-382]; sulphonate anions (R-SO3;7) [380]; 2,4-dinitro-
phenolate [215, 385, 386], phenolate, 2-nitrophenolate,
3-nitrophenolate, 4-nitrophenolate, 2,5-dinitrophenolate,
benzoate, naphtoate, 4-bromobenzoate, 4-chlorobenzoate,
3-chlorobenzoate, 4-iodobenzoate, ketoprofen, suprofen,
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naproxen, pirprofen, flurbiprofen, ibuprofen, carprofen,
indomethacin, phenylbutazone, sulfinpyrazone, warfarin,
phenobarbital, phenytoin, maleate [215], SbCls~ and AuCly
[384].

Several cations have also been measured in the water|o-
nitrophenyloctylether interface: TMA™ [378-380, 382—384,
387]; TEAT [116, 378-380, 382—-384, 387-389]; Cs™ [379,
380]; TBA* [322, 379, 382-384, 387]; TPenA* [379, 382,
383]; TPAs™ [379, 380, 382, 383]; TPrA* [379, 380, 382—
384, 387]; procaine, prilocaine, bupivacaine, lidocaine, dibu-
caine [390]; tetracaine [390, 391]; Li* [322, 383]; K*
[322, 380, 382]; hexadimethrine [380]; NH,*, H* [322];
Na* [322, 382]; 3,5-N,N-tetramethylaniline [385]; pyridine
[386]; THexA* [382], verapamil, clomipramine, tacrine,
imipramine [392]; and BA* [387].

2.4.4. Other Water|Oil Interfaces. Water|dichloromethane
interface: tris(2,2'-bipyridine) Ruthenium (II) and 1,1"-di-
methyl-4,4"-bipyridinium, 1,1'-diheptyl-4,4’-bipyridinium
[275].

Water |isobutylmethylketone (hexone) interface: picrate,
Cl~, TBA*, TEA* and Li* [393].

Water|acetophenone interface: I, SCN—, 1047, ClO4 ",
NO; ™ [218,394], CIO;~, TPB-, TPAs* [394] and TBA™* [218,
394].

Water|chlorobenzene + nitrobenzene interface: I,
SCN—, 1047, ClO4 ,NO;, TPB~, TMA*, TEAt, TBA" and
TPAs*™ [395].

Water|chloroform interface Cl-, ClO, ", Cr,07%~, BrOs~
[147], I, Br—, 104, BF,, ClO;~, ClOs, NO;, NO, ™,
[147, 218], SCN~ [218], carboxilate, sulphonate anions
[238], CsT, TMA™, TEA", TPrA* and TBA™ [218].

Water|aniline interface: Br—, SCN—, ClO,~, TMA*, TEA*
and TBA* [218].

Water|o-chloroaniline interface: Br—, SCN—, ClO,, HY,
Cs™, TMA™*, TEA*, TPrA* and TBA' [218].

Water|m-chloroaniline interface: Br—, SCN—, ClO, ,
Cst, TMA", TEA*, TPrA*™ and TBA* [218].

Water|bis(2-chloroethyl)ether interface: SCN-, ClO4,
H*, Cst, TMA*, TEAT, TPrA™ and TBA* [218].

Water| 1-nitropropane interface: SCN~, ClO; , Cs*,
TMA*, TEA*, TPrA* and TBA* [218].

Water|2-nitropropane interface: Br—, SCN—, ClO,, HY,
Cs*, TMA*, TEA*, TPrA* and TBA* [218].

Water |benzonitrile interface: SCN~ [218], CIO,~ [218,
396], 1047, picrate, TPB~ [396], TMA™", TEA', TBA" [218,
396], TPrA* [218] and TPAs* [396].

Water|o-dichlorobenzene interface: SCN—, CIO,~ [218,
397], 17, MnO4 ", BF,~, PFs, ClOs~, NO;, picrate, TPB~
(397], H*, Cs* [218], TMA*, TEA*, TPrA*, TBA* [218, 397]
and TPAs™' [397].

Water|o-nitrotoluene interface: SCN—, 10, , ClO4 ,
TPB~, TMA*, TEAY, TBA*, TPAs* [398].

Water|nitroethane interface: Cl-, Br~, picrate, dode-
cyltrimethylammonium, cetyltrimethylammonium, TBA®,
TEA*, H* [399].

Water|methyl n-pentyl ketone (2-heptanone) interface:
I-, ClO,~ [400], TPrA*, TBA* [400, 401], TMA* and TEA*
[401].

Water|methyl n-hexyl ketone (2-octanone) interface: I,
ClO,, TPrA* and TBA* [400].

Water|1,6-dichlorohexane interface: Cl=, NO,™ [402],
Br~,17,NO;~,SCN™, [294, 402], picrate, TPB~, ClO4~ [294,
402, 403], 2,4-dinitrophenolate [294], PFs~ [403], choline,
acetylcholine, TPenA™ [294, 402], TMA*, TPrA*, TBA*
(259, 294, 402, 403], TEA* [259, 294, 402-404], TPAs*
[294, 402, 403], mono-, di-, tributylammonium, Cs* [294]
and propanolol [345].

Water|chiral menthol interface: D-tryptophan and L-
tryptophan [405].

Water|n-octanol interface: Br—, I-, SCN~, BF,~, TPB~
[406], CI-, NOs~, ClO4 [406, 407], phenolate, 2-nitro-
phenolate, 3-nitrophenolate, 4-nitrophenolate, 2,4-dinitro-
phenolate, 2,5-dinitrophenolate, benzoate, naphtoate, 4-bro-
mobenzoate, 4-chlorobenzoate, 3-chlorobenzoate, 4-iodo-
benzoate, ketoprofen, suprofen, naproxen, pirprofen, flur-
biprofen, ibuprofen, carprofen, indomethacin, phenylbuta-
zone, sulfinpyrazone, warfarin, phenobarbital, phenytoin,
maleate [408], perfluoroalkyl carboxylate, sulfonate [409],
TBA*, TPAs*™ [105], Li*, Na*, K*, Rb*, Cst, TMA" and TEA™*
[407].

