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Purpose. Several commercial tests have been used for the classification of indeterminate thyroid nodules in cytology. However, the
geographic inconvenience and high cost confine their widespread use. ,is study aims to develop a classifier for conveniently
clinical utility. Methods. Gene expression data of thyroid nodule tissues were collected from three public databases. Immune-
related genes were used to construct the classifier with stacked denoising sparse autoencoder. Results.,e classifier performed well
in discriminating malignant and benign thyroid nodules, with an area under the curve of 0.785 [0.638–0.931], accuracy of 92.9%
[92.7–93.0%], sensitivity of 98.6% [95.9–101.3%], specificity of 58.3% [30.4–86.2%], positive likelihood ratio of 2.367
[1.211–4.625], and negative likelihood ratio of 0.024 [0.003–0.177]. In the cancer prevalence range of 20–40% for indeterminate
thyroid nodules in cytology, the range of negative predictive value of this classifier was 37–61%, and the range of positive
predictive value was 98–99%. Conclusion. ,e classifier developed in this study has the superb discriminative ability for thyroid
nodules. However, it needs validation in cytologically indeterminate thyroid nodules before clinical use.

1. Introduction

,yroid nodules (TNs) are the most frequently encoun-
tered thyroid diseases and show an escalating prevalence in
recent years. By neck palpation, 4% to 7% of adults are
found with TNs [1]. By sensitive imaging apparatus, such as
the ultrasonic diagnostic system, 13% to 68% of patients are
diagnosed with TNs [2, 3]. Most of the TNs are detected
incidentally in a health checkup or an examination for
other head and neck diseases. Despite the high prevalence
of TNs, most of them are benign. Nevertheless, it is re-
ported that 5%–13% of TNs are with a high risk of ma-
lignancy [4].

Once the nodules are suspected as malignant by ultra-
sound, fine-needle aspiration (FNA) cytology is a wise

choice to assess the TNs and produce a risk stratification [5].
Fortunately, approximately 55–74% of FNA samples are
diagnosed as benign nodules (Bethesda II), and only 2–5% of
FNA samples are diagnosed as malignant nodules (Bethesda
VI). Nevertheless, the remaining samples are classified into
indeterminate thyroid nodules (ITNs), including 2–18% of
the nodules in Bethesda III, 2–25% in Bethesda IV, and 1–6%
in Bethesda [6]. Once the TNs are diagnosed as indeter-
minate, most patients are referred to surgical treatment.
However, 69% of the ITNs are diagnosed as benign by
postsurgical pathology [7].,is indicates 69% of the patients
with ITNs have unnecessary surgeries, and some of them
have to take the lifetime thyroxine supplementation. As well,
unnecessary surgeries will cause an overload of medical
expenditure [8].
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Nowadays, several commercial molecular tests are
invented sequentially to make a more precise preoperative
diagnosis for TNs and prevent unnecessary surgery. As we
know, there are five commercially available molecular tests,
Afirma, ,yroSeq v2, ,yroSeq v3, ,yGenX/,yraMIR,
and RosettaGXReveal [9–13], which have benefited patients
with ITNs. ,ese molecular tests have been demonstrated to
perform outstandingly, despite the different sensitivity,
specificity, positive predictive values (PPVs), and negative
predictive values (NPVs). However, access to these molec-
ular tests is geographically inconvenient and economically
unaffordable for some patients [14]. In this study, based on
stacked denoising sparse autoencoder (SDSAE), we devel-
oped a classifier using TNs samples tested by multiple RNA-
testing platforms.

2. Methods

2.1. StudyDesign and Subjects. Gene expression data of TNs
were collected from three major databases, ,e Cancer
Genome Altas (TCGA), ArrayExpress, and Gene Expres-
sion Omnibus (GEO). Two RNA-sequencing and seven
microarray datasets were eligible and enrolled in this study
(Table 1). We only chose the interesting samples of thyroid
nodular lesions, so 1013 tissue samples were included for
further analysis. ,e pathological diagnosis of the tissue
samples is presented in Table 2. ,ere were two data types
in these databases, processed and raw data. ,e processed
data are background-subtracted and within-platform
normalized. For the convenience of data analysis, we
preferentially downloaded the processed data, such as
Fragments per Kilobase Million (FPKM) in TCGA, series
matrix files in GEO, and processed data in ArrayExpress.
Some genes, detected by several probes, had several values.
We chose the median value. Datasets E-MEXP-97 and
GSE33630 were picked up as the independent testing set
(n � 84), and the rest datasets were combined as the training
set (n � 929). ,e study was approved by the Ethics
Committee of the First Affiliated Hospital of Shantou
University Medical College.

