
Research Article
Analytical Analysis of Effects of Buoyancy, Internal Heat
Generation,MagneticField, andThermalRadiationonaBoundary
Layer over a Vertical Plate with a Convective Surface
Boundary Condition

Solomon Bati Kejela and Mitiku Daba Firdi

Department of Mathematics, College of Natural Sciences, Jimma University, Jimma, Ethiopia

Correspondence should be addressed to Solomon Bati Kejela; solomonbati@yahoo.com

Received 29 August 2020; Revised 25 September 2020; Accepted 29 September 2020; Published 30 October 2020

Academic Editor: Ram n Quintanilla

Copyright © 2020 Solomon Bati Kejela and Mitiku Daba Firdi. *is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this paper, the effects of magnetic field, thermal radiation, buoyancy force, and internal heat generation on the laminar
boundary layer flow about a vertical plate in the presence of a convective surface boundary condition have been investigated. In the
analysis, it is assumed that the left surface of the plate is in contact with a hot fluid, whereas a stream of cold fluid flows steadily
over the right surface, and the heat source decays exponentially outwards from the surface of the plate. *e governing nonlinear
partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations with the help of
similarity transformation which were solved analytically by applying the optimal homotopy asymptotic method.*e variations of
fluid velocity and surface temperature for different values of the Grashof number, magnetic parameter, Prandtl number, internal
heat generation parameter, Biot number, and radiation absorption parameter are tabulated, graphed, and interpreted in physical
terms. A comparison with previously published results on similar special cases of the problem shows an excellent agreement.

1. Introduction

In physics and fluid mechanics, a Blasius boundary layer
defines the steady two-dimensional laminar boundary layer
that forms on a semi-infinite plate which is apprehended
parallel to a constant unidirectional flow. By means of
scaling arguments, Anderson [1] argued that about half of
the terms in the Navier–Stokes equations are negligible in
boundary layer flows (except in a small region near the
leading edge of the plate). *is leads to a condensed set of
equations known as the boundary layer equations. *e study
on the boundary layer flow concerning a motionless plate
was first done by Blasius [2].

Blasius used the similarity transformation method in
the governing equation to diminish the Navier–Stoke
equation for the viscous incompressible steady laminar
flow over a solid boundary from the PDE to the ODE.
Blasius obtained a laminar boundary layer equation

(Blasius equation) which is a third-order nonlinear ODE.
*e notion of the similarity solution formulated by Blasius
for the boundary layer flow of a Newtonian fluid over a flat
surface forms the foundation for numerous consequent
studies. Later, it has been extended by various researchers
[3–6] to explore the similar solutions for thermal boundary
layer flows over a flat plate under altered flow configura-
tions and boundary conditions.

In the boundary layer theory, similarity solutions were
found to be valuable in the interpretation of certain fluid
motions at big Reynolds numbers. Similarity solutions
frequently exist for the flow over semi-infinite plates and
stagnation point flow for two-dimensional, irregular, and
three-dimensional bodies [7]. In exceptional cases, when
there is no similarity solution, one has to solve a system of
nonlinear partial differential equations. For similarity
boundary-layer flows, velocity profiles are alike, but this kind
of similarity is missing for nonsimilarity flows [8–11].

Hindawi
International Journal of Differential Equations
Volume 2020, Article ID 8890510, 16 pages
https://doi.org/10.1155/2020/8890510

mailto:solomonbati@yahoo.com
https://orcid.org/0000-0002-2648-8601
https://orcid.org/0000-0002-5106-5168
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8890510


Boundary-layer flows over a moving or stretching plate
are of great importance in view of their relevance to an
extensive variety of technical applications, especially in the
manufacture of fibers in glass and polymer industries [7].
*e first and leading work regarding boundary layer be-
haviour in moving surfaces in a quiescent fluid was executed
by Sakiadis [12]. Consequently, many researchers [13–17]
worked on the problem of moving or stretching plates under
different situations.

*e heat transfer analysis of boundary-layer flows with
radiation is also vital in electrical power generation, astro-
physical flows, solar power technology, space vehicle re-
entry, and other industrial areas [7]. Raptis et al. [18] in-
vestigated the effect of thermal radiation on the magneto-
hydrodynamic flow of a viscous fluid past a semi-infinite
stationary plate. Hayat et al. [19] prolonged the analysis of
Raptis et al. for a second-grade fluid.

Convective heat transfer studies are very substantial in
processes involving high temperatures, such as gas tur-
bines, thermal energy storage, and nuclear plants. Ishak
[20] examined the similarity solutions for flow and heat
transfer over a permeable surface with a convective
boundary condition. Aziz [21, 22] investigated a similarity
solution for the laminar thermal boundary layer over a flat
plate with a convective surface boundary condition and
also studied hydrodynamic and thermal slip flow boundary
layers over a flat plate with a constant heat flux boundary
condition. Garg et al. [23] studied a similarity solution for
the laminar thermal boundary layer over a flat plate with
internal heat generation and a convective surface boundary
condition.