Water|1,4-dichlorobutane interface: TPB~, Br~, I,
NO;~, SCN-, ClO4 , picrate, 2,4-dinitrophenolate, Cs*,
choline, acetylcholine, mono-, di-, tributylammonium,
TMA*, TEAT, TPrA*, TBA*, TPenA* and TPAs™ [294].

Water|4-(3-phenylpropyl)-pyridine interface: F~, HO™,
1037, N3~ [410], SCN~ [410, 411], Cl~ [410-412], CIO,",
NO; ™ [410,411,413,414],OCN-,CN~, Br~, 1" [411], PFs~
[411-415], SO~ [413] and carboxilates [412], NO, ™ [414],
Lit, Nat, K*, TMA* and TEA* [410].

Water|chiral 2-octanol interface: D-lysine, L-lysine, D-
tyrosine, L-tyrosine, D-phenylalanine, L-phenylalanine, D-
2-chloropropionate, L-2-chloropropionate [416]; R-lactate,
R-2-chloropropionate and R-2-bromopropionate [417].

Water|N-octyl-pyrrolidone interface: PF¢™ [415].

2.4.5. Water|Room-Temperature Ionic Liquid Interfaces.
Room-temperature ionic liquids (RTILs) have recently
gained increasing attention as environmentally benign alter-
natives to conventional organic solvents in a variety of
synthetic, catalytic, and electrochemical applications, as a
result of their unique physical and chemical properties and
the relative ease with which these properties can be tuned
by altering the cationic or anionic moieties in the RTIL
[418]. Their physical and chemical properties include high
thermal stability, negligible vapour pressure, low toxicity,
low melting temperature, and good electrochemical stability.
It has been recently demonstrated that the interface between
a hydrophobic RTIL and an aqueous electrolyte solution
can be electrochemically polarizable [419-422]. The state of
the art can be revised in specific reviews recently published
[423-426]. The simple ion transfer across the water|RTIL
interface has been studied electrochemically in the following
cases.

Water|tetrahexylammonium bis(perfluoroethylsulfonyl)
imide interface: PFs™; 1-octyl-3-methylimidazolium (Cs-
mim™), TPrA* and TBA™ [422].



Water|tetraoctylammonium
interface: SCN™ [420].

Water|(1-decyl-3-methylimidazolium  bis(trifluorome-
thylsulfonyl)imide interface: F~, Cl~, Br~, SCN-, BF,",
PF67, NO37 and ClO47 [427—429]

Water| 1-butyl-3-methylimidazolium  bis(trifluorome-
thylsulfonyl)imide interface: F~, Cl~, Br~, SCN-, BF,,
PFs,NO; and ClO4~ [427] and ferrocenium cation [430].

Water| 1-butyl-3-methylimidazolium  hexafluorophos-
phate interface: F~, Cl~, Br~, SCN—, BF, ™, PF¢~, NO;~ and
ClOs~ [427].

Water|tetrahexylammonium  bis(trifluoromethylsulfo-
nyl)imide interface: BF, ™, 10,~, ClO4 , TPrA*, TBA* and
tetrabutylphosphonium (TBP*) [431].

Water|N-octadecylisoquinolinium tetrakis-[3,5-bis(tri-
fluoromethyl)phenyl]borate interface: bis(trifluoromethyl-
sulfonyl)imide (C;C;N™), bis(perfluoroethylsulfonyl)imide
(C,C,N7), TMA*, TEA*, TPrA*, choline and acetylcholine
[421].

Water| 1-hexyl-3-methylimidazolium  tris(pentafluoro-
ethyl)trifluorophosphate interface: Cl-, SCN-, ClO,, Li*
and K* [432].

Water|tridodecylmethylammonium tetrakis(pentafluo-
rophenyl)borate interface: tetrakis(pentafluorophenyl)bor-
ate (TPFPB™), TPB-, PFs~, picrate, TMA*, TEA", TPrA*,
TBA*, TPenA*, tetrahexylammonium (THA*) and TPAs*
[433].

Water|tri(hexyl)decylammonium tetrakis(pentafluoro-
phenyl)borate interface: TMA* [434].

Water|trihexyltetradecylphosphonium bis(1,1,2,2,3,3,4,
4,4-nonafluoro-1-butanesulfo-nyl)imide interface: ClO4,
TMA' and Cgmim™ [435].

Water|trioctylmethylammonium bis(nonafluorobutane-
sulfonyl)amide interface: pentadecafluorooctanoate and
TPrA* [436].

Water|trihexyltetradecylphosphonium tris(pentafluoro-
ethyl)trifluorophosphate interface: BE,~, TPB~, PF¢~, TEA™,
TPrA* and TBA* [437].

Water|trioctylmethylammonium bis(nona-fluorobuta-
nesulfonyl)amide interface: tridecafluoroheptanoate and
TPrA* [438].

Water| 1-butyl-3-methylimidazolium  bis(trifluorome-
thylsulfonyl)imide interface: ferrocenium cation [430].

Water|1-butyl-1-methylpyrrolidinium bis(trifluorome-
thylsulfonyl)imide interface: ferrocenium cation [430].

Water|N,N-diethyl-N-methyl-N- (2-methoxyethyl)am-
monium bis(trifluoromethylsulfonyl)imide interface: ferro-
cenium cation [430].

Water |[tetraoctylphosphonium bromide interface: Br~,
Cl7, HSO,™, ClO4~ and NO5~ [439].