2.2. Construction of the Classifier Based on the Stacked
Denoising Sparse Autoencoder. Carcinoma is closely related
to immune cell infiltration in its microenvironment. Some
immune signatures have been developed as prognostic
predictors [15]. It is feasible to use the immune-related
genes (IRGs) to discriminate benign and malignant TNs.
One-thousand eight-hundred and eleven IRGs were
downloaded from the ImmPort Shared Data (https://www.
immport.org/shared/home). ,e biological function of
IRGs is diverse, including antigen processing and pre-
sentation, BCR signaling pathway, TCR signaling pathway,
natural-killer cell cytotoxicity, antimicrobials, chemokines,
chemokine receptors, cytokines, and cytokine receptors.
Nine-hundred and twenty-three IRGs, measured by all the
platforms of the datasets, were chosen for further analysis.
Since our data came from different platforms, it was hard to
analyze them without normalization and removal of the

batch effect. We used a pairwise scoring system, which was
well performed and validated in the previous study [16] to
solve this problem.We used every two different genes of the
923 IRGs to create a gene pair (genes I and II), so each
sample had 425503 gene pairs as its features. ,en, we
scored each gene pair by comparing the expression levels of
gene I and gene II. When gene I > gene II, this gene pair was
scored as one; otherwise, the score was zero. ,is scoring
approach, based on the comparison of two IRGs, has an
advantage that we can gather samples from different
platforms and analyze them together regardless of the
normalization and batch effect, which are necessary pro-
cedures before analyzing genomic data. ,e shortage is that
the feature number of one sample is expanded exponen-
tially, from 923 to 425503, resulting in a hugely increased
computation. To reduce the feature number of 425503 that
was used to construct the classifier, we used correlation
analysis to remove the features less correlated to the
classification of the TNs. Nine-thousand three hundred and
seventy-seven features with correlation coefficient ≥0.4 and
P value< 0.05 were retained. ,ese 9377 features, namely,
gene pairs, consisted of 897 IRGs (supplementary
information).

Autoencoder (AE) is an unsupervised artificial neural
network. It consists of two processes, encoding, and
decoding. ,e encoding process encodes the input data into
efficient data codings, which can be decoded to reconstruct
the input data in the decoding process. During the encoding
and decoding, some datum noises can be removed from the
original data. ,is advantage renders the autoencoder be-
come a feature extraction tool. Besides, the autoencoder is
usually used to learn a data representation, which is usually a
smaller size than the original data. ,us, another advantage
of the autoencoder is to reduce the data dimensionally to
save calculating time.

Denoising sparse autoencoder (DSAE), which adds
corruption operation and sparsity constraint into the tra-
ditional autoencoder, can extract more robust and useful
features. ,e corruption operation sets some of the input
data to zero, and the autoencoder tries to undo the effect of
the corruption operation. ,is harsh learning process helps
the autoencoder to learn more information about the input
data.,e sparsity constraint is imposed on the hidden layers,
which will constrain the neurons to be inactive most of the
time. ,is also helps the autoencoder to discover more
interesting structures of the data. ,e parameters of cor-
ruption and sparsity were set as 0.5 and 0.1, respectively, in
this study.

A stacked denoising sparse autoencoder (SDSAE) is a
deep neural network. It is stacked up with the hidden layer of
several DSAE. Details about SDSAE are elaborated in the
previous study [17]. Here, we briefly interpret the structure
we used in this study. As Figure 1 shows, the training of an
SDSAE includes two phrases, pretraining and fine-tuning. In
pretraining, each DSAE is trained separately and sequen-
tially with the backpropagation algorithm to minimize the
loss. After the training of the first DSAE, the hidden layer (20
neurons) is extracted to feed into the second DSAE, and then
the hidden layer (20 neurons) of the second DSAE is
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extracted to feed into the third DSAE. Finally, the hidden
layer (20 neurons) of the third DSAE is used to connect to a
softmax classifier for the supervised training. In fine-tuning,
after all the hidden layers and the softmax classifier are
stacked up, the whole network is trained to improve the
classification ability based on the weights in the pretraining.
In this study, we used an SDSAE to construct an immune-
related classifier (IRC). To prevent the overfitting, we used
80% of the samples of the training set to train the model and
20% as validation to make an early stopping.

