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INTRODUCTION

Cooperation, both intraspecific and interspecific, is a well-documented phenomenon in nature that is not well understood. Evo-
lutionary game theory is a powerful tool to approach this problem. However, it has important limitations. First, very often it is not
obvious which game is more appropriate to use. Second, in general, identical payoff matrices are assumed for all players, a situation
that is highly unlikely in nature. Third, slight changes in these payoff values can dramatically alter the outcomes. Here, I use an
evolutionary spatial model in which players do not have a universal payoff matrix, so no payoff parameters are required. Instead,
each is equipped with random values for the payoffs, fulfilling the constraints that define the game(s). These payoff matrices evolve
by natural selection. Two versions of this model are studied. First is a simpler one, with just one evolving payoff. Second is the
“full” version, with all the four payoffs evolving. The fraction of cooperator agents converges in both versions to nonzero values.
In the case of the full version, the initial heterogeneity disappears and the selected game is the “Stag Hunt.”

Copyright © 2007 H. Fort. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mutualism, symbiotic relations, and altruistic behavior are
ubiquitous in nature [1, 2]. How did cooperative behavior
evolve among self-interested individuals, both between and
within species, is an important open question in behavioral
and evolutionary ecology. Evolutionary game theory [3-5]
is a powerful tool to analyze this issue. In particular, 2 X 2
games, that is, 2 players making a choice between 2 alterna-
tives to cooperate (C) or to defect (D), are useful to model
very different individuals, from viruses [6] to humans [7, 8].
So, their application to diverse ecological issues is quite com-
mon [9, 10]. In these games, the payoff of a “player” depends
on its strategy and the one of its coplayer. If it plays C, it gets
either the “reward” for mutual cooperation R or “sucker’s
payoff” S depending if its opponent plays C or D, respec-
tively. While a D move produces the “temptation” to defect
T or the “punishment” for mutual defection P depending if
its opponent plays C or D, respectively. Of special interest are
the games which involve a tradeoff or dilemma between co-
operation and competition. That is, either when none of the

two pure strategies (C or D) is dominant (it provides a player
a larger payoff than any other regardless of the strategy of its
opponent) or when one is dominant but noptimal (there is at
least another combination of strategies in which both players
can be better off ). The paradigmatic example is the Prisoner’s
dilemma (PD) which corresponds to T > R > P > S. Clearly,
it pays more to defect (T' > R and P > §) but the dilemma
is that if both play D, they get P that is worse than the re-
ward R they would have got if they had played C. The PD
is connected with two other social dilemma games [11, 12]:
when the damage from mutual defection is increased so that
it finally exceeds the damage suffered by being exploited, that
is, T > R > S > P, the new game is called the chicken [13].
This game applies thus to situations such that mutual defec-
tion is the worst possible outcome for both players as it hap-
pens in most of animal contests. On the other hand, when
the reward surpasses the temptation, thatis, R > T > P > S,
the game becomes the Stag Hunt (SH) [14]. The name of
the game derives from a metaphor invented by the French
philosopher Jean Jacques Rousseau: Two hunters can either
jointly hunt a stag or individually hunt a rabbit. Hunting
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stags is quite challenging and requires mutual cooperation.
If either of them hunts a stag alone, the chance of success is
minimal.

There are several animal behaviors that have been de-
scribed as stag hunts, for example, the coordination of slime
molds [15]. When individual amoebae of Dictyostelium dis-
coideum are starving, they aggregate to form one large body.
Here if they all act together, they can successfully repro-
duce; however, the success depends on the cooperation of
many individuals. Also, the hunting technique of orca called
“carousel feeding” [16] is an example of an SH. By acting
cooperatively, orcas manage to isolate and corral schools of
fish to the surface and stun fishes by hitting them with their
tails.

It is not easy indeed to determine the ranking of the pay-
off values that explain the results of experiments or field ob-
servations. Quite the opposite, in the case of animals fre-
quently there is controversy whether the PD or chicken is
the appropriate game [17, 18]. Or many circumstances that
have been described as PD might also be interpreted as
an SH, depending on how fitness is calculated [14]. More-
over, experimental studies indicate that the payoff matrix is
not a constant for very simple individuals like viruses [19].
On the theoretical side, a problem that faces the modeler
is that, for a given game—a specific rank ordering of the
four payoffs—changes in the payoff values preserving this
ranking often modify qualitatively the results [20]. The out-
comes also vary very considerably with different parameters
determining:

(i) characteristics of the agents as the size of their memory
[21-23], their ability to distinguish cooperators from
cheaters [24], and so forth;

(ii) the kind of strategies available [25, 26];
(iii) the topology of the spatial structure, in the case that
territoriality is taken into account [20].