2,4,6-trinitrophenolate

2.4.6. Water|Redox Liquid Interfaces. In the last years, investi-
gations involving immobilized microdroplets of redoxactive
liquids have been developed exhaustively. The immobiliza-
tion of droplets was meant to provide a controlled environ-
ment to separately elucidate processes involving the direct
and simultaneous contact of immiscible liquids, redox liquid
and water, to an electrode surface. Since then, a wealth of
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information regarding electron and ion transfer processes as
well as chemical reactions of the deposited redox liquids has
been gathered. The state of the art can be revised in specific
reviews [440, 441] and book [442] recently published. The
simple ion transfer across the water|redox liquid interface has
been studied electrochemically in the following cases.

Water|N,N,N’,N’-tetrahexylphenylenediamine (THPD)
interface: Cl~ [443-446], I~ [443-445], HO~ [443], CIO4~
[443-448], PFy~ [443, 445-447], NO;~ [445-447], SCN-
[445-447, 449], Br~ [444, 445], acetate, OCN~ [445, 450],
F~ [445, 446, 450], SO427 [444-446, 450], AsFq~ [445, 446],
N3, 105, tartrate and oxalate [445] and H [448].

Water|N!-[4-(dihexylamino)phenyl]-N! N%,N*-trihexyl-
1, 4-phenylenediamine (DPTPD) interface: sulfide [451].

Water|N,N,N’,N’-tetrahexylphenylenediamine (THPD)
interface: SCN™ [452].

Water|N,N,N’-trihexyl-para-phenylenediamine (p-Tri-
HPD) interface: ClIO4~ and H* [448].

Water|N,N,N', N’ -tetrakis(6-
methoxylhexyl)phenylenediamine  (TMHPD)
ClO,~, F~,Cl7, Br, 1~ and SO4*" [444].

Water|N,N,N’,N’-tetraoctylphenylenediamine (TOPD)
interface: AsFs~, PFs~, F~, Cl-, SCN—, NO; [446],
CrO4,>~, Cr,0,%" [453], SO4> [446, 453], ClO,~, [446,
453, 454], phosphate and arsenate [453].

Water|n-butylferrocene interface: acetate, N3~, SCN~
[450], Cl-, Br~ [450, 455] and F~ [455].

Water |t-butylferrocene interface: Br—, F~ [455], CI~
(454, 455].

Water|N,N,N’,N’-tetrabutylphenylenediamine (TBPD)
interface: PF¢~, ClO, , SCN~ [445, 446], F~, Cl~, Br—, I,
N3, OCN™, NO;, 10537, AsFs, acetate, tartrate, oxalate
and SO4*~ [445].

Water|N,N,N’,N’-tetraheptylphenylenediamine (THe-
PD) interface: PFs~, ClO,~, F-, Cl-, SCN~, NO; ™, SO4*
(445, 446], Br—, I, N3, OCN™, 103, AsFs , acetate,
tartrate and oxalate [445].

Water|N,N,N’,N’-tetranonylphenylenediamine (TNPD)
interface: PF¢~, ClO,~, F~, Cl-, SCN—, NO;~, SO4>~ [445,
446],Br—, 17, N3, OCN~, 103, AsFs, acetate, tartrate and
oxalate [445].

Water|4-nitrophenyl nonyl ether interface: H*, Li* and
Na' [456].

Water|N,N - Diethyl - N',N’ - dibutyl - para-phenylenedi-
amine (p-DEDBPD) interface: ClO4, F~, Cl~, Br~, SCN-,
NO37, IO37, PF67 and 50427 [457]

Water|N,N - Diethyl - N',N’ - dihexyl-para-phenylenedi-
amine (p-DEDHPD) interface: CIO, ", F~, Cl7, Br~, SCN-,
NO37, IO37, PF67 and 50427 [457]

Water|N,N - Diethyl- N, N’ - diheptyl-para-phenylenedi-
amine (p-DEDHePD) interface: ClIO, , F~, Cl~, Br~, SCN™,
NOs~, 1057, PFs~ and SO, [457].

interface:

3. Digital Simulations

Several numerical methods have been applied to solve the
differential equations involved in electrochemical systems at
liquid|liquid interfaces. The main equations to be solved
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include mass transport processes with different initial and
boundary conditions depending on the system studied. The
numerical tools most frequently used to solve these equations
are Laplace transforms [458-460], finite differences [458,
459, 461-464], and finite element method [462, 464—466].

After the pioneering work by Homolka et al. [467], where
the authors performed digital simulation of the current-
potential curves for the formation of complexes of different
stoichiometry (1:1, 1:2 or 1:3), numerical simulations of
the voltammetric response for diverse mechanisms have been
successfully carried out. Kakiuchi and Senda [468] solved the
theoretical voltammograms, using explicit finite differences,
for the formation of successive complexes in the organic
phase. They demonstrated that the shape of the voltammo-
grams is determined by the ratio of the association constants
and that the peak-to-peak potential value in the voltam-
mograms depends on the cation and ligand concentration
ratio. In addition, Kakiuchi [469] solved the theoretical
current-potential profiles, using explicit finite differences,
for the formation of a 1:1 complex in the organic phase
and included explicitly the interfacial ligand adsorption.
Matsuda and co-workers [470, 471] derived the theoretical
equations for assisted ion transfer without restrictions on the
concentration values and with the species present in both
phases. On the basis of this, Girault and co-workers solved
diverse kinds of mechanisms. These authors described for
the first time the effect of mixed diffusion control of the
cation and the ligand on the shape of the voltammograms
for the facilitated transfer by formation of a single 1: 1 com-
plex [472], complex formation of different stoichiometries
(1:1---1:4) that allow the competition between them [473,
474], and formation of neutral complexes [475]. Kudo et al.
[476] started working on the competitive transfer of a two-
cation mixture assisted by a neutral ligand. Iglesias and
Dassie [477] generalized this mechanism for all the experi-
mental conditions. In this paper, the results were analysed as
different zones determined by the ratio between cation and
ligand concentrations. Similarly, Garcia et al. [478] presented
the general equations for facilitated ion transfer reactions
across oil|water interfaces based on different competitive
ligands. This work has shown that, under given conditions,
the ion transfer occurs through a mechanism that involves
ligand exchange. Recently, Gulaboski et al. [479] presented
some mathematical models for cyclic staircase voltammetry
and electrochemical impedance spectroscopy considering
kinetic effects due to the complexation reaction by the
facilitated transfer of metal ions at polarized interfaces.