Machine learning has played an essential role in a broad
range of important applications, especially in prediction and
classification. It contains numerous algorithms. Each algo-
rithm has its strengths and weaknesses in different data
types. We also tried to develop classifiers with other four
powerful algorithms, multilayer perception, logistic re-
gression, random forest, and support vector machine.

2.3. Statistical Analysis. Python (version 3.7) and R (version
3.5.3) were used for the statistical analysis.In python,
SDSAE was performed in the environment Tensorflow.
,e codes were referred to and modified based on the
previous study (https://github.com/wblgers/
tensorflow_stacked_denoising_autoencoder). MLPclas-
sifier, logisticregression, RandomForestClassifier, and
SVC were imported from sklearn for neural network,
logistic regression, random forest, and support vector
machine algorithm, respectively. ,e main parameters of
these four algorithms were as follows: MLPClassifier

(hidden_layer_sizes � (200, 100), solver � “sgd”, ear-
ly_stopping �True, alpha � 0.1, vali-
dation_fraction � 0.20); LogisticRegression
(solver � “lbfgs”); RandomForestClassifier
(n_estimators � 200, max_depth � 7, max_features � 10);
SVC (kernel � “linear”, C � 0.1). In R, cor function was
used to calculate the correlation coefficient. Package
reportROC was used to calculate the area under the curve
(AUC), accuracy, sensitivity, specificity, positive likeli-
hood ratio (PLR), negative likelihood ratio (NLR), pos-
itive predictive value (PPV), and negative predictive
value (NPV). Microsoft Word 2010 was used for plotting.

2.4. Limitations of the Study. Since data from this study
relied upon public databases that only reported the post-
operative pathologies, the cytological classifications of the
ITNs were unavailable for conducting IRC analysis. How-
ever, a previous commercial classifier, ,yroSeq v3, was
developed based on 238 tissue samples, and it was dem-
onstrated to have a high accuracy of 90.9% in 175 FNA
samples of ITNs. ,us, our classifier likely performs simi-
larly well in the FNA samples of ITNs, since it was also
developed based on the tissue samples.

3. Results

3.1. Performance of the IRC Based on SDSAE. In training set,
the IRC had a good performance, with an AUC of 0.887
[0.855–0.920], accuracy of 92.0% [92.0–92.0%], sensitivity of
93.4% [91.6–95.1%], specificity of 84.1% [77.9–90.3%], PLR

Table 1: Testing platforms of the datasets used in this study.

Accession no. Testing platform
TCGA thyroid carcinoma Illumina hiSeq
E-MEXP-97 [HG-U133A] affymetrix geneChip human genome HG-U133A
E-MEXP-2442 [HG-U133_Plus_2] affymetrix geneChip human genome U133 plus 2.0
GSE27155 [HG-U133A] affymetrix geneChip human genome HG-U133A
GSE54958 [HuGene-1_0-st] affymetrix human gene 1.0 ST array [transcript (gene) version]
GSE33630 [HG-U133_Plus_2] affymetrix geneChip human genome U133 plus 2.0
GSE29315 [HG_U95Av2] affymetrix human genome U95 version 2 array
GSE65074 [HG-U219] affymetrix human genome U219 array
GSE82208 Illumina hiSeq
TCGA: ,e Cancer Genome Altas.

Table 2: Pathology of the samples from different datasets.