Here my goal is to minimize the dependence of crucial
model predictions, like the evolution of cooperation, on the
above parameters. Hence, I propose an evolutionary spatial
game theoretical model with a minimal number of parame-
ters. To avoid the introduction of quantities that parameter-
ize the agents’ memory or its complex strategies, I consider
the simplest possible agents: unconditional players versus its
neighbors. That is, at each generation or time step t of the
game, there are those who always play C and those who al-
ways play D. The model has no payoff parameters as inputs.
Instead, it starts with an initial heterogeneous spatial distri-
bution of social dilemma payoff matrices. I assume that the
individual’s payoff matrix reflects its phenotype so it evolves,
together with its strategy. As a result, the model gives rise,
by natural selection itself, to “equilibrium” payoff matrices.
This, besides taking into account the heterogeneity of indi-
viduals in the real world, allows to overcome the twin diffi-
culties of the empirical determination of payoff parameters,
and the high sensibility of models to their values.

Following the principle of parsimony, I begin studying
a simpler version of this model, in which only the tempta-
tion T evolves and the other three payoffs are parameters kept
fixed. Then I analyze the “full” version in which all the four

payoffs are evolving variables (i.e., with no payoff parame-
ters). This introduces unexpected remarkable changes: first,
the natural selection process yields a homogeneous or almost
homogeneous distribution of payoff matrices. Second, these
payoff matrices correspond, in the great majority of cases, to
the SH game.

2. THE MODEL

The two-dimensional artificial world is divided into cells rep-
resenting agents with only two strategies: to cooperate (C) or
to defect (D). L x L square lattices of length L ranging from
100 to 500, with periodic boundary conditions, are used. At
t = 0, random values for the four payoffs are assigned to each
cell, in the interval [0,1], fulfilling the ranking of payoffs that
define the game. The initial configuration for strategies is
half of the cells, chosen at random, playing C and the other
half playing D. Two types of neighborhoods are considered:
the von Neumann neighborhood (with z = 4 neighbor cells)
and the Moore neighborhood (with z = 8 neighbor cells). The
score U of a given player is the sum of the payoffs it collects
against its neighbors in these bimatrix games [5] (each player
has its own payoff matrix). The dynamic is synchronous: all
the agents update their states simultaneously at the end of
each lattice sweep. In order to mimic natural selection, I use
the simplest “Imitate the Best” (in the neighborhood) update
rule [27]: each individual, after playing against its neighbors,
adopts the strategy and payoff matrix of the most successful
neighbor (the one that collected the highest utilities U in the
neighborhood at this round). For each generation f, we com-
pute the average fraction of cooperators (c) and the averages
of the payoffs (T), (R), (P), and (S) until the steady state
is reached (typically, this takes between 500 to 1000 genera-
tions). The symbols (-) denote averages that are both spatial,
over all the lattice cells, and over 500 runs each starting from
a different initial configuration (to ensure independence of
the initial conditions).
Two versions of the model are studied:

(1) simplest version (one evolving payoff game): as a first
step let us consider the version with only the temp-
tation T variable in [0,1] and the other three payoffs
fixed: R=1/2,S=P =0; since P =S, when T > 0.5
(T < 0.5) the game is the frontier between the PD and
the chicken (SH); at t = 0, T is a uniform random vari-
able;

(2) full version (four evolving payoffs game): next I concen-
trate on the case in which the four payoffs are evolv-
ing variables, always verifying the condition of social
dilemma: R&T higher than P&S (this condition is ver-
ified for all the L x L payoff matrices at the initial con-
figuration and, of course, for the final payoff matrices
which are a subset of the initial set); at t = 0, the three
dilemmas are equiprobable. This version also includes
an additional sophistication to avoid dependence in
the number z of neighbor cells: at each lattice sweep,
each agent chooses just one of its neighbors to play (so
a given agent plays at least one and at most z +1 times
per generation).
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Figure 1: (T) (above) and (c) (below) versus the generation t.
Filled (dashed) lines correspond to z = 8 (4).

3. RESULTS
3.1. One evolving payoff game

In the simplest version, the average temptation (T') and frac-
tion of cooperators (c) evolve from (T)y = (1—-0)/2 = 0.5 and
(co) = 0.5, respectively, to their steady-state values as shown
in Figure 1. Notice the kind of “specular symmetry,” with re-
spect to an horizontal line, between the curves of (T)(t) and
(c)(t). There is a short transient in which (T) ({c)) grows
(drops) very quickly and then it decreases (increases) until it
reaches its asymptotic value. The spatial patterns that emerge
offer relevant information. For instance, Figure 2(a) repre-
sents a typical steady-state map showing clusters of C agents
(white) on a “sea” of D agents (black). In Figure 2(b), all the
agents that have a temptation T < 1/2 = R are marked in
gray. Notice that they are a subset of the C agents. In other
words, all the agents that were selected with low values of T
are cooperators (the reciprocal is not true: many C agents
have values of T > R = 1/2).