A theoretical approach for the proton facilitated transfer
or protonable species transfer was studied by Reymond et
al. [480] and they developed a theory of reversible trans-
fer reactions for molecules containing an unlimited number
of protonation-deprotonation sites that can cross the inter-
face in all their ionic forms. Sawada and Osakai [481, 482]
deduced a theoretical equation for the polarographic current
potential profiles corresponding to the transfer of an oligo-
peptide or an amino acid at the oil|water interface, facilitated
by a neutral ionophore. Dassie [483, 484] derived the general
equations for ion transfer reactions across oil|water interface
assisted by a protonatable neutral ligand. This model was

solved using Laplace transforms; the explicit consideration
of the water autoprotolysis was analyzed. Finally, the latter
model was solved by Garcia et al. [354] using explicit finite
difference to account for the different diffusion coefficients
of each species in each phase. This model was corroborated
by the experimental results for the quinine transfer across
the water|1,2-dichloroethane interface under different con-
ditions [354]. Finally, Garcia et al. [355] performed a model
that describes ion transfer reactions across the oil|water
interface assisted by a neutral protonatable ligand in the pre-
sence of a buffer solution. Effect of the concentration of the
buffered solution and its identity on the voltammetric signal,
the pH profile, and the buffer capacity of the system was
analyzed.

Digital simulations of anion transfer reactions across the
oil|water interface assisted by a neutral ligand were per-
formed by Dassie [485]. Analysis was mainly focused on the
effect of water autoprotolysis on the shape of the current-
potential profiles. Formation of complex with j : k anion-to-
ligand stoichiometry is analyzed.

On the other hand, the electron transfer at ITIES was
performed in a variety of works. Stewart et al. [486] proposed
a mathematical model to describe electron transfer at ITIES
and showed how the cyclic voltammograms vary when dif-
ferent ratios of reactants and products are used. Later,
Osakai and co-workers [487] elucidated the mechanism of
interfacial electron transfer reaction between ferrocene and
hexacyanoferrate (III) by digital simulation applying explicit
finite difference.

Additionally, homogeneous reactions coupled to the het-
erogeneous charge transfer, treated in a general way, have
been reported in few cases. lon transfer processes across a
liquid|liquid interface coupled to different kinds of chemical
reactions taking place in the organic phase were simulated by
Iglesias et al. [488] using the explicit difference method. The
interfacial absorbance at a given wavelength in a total internal
reflection mode and the electrochemical responses were
simulated in order to extract kinetic and thermodynamics
parameters. Holub et al. [489] performed a digital simulation
of reversible ion transfer followed by an irreversible homoge-
neous reaction and the possible ion transfer of the products
of the latter reaction.

Conventionally, voltammetry at the ITIES is performed
under diffusion-only conditions where steady-state currents
are only reached at micrometer-scale interfaces. Stewart et al.
[90], performed an approximate solution for cyclic voltam-
metry of ion transfer at a micropipette assuming that the
diffusion of the ions for ingress transfer takes place in a hemi-
spherical way and the egress transfer in a planar diffusion
way. Murtoméki and Konturri [97] combined a microhole
ITIES with ac impedance and developed a simple model for
calculating the faradaic impedance at the equilibrium and
at the formal potential. Girault and co-workers [99] applied
finite element method to study the influence of the properties
of the hole (depth, interfacial position) and diffusion coeffi-
cient ratio on the electrochemical response of ion transfer
reaction at a polarized micro-liquid|liquid interface. On the
other hand, Murtomiki and co-workers [490] simulated
the simultaneous ion transfer across microhole ITIES in
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the absence of the supporting electrolyte. Then, Wilke
[130] proved that voltammetric measurements without any
supporting electrolyte in the aqueous phase can be use-
ful for studying the transfer of hydrophilic ions across
the microhole-supported water|nitrobenzene microinterface
provided that ternary electrodiffusion is negligible due to the
polarity of the organic phase. Josserand et al. [491] analyzed
the contact diffusion potential in microsystems and proposed
a practical application of this phenomenon to quantify
the mixing efficiency in microchannels using finite element
method. Amemiya and co-workers [137] demonstrated that
chronoamperometry at liquid|liquid microinterfaces can be
used to determine diffusion coefficients directly. Simulations
of microinterfaces were performed by Nishi et al. [492].
They demonstrated the relationship between the form of the
orifice of a micropipette and the limiting current and the
half-wave potential of the voltammogram. Recently, Strut-
wolf and Arrigan [493] analyzed the influence of different
micropores array designs on cyclic voltammograms through
finite element method.

On the other hand, to reach steady-state fluxes at ITIES,
hydrodynamics techniques were applied to impose a flow of
solution phases. Rotating diffusion cell and wall jet electrodes
are performed in order to generate different flow regimes.
The advances in simulations of the last technique are des-
cribed below.