Accession no.
Papillary
thyroid

carcinoma

Follicular
thyroid

carcinoma

Anaplastic
thyroid

carcinoma

Hurthle
cell

carcinoma

Medullary
thyroid

carcinoma

Follicular
adenoma

Hurthle
cell

adenomas

Hashimoto
throiditis Hyperplasias

TCGA thyroid
carcinoma 564 3 — 1 — — — — —

E-MEXP-97 — 12 — — — 12 — — —
E-MEXP-2442 2 18 4 — — 34 — — 9
GSE27155 51 13 4 8 2 10 7 — —
GSE54958 31 — — — — 7 — — —
GSE33630 49 — 11 — — — — — —
GSE29315 22 9 — — — 17 9 6 8
GSE65074 38 — — — — — — — —
GSE82208 — 27 — — — 25 — — —
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of 5.868 [3.962–8.689], and NLR of 0.079 [0.060–0.104]. ,e
PPV and NPV were 97.3% [96.1–98.4%] and 67.7%
[60.5–74.8%], respectively, when the malignancy rate was
85.8%. In testing set, the IRC performed as well as in training
set, with an AUC of 0.785 [0.638–0.931], accuracy of 92.9%
[92.7–93.0%], sensitivity of 98.6% [95.9–101.3%], specificity
of 58.3% [30.4–86.2%], PLR of 2.367 [1.211–4.625], and NLR
of 0.024 [0.003–0.177]. ,e PPV and NPV were 93.4%
[87.8–99%] and 87.5% [64.6–110.4%], respectively, when the
malignancy rate was 85.7% (Table 3). ,e accuracies of IRC
on different pathologies of TNs were presented in Table 4. In
the independent testing set, the accuracies of IRC on dif-
ferent pathologies of TNs were 100% in anaplastic and
papillary thyroid carcinoma, 91.7% in follicular thyroid
carcinoma, and 58.3% in follicular thyroid adenoma.

We compared the IRC with the classifiers developed by
four powerful algorithms, multilayer perception, logistic
regression, random forest, and support vector machine.
Unfortunately, multilayer perception and random forest
algorithms failed in the independent testing set. ,ey could
not recognize the benign TNs and classified all the benign
TNs into malignancy. Logistic regression and support vector
machine as well did not perform ideally in recognizing the
benign TNs with low specificity of 16.7%, although they had
a high sensitivity of 98.6% (Table 5).

3.2. Comparisons the IRC with Five Commercial Molecular
Tests. Afirma, ,yroSeq v2, ,yroSeq v3, ,yGenX/,yr-
aMIR, and RosettaGX Reveal are five molecular tests that are
currently available for cytologically indeterminate FNAs. As
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Figure 1: Training procedure of the immune-related classifier.,e training of the immune-related classifier was based on stacked denoising
sparse autoencoder, including two phrases, pretraining and fine-tuning.

Table 3: Performance of the IRC based on SDSAE.

Parameter
Training set
(n� 929)

Independent testing
set (n� 84)

Value CI of 95% Value CI of 95%
Proportion of
malignancy 85.8% — 85.7% —

Area under the curve 0.887 0.855–0.920 0.785 0.638–0.931
Accuracy 92.0% 92.0–92.0% 92.9% 92.7–93.0%
Sensitivity 93.4% 91.6–95.1% 98.6% 95.9–101.3%
Specificity 84.1% 77.9–90.3% 58.3% 30.4–86.2%
Positive
likelihood ratio 5.868 3.962–8.689 2.367 1.211–4.625

Negative
likelihood ratio 0.079 0.060–0.104 0.024 0.003–0.177

Positive
predictive value 97.3% 96.1–98.4% 93.4% 87.8–99%

Negative
predictive value 67.7% 60.5–74.8% 87.5% 64.6–110.4%

IRC: immune-related classifier; SDSAE: stacked denoising sparse autoen-
coder; CI: confidence interval.
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Table 6 shows, the sensitivity of IRC is higher than that of all
the five commercial molecular tests. In terms of specificity,
the IRC performs superior to Afirma but inferior to ,y-
roSeq v2,,yroSeq v3,,yGenX/,yraMIR, and RosettaGX
Reveal. In the cancer prevalence range of 20–40% for ITNs,
which is reported in most studies [6], the range of NPV of
the IRC is 37–61% and the range of PPV is 98–99%.

4. Discussion

,yroid FNAs that are classified into Bethesda III and IV are
recommended for molecular tests, according to the 2015
American thyroid association management guidelines for
adult patients with thyroid nodules and differentiated thy-
roid cancer [6]. Patients with ITNs, who implement the
molecular tests, have gained benefit from avoiding the
unnecessary surgery [18]. Alone with the increasing de-
mands of the utility of molecular tests, more effective bio-
markers will be detected, and more precise classifiers will be
developed. Nevertheless, the limitations of the currently
available commercial molecular tests confine their extensive
use. Surgical intervention is still the prior option for patients
with ITNs in most regions all over the world, especially for
those without coverage of medicare. Some practical and
cost-effective classifiers have been developed to solve this
dilemma in recent years. An in vitro diagnostic gene clas-
sifier based on quantitative polymerase chain reaction
(qPCR IVD), which can be performed in the hospitals
equipped with qPCR, has been created and shows as a high
classification capacity as the commercial molecular tests
[19]. BRAF V600E mutation is also used as a predictor of
thyroid malignancy in the ITN. A systematic review and
meta-analysis conclude that the specificity of this marker is
100%, but the sensitivity is only 40% [20]. In addition, some
biochemical parameters, such as red cell distribution width,
mean platelet volume, and thyrothropin to thyroglobulin
ratio, are found to help differentiating malignant and benign
TNs [21–23]. In this study, we developed a classifier based on
an RNA-sequencing system and seven RNA expression
microarrays. ,e classifier will fit in different platforms, at
least the platforms we used in this study, and the testing can
be finished by the physicians in laboratories or by the
technicians in the corresponding companies at a relatively
low cost.