As a result of selection, the system evolves from an initial
configuration with L X L different payoff matrices (one per
lattice cell) to a situation in which many less matrices coexist:
starting with 100 X 1000 = 10 000 payoff matrices one ends
typically with around 500.

By means of a mean field approximation, that neglects all
the spatial correlations, the average individual score (U) can
be approximated by

U = 0.5(c)* + (T){c) (1 - {c)). (1)

Substituting in (1) the computed values of (T') and (c), one
gets a value that slightly overestimates (U). For example, for
z=4,U ~ 0.47 and (U) ~ 0.43.

20 40 60 80 100

20 40 60 80 100
(b)

FIGURE 2: (a) Steady-state map of strategies: C agents (white) and D
agents (black). (b) In gray, agents with T'< 1/2 = R.

3.2. Fullversion

In the case of the full version, it takes a little more algebra,
but the average initial values of the four payoffs can also be
computed analytically: (T)o = 11/15, (R)¢ = 2/3, {P)o = 1/3,
and (S)( = 4/15. From this values they evolve to converge, on
average, to the SH game. Figure 3 illustrates the evolution of
the averages of the four payoffs. Their asymptotic values are
(R) =~ 0.96 > (T) =~ 0.85 > (P) = 0.59 > (S) = 0.36.

In this case, initially there is much more freedom in the
choice of payoffs than in the simplest version. However, con-
trary to what one would expect, the effect of natural selection
is more drastic, it eliminates all but very few payoff matrices.
Figure 4 illustrate this for a typical run: starting with 100 X
100 = 10 000 only three different payoff matrices emerge!
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F1GURE 3: Full version: the evolution of the four payoffs (R) (A) (T)
(0) {P) (V) (S) (+) and of {c) (filled line).
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FiGure 4: Full version: typical histograms for steady-state payoffs.
Only 3 different payoff matrices survive. Insets in the histograms
for R and T are zooms of the right peak.

The average payoff (U) can now be approximated by

T = (R)(c)®+ ((T) + (S)){c) (1 = (c)) + (PY(1 = {c))".
2)

It turns out that the agreement between the estimates (pro-
duced by (2)) and (U) is better than for the simplest ver-
sion. We have U =~ 0.758 and (U) =~ 0.749. This smaller
difference can be attributed to the greater homogeneity of

x108

o Lo s , i+ o tbos bl i

0 0.2 0.4 0.6 0.8 1

FiGURE 5: Histograms of utilities per pairwise game for 500 genera-
tions and L = 300 for the full version.

the steady state. This uniformity is also manifest in Figure 5,
where the histogram of utilities per pairwise game recorded
for 500 generations is shown. The high peaks at 1 correspond
to patches of cooperators, where R = 1 is a frequent payoff
(these patches cover, on average, 2/3 of the lattice, and in
many runs all the lattice).

4. CONCLUSIONS

The simplest version of this evolving payoffs model produces
the evolution of cooperation. Starting from (T)y = 0.5 = R
and (c)o = 0.5 (=R), it selects, on average, higher values of
the temptation to cheat and, thus, lower values of the frac-
tion of cooperators. The steady state consists of a rich struc-
ture of several “patches” of agents using the same payoff
matrix.

The full version brings interesting changes. The fraction
of cooperators is larger than for the simplest version (well
above 0.5). This is correlated with a reward that on average
is close to 1. A remarkable finding is that a homogeneous or
almost homogeneous state of payoff matrices is selected. This
(these) payoff matrix (matrices), even though the agents are
unconditional players without memory, evolves by natural
selection to SH games. I only considered evolution by natural
selection. This eliminates the initial heterogeneity of payoff
matrices reflecting asymmetries in the interactions between
individuals. By taking into account mutations, these asym-
metries can be recovered.

All the results are quite robust and do not depend on
particular payoffs choices, nor on the lattice topology, and
do not rely on specific characteristics of the agents. The de-
pendence on the initial conditions is also mostly removed by
taking averages.

Concerning the biological situations to which this model
might apply, one can envisage different microorganism
ecosystems in which the process of evolution can be di-
rectly observed and can lead to adjustments in the dose
of cooperation/competition, for example, viruses [19], viral
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quasispecies [28], bacteria [29], and so forth. Furthermore,
at a different level, the results of this model serve to reinforce
the importance of the SH game since it is obtained as the
product of natural selection.
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