Stevens and Fisher [494] used finite element technique
to simulate the steady-state current flowing in a channel cell
to describe the one electron-transfer reaction. Cooper and
Compton [495] reported the studies that simulate the flow
of single phase in electrochemical channel cells. Manzanares
and co-workers [152] simulated the channel flow at immo-
bilised liquid|liquid interface to describe the transfer of a
monovalent cation using explicit finite difference method. By
comparison with two-dimensional simulations, the authors
demonstrated that a simple one-dimensional theory can be
used to describe the cyclic voltammetry response of the
channel flow cell.

Jones and Dryfe [496] simulated voltammetry in liquid|
liquid interface with implicit finite-difference approach,
where both phases flow at different rates, showing how the
shape of the current-potential profiles at forward sweep was
affected.

The next section focuses attention on describing a
model which represents voltammetric response for a simple
ion transfer across a liquid|liquid interface controlled by
diffusion and which accounts for a solution provided by
explicit difference method. Finally, Section 3.2 is devoted to
showing the effect of forced hydrodynamic conditions on the
electrochemical signal.

3.1. Charge Transfer Processes Controlled by Diffusion

3.1.1. Model. The simple ion transfer taking place at ITIES
can be represented as

I%(w) 2 I%(0), (8)

International Journal of Electrochemistry

where [% is an ion that can be transferred from aqueous
phase (w) to organic phase (0) and z; is the charge of the
species i.

In order to simulate the cyclic voltammetric response for
a reversible heterogeneous charge transfer with semi-infinite
linear diffusion, Fick’s second law of diffusion with specified
boundary and initial conditions must be solved for I at each
phase, that is,

acg; (x, 1)
ot

9%ct; (x, 1)
ox?

=D ?Zi 9)
where c¢f; (x,t) denotes the ion concentration in the a-phase
(w or o) at a given distance (x) from the interface and time
(t), and D¢ is the ion diffusion coefficient in the a-phase.
The distance from the interface is defined as positive in the
aqueous phase and negative in the organic phase while the
interface lies at x = 0.
The initial conditions can be defined as

.
cry(x,0) = cff

. " (10)
1= (x,0) = cp; 0128,(0),

where $)(0) = 1, being
zF o
912,‘ = exp[ﬁ (Agvgbinit — A;V(/)Iz,- ) :| 5

zFvt
Xp[ RT ]
[sz(Z/l - t)]
P RT t=A,

0<t<A (11)
Si(t) =

where ¢}%* denotes the bulk concentration in the aqueous
phase, A;ng}’z’i is the formal transfer potential, AY ¢ini¢ is the
starting potential, v is the scan rate, A is the switching time,
and the rest of the symbols have their usual meaning.

The boundary conditions for semi-infinite linear diffu-
sion can be written as

x — o0:  cf(xt) = s (x,0), (12)
X — —oo: P (x,t) = cfs(x,0), (13)
acl (x, 1) ¢t (x, 1)
=0: Dp -2l —pg R (14
X T ox o [ ox o (14)

where the last equation is the flux continuity at the interface.

3.1.2. Solution with the Explicit Finite Difference Method.
The finite difference method [458, 462, 497] applied to the
previous equations involves the discretization of time and
distance into small intervals, 6t and dx, respectively. The
expressions for these parameters can be obtained as follows:

tCX
ot = Mp (15)
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where e, is the total experimental time and M is the number
of time intervals, and

1/2
o = (Dﬂat) , (16)
Dy
where D,y represents the highest value of the diffusion coef-
ficients. Dy is the model diffusion coefficient, whose opti-
mized value is 0.45, to ensure that the mean free path of
particles in the system does not exceed §x.
Using these simulation parameters, the differential equa-
tions that appear in Fick’s second law are redefined as

dcf (x, 1) . (x,t+ 0t) — ¢ (x, 1)
= lim >
ot 5t—0 ot
et (1) I [Cf‘z, (x4 x, 1) — ¢ (x, t)]
ox? B alxIPo Ox?
im ul et (x, ) — % (x — 6x, 1) ]
Sx—0 5962

(17)

with u = 2 for the first box and u = 1 for the rest.
Using this discretization, the Fick’s second law (9) is
rewritten as

e (%, £+ 0t) — cfa (x, 1)

61t1 7o ot
. et (x+6x,t) — ¢ (x, 1)
a aliino[ Sx? (18)
~ lim ul et (x,t) — % (x — 6x,1)]
3x—0 Ox? '
Using these equations and considering that x = idx

and t = jdt, the diffusion of I% in both phases can be cal-
culated through the following iterative equations:

C‘Ixzi(l,j + 1) = C}Xzi(l,]’)

Dy, 5t . ) )
éxz [2¢75 (0, j) = 3¢t (1, ) +¢f (2, /)]

(19)

for the first box and
C?zi (l,] + 1) = C‘Ixzi (l,])
Dy, 6t
Ox?

e (i = 1, j) = 2¢f (i j) ~ (20)

e (i+ 1, )]
for the rest of the boxes.
The flux continuity (14) can be similarly treated to obtain
the interfacial concentration of I at each phase:
o 0 H w oW M
C}";i (O, ]) _ DIz,' Clz,o(l,]) + PIZ[ CIz,'W(l,]) ;
DIziejziS,\(]) +DIZ,- (21)

¢4 (0, ) = 051 (j) cf (0, ).

Therefore, the concentration of I% at any distance can be
calculated at each time.

The ion transfer current can be obtained with the discrete
form of the ion flux at the interface:

. a2 a ) o )
I(]) = ZFADIZI&[CIzi(l,]) _CIZ,-(O,])], (22)

where A is the interfacial area.