A powerful classifier tends to contain two essential
components, distinguishing features and robust algorithm.

Vast studies have focused on the immune response in the
cancer microenvironment. As we know, the initiation and
progression of cancer are closely associated with different
immune responses in vivo, which can be used to distinguish
malignant and benign TNs. It is reported that patients with
malignant TNs have significantly higher neutrophil
to lymphocyte ratio (NLR) than those with benign TNs
(2.1± 0.9% vs. 1.7± 0.9%), and NLR may be useful in the
differentiation of benign and malignant TNs [24]. ,e tu-
mor-associated antigens expressing on thyroid cancer cells
recruit various leukocytes and constitute the cancer mi-
croenvironment. On histological samples, it is observed that
lymphocytic infiltration is more frequent and severe in
papillary thyroid carcinoma than in multinodular goiter
(82.5% vs. 45.0%, P< 0.001) and single/isolated thyroid
nodule (85.6% vs. 71.0%, P< 0.001) [25]. ,e different IRG
profile, mainly derived from the immune cells infiltrating in
the TNs, can represent the different immune responses
against the abnormal thyroid cells. Based on this, we used
IRGs to generate a classifier for TN classification, and as we
expected, the classifier showed superior discriminative
capacities.

Since the distinguishing features were collected, a robust
algorithm, which can not only filter and extract the useful

Table 4: ,e accuracy of the IRC in various pathological classification.

Pathology Accuracy in training set Accuracy in testing set
Papillary thyroid carcinoma 694/708 (98.0%) 49/49 (100%)
Follicular thyroid carcinoma 37/70 (52.9%) 11/12 (91.7%)
Anaplastic thyroid carcinoma 8/8 (100%) 11/11 (100%)
Hurthle cell carcinoma 3/9 (33.3%) —
Medullary thyroid carcinoma 2/2 (100%) —
Follicular adenoma 79/93 (84.9%) 7/12 (58.3%)
Hurthle cell adenomas 10/16 (62.5%) —
Hashimoto throiditis 5/6 (83.3%) —
Hyperplasias 17/17 (100%) —
Data were presented as number (%). IRC: immune-related classifier.

Table 5: Performance of the classifiers based on the two common
algorithms of machine learning.

Parameter
LR SVM

Value CI of 95% Value CI of 95%
Proportion
of malignancy 85.7% — 85.7% —

Area under the curve 0.576 0.465–0.687 0.576 0.465–0.687
Accuracy 86.9% 86.6–87.2% 86.9% 86.6–87.2%
Sensitivity 98.6% 95.9–101.3% 98.6% 95.9–101.3%
Specificity 16.7% −4.4–37.8% 16.7% −4.4–37.8%
Positive
likelihood ratio 1.183 0.917–1.526 1.183 0.917–1.526

Negative
likelihood ratio 0.083 0.008–0.849 0.083 0.008–0.849

Positive
predictive value 87.7% 80.5–94.8% 87.7% 80.5–94.8%

Negative
predictive value 66.7% 13.3–120.0% 66.7% 13.3–120%

LR: logistic regression; SVM: support vector machine; CI: confidence
interval.
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features but also guarantee high discriminative accuracy and
generalization ability, was needed. A variety of autoencoders
have been used in many fields, such as feature extraction and
classification.,e denoising autoencoder has been employed
in deep genomic feature extraction in breast cancer, and the
extracted features are significantly associated with patients’
clinical characteristics and outcomes [26]. Stacked sparse
autoencoder has been used for cancer prediction, and the
predictive performance is better than other three common
algorithms, support vector machine, random forest, and
neural network [27]. SDSAE, an autoencoder with three
structures (stack, corruption, and sparsity), performs better
in image classification than other autoencoders only with
one or two structures [17].

In this study, we used an SDSAE with a softmax
classifier to develop the immune-related classifier (IRC).
,e IRC performed well in the independent testing set,
with an accuracy of 92.9%, sensitivity of 98.6%, and
specificity of 58.3%. SDSAE was used in image data in the
previous study [17], but it is still unknown whether it is
suitable for gene data. To demonstrate the robustness of
SDSAE, we compared it with other four powerful al-
gorithms, multilayer perception, logistic regression,
random forest, and support vector machine. ,e results
of the four machine learning algorithms were not as good
as SDSAE. ,e multilayer perception and random forest
classified all the samples of the testing set into malig-
nancy. Although the logistic regression and support
vector machine both had an accuracy of 86.9% and
sensitivity of 98.6%, the low specificity of 16.7% had a
huge impact on them. ,e data we used to train the
classifier were imbalanced, with 85.8% of the malignant
and 14.2% of the benign. ,is imbalance caused the
classifier to learn more of the malignant rather than the
benign, resulting in a higher sensitivity but lower
specificity. Interestingly, SDSAE seemed less impacted by
the imbalance and performed better than the logistic
regression and support vector machine. As we know,
autoencoder is a good tool to extract the features of the
data. We can control the feature number by adjusting the
neuron number of the hidden layers. In this study, we set
the neuron number of the hidden layer as 20, which
indicated that the original feature number of 9377 was
compressed into 20. ,e lower feature number relative to
the sample number can reduce the risk of overfitting. ,is
theory can explain why the classifier based on SDSAE has
better performance than those based on other four
machine learning. In addition, the denoising and sparse
operations of SDSAE can resist the overfitting and re-
inforce the robustness. Although the SDSAE showed

better performance than other four machine learning,
the identification of benign TNs was still not as good as
that of malignant TNs. More benign samples should be
added to improve the IRC, despite the insufficiency of
benign samples on the databases.

We compared the IRC with five commercially available
classifiers. ,e IRC had a higher sensitivity than the five
commercial classifiers. However, the specificity of the IRC
was only higher than the Afirma but lower than other four
classifiers. High specificity and PPV allow classifier as a
“rule-in” tool to predict malignant TNs. On the other
hand, a classifier with high sensitivity and NPV is a good
tool to identify benign TNs. An ideal molecular test would
have a high PPV similar to a malignant cytological di-
agnosis (98.6%) and a high NPV similar to a benign cy-
tological diagnosis (96.3%) by the Bethesda diagnostic
system [7]. Currently, no molecular tests can meet this
requirement. However, in a cancer prevalence range of
20–40% for ITNs, which is reported in most studies, the
IRC is qualified as “rule-out” tools, with an NPV of
98–99%, which is the same as,yroSeq v3 and Rosseta GX
Reveal.

,e strength of the IRC is that they are developed
based on a large amount of TN samples, which will en-
hance the robustness of the classifiers. Besides, gene data
were tested on different platforms, indicating that phy-
sicians can test samples with diverse testing approaches
from different companies. However, the TN samples are
from postoperative tissue rather than FNA samples. ,e
effectiveness of the classifiers needs validation in the
cytological ITNs. A previous commercial classifier has
supported the availability of the IRC classifier in cyto-
logical ITNs. ,yroSeq v3 was developed based on 238
tissue samples of TNs with an accuracy of 92.1%, and it
was demonstrated to have a high accuracy of 90.9% in 175
FNA samples of ITNs [11].

5. Conclusion

,is study developed an immune-related classifier that ac-
curately classified malignant and benign TNs. It may benefit
patients with ITNs from avoiding unnecessary surgeries.
However, validation of their effectiveness on cytological
ITNs is needed before clinical practice.

Data Availability

,e datasets generated during and/or analysed during the
current study are available from the corresponding author
on reasonable request.

Table 6: Comparisons of IRC with five commercial classifiers in the cancer prevalence range of 20–40% for indeterminate thyroid nodules.

Parameter IRC (%) Afirma (%) ,yroSeq v2 (%) ,yroSeq v3 (%) ,yGenX/thyraMIR (%) Rosseta GX reveal (%)
Sensitivity 99 92 90 98 89 98
Specificity 58 52 93 82 85 78
Positive predictive value 37–61 32–56 76–90 57–78 60–80 53–75
Negative predictive value 98–99 91–96 93–97 98–99 92–97 98–99
IRC: immune-related classifier.
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