11
Organic phase T T T T T
30 -
7t
20 T e
z+
10 I b
= Aqueous phase
S 0
— Organic phase
-10 I#
|
N2
-20 7t
~30 . ) . ) . ) . ) . ) Aqueous phase
—0.45 -0.3 -0.15 0 0.15 0.3 0.45
AY$ (V)

FIGURE 2: Simulated voltammograms corresponding to the transfer
of I** for different formal transfer potential values, A¥ ¢%. - A ¢%, =
—0.15V (red line), 0.00V (black line) and +0.15V (blue line).
Simulation parameters: z = 1, A = 0.18cm? v = 0.050Vs!,
DY =1x107°cm?s™!, & = \/DL./D}Y. = 1.12 (water|1,2-dichlo-
roethane system) and ¢ = 1 x 107 M.

Figure 2 compares simulated cyclic voltammograms of
three different cations. In all the cases, the initial potential
will be taken as negative, that is, the voltammetric scans will
always start from the negative side of the potential window.
By convention, the transfer of a positive (negative) charge
from the aqueous (organic) phase to the organic (aqueous)
phase will produce a net positive (negative) current. Thus, in
the forward scan the cation is transferred from the aqueous
to the organic phase and vice versa in the backward scan.
When the cation is more hydrophilic, more energy needs to
be transferred from the aqueous to the organic phase. For
cations, the more positive the value of A¥¢¢ is, the more
hydrophilic the ion is, and vice versa for anions (see (7)). All
the voltammograms present a peak-to-peak separation of
59 mV/z; characteristic of reversible charge transfer processes
controlled by diffusion.

3.2. Charge Transfer Processes Controlled by Diffusion-Convec-
tion. Forced convection can be used to enhance the mass
transport, thus the second Fick’s diffusion law is modified to
incorporate forced hydrodynamic conditions as an extra
term. In this way, (9) is replaced by

ocf (x, 1)
ot

0% (x,t) o oct; (x, 1)

= D¢,
I ox2 * oox

(23)

where v¢ is the convection velocity of species in a-phase, that
is, the rate with which a volume element moves in solution
and is responsible for the flow of species from and toward the
interface.

The second term on the right side of (23), convection
term, is self-regulated because the concentration gradient
forms part of it; therefore, when no net flux is found,
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FiGure 3: Simulated voltammograms in different conditions of
mass transport. Quiescent solution (black line) with forced hydro-
dynamic condition applied in aqueous phases: v/ = 1x 107> cms™!
(red line) and v = 3 x 10~ cms~! (blue line). A;"gbf% = 0.00V.
Other parameters are as in Figure 2.

the contribution of the convection term to the mass transport
is negligible.

When the explicit finite difference method is applied to
(23), concentrations of each species can be calculated from
the following expressions:

Df:, 8t
Ox?

C‘Ixe'(lyj"'l) :C?Zi(l)]')"' [Zc?zi(O,j)—3c}xz,-(1,j)

+cf (2, 7)1
- V;‘I:C?Zi (O)j) - C[Ixzi (1)])]
(24)
for the first box and

Dy 6t .
éxz [C?Zl (l -

1, ) = 2¢f (i j)
+c& (i+ 1, )]
1, ) =t (i, j) ]

cfs (i, j + 1) = cfs (i, j) +

— v (i —
(25)

for the rest of the boxes.

The effect of convection-diffusion is evident in simulated
voltammograms (Figure 3); it can be observed that when
forced hydrodynamic conditions (stirring) are applied to
aqueous phase in forward and backward scans, current peaks
increase as the convection velocity increases. For large con-
vection velocity values in forward scan, a limit current is
established. These simulated voltammograms can be com-
pared with the experimental results shown in Figure 1 for the
TEA™* transfer.

This effect is caused by the narrowing of the diffusional
layer as it can be in the concentration profiles (Figure 4).

Concentration profiles in both phases obtained under
forced hydrodynamic conditions differ from unstirred solu-
tion. It should also be noted that the concentration of I%
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Figure 4: Concentration profiles obtained at switching time, A.
Quiescent solution (black line) with forced hydrodynamic condi-
tion applied in aqueous phase, v/ = 3 x 107> cms~! (blue line).
Other parameters are as in Figure 3.

in the aqueous side of the interface overcomes the analytical
concentration when the aqueous phase is stirred.

4. Computer Simulations

Molecular simulation methods, like Monte Carlo or molec-
ular dynamics, have contributed considerably to our current
view of the interfacial structure. These methods can provide
the potential of mean force (PMF) governing the ion transfer
and the means to investigate the exchange of the ion solvation
shell: key step in the transfer process.

To calculate the free energies associated with the transfer
of an ion across the liquid|liquid interface, a constrained
molecular dynamics technique can be employed [64, 498].
The reaction coordinate for ion transfer can be considered
as the z, position of the ion. The Helmholtz free energy dif-
ference, AF(z;), between a state where the ion is located at z,
F(z), and a reference state where the ion is at zy, Fy, is simply

AF(z) = Fa) ~ Fo= [ (R()) de (20

where F,(z}) is the z-component of the total force exerted
on the center of mass of the solute at a given z-position,
z;s, averaged over the canonical ensemble. In general, F,
was chosen as the free energy of the system with the solute
located in the bulk liquid region. During the simulation,
the z-coordinate of the solute was reset to its original value
after each step and the average force acting on the solute was
evaluated. The average forces are subsequently integrated to
yield the free energy profile.

Exchange of the ion solvation shell during the charge
transfer process at the liquid|liquid interface can be analyzed
using the radial distribution function (RDF). This study aims
at describing the ion solvation environment at the interface
analyzing the ion tendency to preserve its solvation shell
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FIGURE 5: Average density profiles from the H,O-CHCIl; system.
Average density profile of water (blue line) and of chloroform (green
line). The liquid|liquid interfacial system consists of two adjacent
liquid slabs of 616 water molecules and 246 molecules arranged in
a rectangular box of size 3.3 nm X 3.3 nm X 3.3 nm. All simulations
were performed using the Gromacs package in the NpT ensemble at
298K and 1.00 atm. Periodic boundary conditions were applied in
all three directions of the Verlet Leapfrog algorithm which was used
to integrate the equations of motion, with a time step of 2 fs.

[57, 499]. The small ions tend to keep its hydration shell
unaltered, while the first hydration shells of the large ions
were found to be significantly reduced as they moved from
the aqueous to the organic phase. The ability of the ions to
keep part or all of their hydration shell depends on their size
and polarizability. This stability of the first solvation shell as
the ion approaches the interface plays an important role in
many other systems [55, 500].

Using molecular simulation methods, several liquid|
liquid interfaces are studied considering neat interfaces:
water|1,2-dichloroethane [47, 501], water|octanol [502],
water|tetrachloromethane [503] water|nitrobenzene [504,
505], water|dichloromethane [506-508] water|2-heptanone
[509], and water|chloroform [506]. Generally, all studies
conclude that the structure of liquid|liquid interface is
molecularly sharp and very rough. In order to represent
these results, characteristic average density profiles for a
water|chloroform interface, calculated in our group by mole-
cular dynamics, is depicted in Figure 5. The liquid|liquid
interfacial system consists of two adjacent liquid slabs of 616
water molecules and 246 chloroform molecules arranged in a
rectangular box of size 3.3 nm X 3.3 nm X 3.3 nm. All simu-
lations were performed using the Gromacs package in the
NpT ensamble at 298 K and 1 atm.

Due to the dynamical nature of the interfacial region,
the definition of the interfacial structure is dependent on the
calculation time scale. In the time scale of few picoseconds,
molecular dynamics simulations showed that the liquid| lig-
uid interfaces are molecularly sharp but particularly rough.
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On longer time scales, the picture of the interface is more
diffuse than sharp. This picture is confirmed by methods not
involving dynamics (i.e., Monte Carlo).

The incorporation of polarization effects into poten-
tial models provides insight into the adaptability of the
monomer dipole moment in clusters and interfacial environ-
ments. The incorporation of many-body interactions into
the potential model [498, 503, 510-516] is also expected to
be especially critical for the study of ionic interactions. One
advantage of using polarizable potential models [514, 517—
520] is that they can, more realistically, account for the
electrostatic properties of molecules in the inhomogeneous
environments. For example, the polarizable potential is able
to describe the increase of the dipole moments of H,O
molecules in bulk liquid as compared to the gas-phase
value [521, 522], while the nonpolarizable model [523] only
gives a constant dipole moment. It is well known that these
dipolar interactions can contribute significantly to interpret-
ing the interfacial transport processes. Thus, to understand
the effect of polarization on the electrical properties of the
H,0 molecules, we calculated the total dipole moments of
the water molecules as a function of the z-axis of liquid|
liquid interface. A few simulations with nonpolarizable
models included the TIP4P water model [522, 524] and
OPLS CCly model [190] and simulations with polarizable
models used the Dang and Chang water model [521], a
polarizable CCly model, and a polarizable iodide [525]. One
recent study of the transfer of iodide across the CCly|water
interface compared the free energy profile with polarizable
and nonpolarizable models [74].

More advanced studies have concentrated on simple ion
transfer at liquid|liquid interfaces. In the last years, the trans-
fer of several inorganic and organic ions was analyzed exten-
sively using different molecular simulation methods. The
processes of ion transfer studied include Cl™ [438, 49, 70, 75],
Cs* [70, 75], Li", Na*, K*, F*, Br~, I [70], and SCN"~ [77]
at water|1,2-dichloroethane; Cl™, Cs™ [56], and I~ [74] at
water|carbon tetrachloride; Na*t, K*,Rb*, Sr2*, TMA™ [62],
and 1" [57] at water|2-heptanone; 1" [57] at water|iso-
octane; CaZ" [526] and TMA™" [58] at water|nitrobenzene;
Cl™ [64] at water|dichloromethane; Na* and CI™ [527, 528]
at water|hexanol interfaces. Simulation results showed that
small, hydrophilic ions keep their solvation shells at least
partly going from water to the organic phase. On the other
hand, as the ion transfer occurs, few hydrophilic ions lose the
solvation gradually and fully [49, 56-58, 62].

Further details of the liquid|liquid interfaces most widely
studied in electrochemical research are specifically discussed
in the subsequent sections.

4.1. Water|1,2-Dichloroethane Interface. In the transfer pro-
cess for SCN™ ion, from the aqueous to organic phase the
free energy minimum is followed by a strictly monotonically
increasing of the free energy in the subsurface region of
water phase. This behaviour is a consequence of the ability
of SCN™ ion to be adsorbed in the close vicinity of the inter-
face. The SCN™ ion coextraction of the water molecules of
its first hydration shell occurs in the organic phase [77].
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For CI” and Cs* ions the free energy profile across the
water|1,2-dichloroethane interface shows no minimum in
the free energy profile for Cl™ ion in the interface [48, 49],
because of the Cl™ ion unfavorable interaction with 1,2-
DCE. Otherwise, cesium present a free energy minimum
near the interface, showing a propensity for the aqueous
region near the water|1,2-dichloroethane interface. The
authors showed that 1,2-dichloroethane presents an average
interfacial orientation resulting in unfavourable interactions
with anions but favourable ones with cations [75]. Recently,
Rose and Benjamin [70] calculated the free transfer energies
of hydrated alkali and halide ion clusters from bulk water
to bulk 1,2-dichloroethane using molecular dynamics sim-
ulations. For each ion, the free transfer energy decreased as
the number of water molecules in the cluster increased. This
dependence is more often found in small than in large ions.

4.2. Water|Nitrobenzene Interface. The transfer process
across the water|nitrobenzene interface was studied for Ca%*
[526] and TMA™" [58]. Dos Santos and Gomes [526] showed
that calcium ion transfer process occurs with the formation
of a water cone that perturbs the interface. When the ion
crosses the interface, the first hydration shell remains intact
and part of the second hydration shell is lost; a substitution
of water by nitrobenzene molecules occurs. This three-stage
substitution process begins as the ion approaches the inter-
face, increases as the ion crosses the interface with the water
cone formation, and stops with the water cone breaking. The
authors also found that the withdrawal of water molecules
occurs with a replacement with nitrobenzene molecules and
that the substitution process is concerted. The most notable
change in the increase of the free energy occurs while the
ion is in the organic phase moving away from the interface.
The PMF calculated by Dos Santos and Gomes [526] for this
process is a monotonic increasing function of the distance
to the interface, hence, no energy barriers were found. The
transfer process was found to be nonactivated, as shown for
the transfer of other ions in other interfaces [57, 62].
Tetraethylammonium ion transfer process was studied by
Schweighofer and Benjamin [58]. The authors showed that
the transfer of tetramethylammonium across the water]
nitrobenzene interface involves only a small change in the
solvation free energy, compared with a much larger free
energy of transfer which accompanies the transfer of small
inorganic ions [48, 49]. Unlike the transfer of small inorganic
ions, TMA™ does not keep a hydration shell when going into
the organic phase [58]. This is chiefly attributed to the fact
that the water-ion interaction varies less markedly along the
interface. This delay in the “shedding off” of the hydration
shell during the nonequilibrium transfer is accompanied by
a significant increase in the surface roughness in the form of
“fingering” It is similar to the case of the transfer of small
ions [58].

It is remarkable that simple ion transfer processes at
liquid|liquid interfaces are one-step reactions. According to
representative experimental data shown in Section 2.4, this
large group includes important transfers of various inorganic
and organic ions. Among several contentious points in the
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theory of simple ion transfer is the nature of its rate-limiting
step. One model attributes the finite ion transfer rate to
slow diffusion of the species transferred through the inter-
facial layer [529, 530], while another treatment considers
activation-controlled changes in ion solvation [50, 72, 531,
532].

5. Practical Applications

Studies on polarized ITIES are relevant to different fields,
such as deposition of metallic nanoparticles [533-549] and
polymerization [550-556] at liquid|liquid interfaces, ion and
neutral species partition [342, 349, 557-560] and electro-
assisted extraction [561, 562]. Particular cases related to
electroanalysis are discussed in this section. It should be
noticed that these electroanalytical procedures are based on
different global mechanisms of charge transfer, that is, simple
and facilitated ion transfer [5, 9, 32].

In the last three decades, the interfaces between two
immiscible electrolyte solutions were applied exhaustively in
analytical chemistry. These interfaces can be used for under-
standing and developing practical electroanalytical processes
and devices [9, 32, 36, 563, 564]. The electrochemical meth-
ods applied to liquid|liquid interfaces have proved a useful
tool for the determination of ionic analytes not easily oxidi-
zed or reduced [36, 45, 119, 121, 136, 141, 149, 153, 254, 273,
336, 496, 562, 564—580].

The ITIES may also be employed for detection in ion
chromatography [119] and has also been incorporated into
capillary electrophoresis systems to allow the separation
of species before their detection at the interface [581,
582]. Recently, Arrigan and co-workers have used the ion
transfer at ITIES as a detection method in a capillary
electrophoresis separation system. The authors reported
the optimal experimental conditions for the separation of
different substances of practical interest [583]. Capillary
electrophoresis system with the ITIES-based detector pro-
vides a platform for the detection of cationic or anionic
analytes.

Kihara and coworkers have proposed the use of a flow cell
for the coulometric determination of redox inert ions
based on the electrochemical ion transfer at the aqueous-
organic solution interface [571, 584-586]. Osakai and co-
workers used a microflow cell with a stationary organic
phase stabilised below a hydrophilic dialysis membrane,
to detect ions using pulsed amperometry [587]. Later,
Kihara and co-workers constructed a two-step flow-cell
system in view of applications to clinical samples [584],
and Gohara and Osakai applied a similar two-step flow-cell
system to the on-line electrochemical separation of acetyl-
choline and choline and their simultaneous determination
[588].

Finally, the application of charge transfer reaction at
liquid|liquid interfaces in bioassays has been reported recent-
ly by Shao and co-workers [141]. In this paper, the authors
highlighted the advantage of ITIES in the study of biologi-
cally and pharmaceutically interesting molecules.
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6. Conclusion and Outlook

The main aspects of simple ion transfer at liquid|liquid inter-
faces have been summarized in this paper. Complete and up-
to-date bibliography has been compiled for each topic, based
not only on the latest reports, but also on the history and
development of this novel research area. Special emphasis
was placed on numerical simulations of simple ion transfer
at ITIES, as we believe this tool can provide important clues
to the future development in electroanalysis.

The extensive compilation of electrochemical studies,
given in Section 2.4, for the simple ion transfer at different
water|organic solvent interfaces, constitutes a useful database
for future experimental studies. Due to a historical evolution
in the field, the most studied interfaces are probably
water|nitrobenzene and water|1,2-dicholoroethane, where
the ion transfer of almost all the alkaline, alkaline earth and
transition cations and several anions have been measured.
Yet, other environment-friendly solvents have been studied.
The latter aspect must receive special attention if we intend
ion transfer at ITIES to be extended to practical applications.
As regards this, ion transfer at novel polarizable interfaces
between water and room-temperature ionic liquids is being
studied.

Electrochemistry at ITIES is a relatively new research area
with less than forty years of evolution. During this time,
different practical applications have been developed as metal-
lic nanoparticles synthesis and polymerization. However,
several other promising aspects need to be explored, mainly
related to electrocatalysis, electroanalysis of pharmaceutically
and biologically related systems and to the possibility of
charge separation between phases.
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