Moreover, Makinde and Oladapo Olanrewaju [24]
investigated the buoyancy effects on a thermal boundary
layer over a vertical plate with a convective surface
boundary condition. *ey also investigated the effect of
buoyancy force, thermal radiation, and internal heat
generation by the numerical method [7]. However, to the
best of our knowledge, no investigation has been made yet
to analyze the effects of buoyancy, internal heat generation,
thermal radiation, and magnetic parameter on a boundary
layer flow over a vertical plate with a convective surface
boundary condition by the analytical or semianalytical
method.

Hence, the objective of this study was to investigate the
combined effects of buoyancy force, internal heat genera-
tion, thermal radiation, and magnetic field on a boundary
layer over a vertical plate with a convective surface boundary
condition via optimal homotopy asymptotic method
(OHAM).

2. Basic Concepts of the Optimal Homotopy
Asymptotic Method

*eOHAMwas introduced and developed by Marinca et al.
[25–27]. OHAM is a modification of the homotopy as-
ymptotic method which is based on reducing the residual

error. In this method, the control and adjustment of the
convergence region are provided in a suitable way. To il-
lustrate the basic concepts of the optimal homotopy as-
ymptotic method, the following nonlinear differential
equation is considered:

A[w(x)] + b(x) � 0, x ∈ D, (1)

with boundary condition

B w,
dw

dx
  � 0, (2)

where A is a differential operator, B is a boundary operator,
w(x) is an unknown function,D is the problem domain, and
b(x) is a known analytic function. *e operator A can be
decomposed as A� L+N, where L is a linear operator and N
is a nonlinear operator.

According to the OHAM, one can construct an optimal
homotopy ψ(x; p): Dx[0, 1]⟶ R which satisfies

(1 − p)[L(ψ(x; p)) + b(x)] − H(p)[A(ψ(x; p)) + b(x)] � 0,

(3)

where p ∈ [0, 1] is an embedding parameter, H(p) is
a nonzero auxiliary function for p≠ 0, and H(0)� 0. When
p � 0 and p � 1, we get ψ(x, 0) � w0(x)

andψ(x, 1) � w(x), respectively. *us, as p increases from
0 to 1, the solution ψ(x; p) varies from w0(x) tow(x), where
w0(x) � ψ(x, 0) is obtained from the homotopy (3). For
p � 0, we have

L w0(x)(  + b(x) � 0,

B w0,
dw0

dx
  � 0.

(4)

*e auxiliary function H(p) is chosen in the form

H(p) � 
m

k�1
p

k
ck

� c1p + c2p
2

+ c3p
3

+ ....

(5)

*e convergence of the solution greatly depends on this
function. *e function H(p) also adjusts the convergence
domain and controls the convergence region. To obtain an
approximate solution, ψ(x; p) � ψ(x; p, c1, c2, c3, ...) is ex-
panded in a series about p as

ψ x; p, c1, c2, c3, ...(  � w0(x) + 

∞

i�1
wi x, c1, c2, c3, ...( p

i
.

(6)

Substituting equation (6) into equation (3) and equating
the coefficient of like powers of p, the zero-order problem is
obtained as given in equation (4). *e first- and second-
order problems are, respectively, given by equations (7) and
(8):
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L w1(x)(  � c1N0 w0(x)( ,

B w1,
dw1

dx
  � 0,

(7)

L w2(x)(  − L w1(x)(  � c2N0 w0(x)( 

+ c1 L w1(x)( 

+ N1 w0(x); w1(x)( ,

B w2,
dw2

dx
  � 0.

(8)

Hence, the general governing equations for wj(x) are
given by

L wj(x)  − L wj−1(x)  � cjN0 w0(x)( 

+ 

j−1

i�1
ci L wj−i(x) 

+ Nj−i w0(x), w1(x), . . . , wj−1(x) 

B wj,
dwj

dx
  � 0, j � 2, 3, . . . ,

(9)

where Nm(w0(x); w1(x); w2(x); . . . ; um(x)) is the co-
efficient of pm in the expansion of N(ψ(x; p, c1, c2, c3, ...))

with respect to the embedding parameter p as follows:

N ψ x; p, c1, c2, c3, . . .( (  � N0 w0(x)( 

+ 
∞

j�1
Nj w1, w2, w3, . . . , wj p

j
,

(10)

where ψ(x; p, c1, c2, c3, . . .) is given in equation (6). It should
be underlined that wj for j≥ 0 are governed by the linear
equations with linear boundary conditions that come from
the original problem, which can be smoothly solved.
Moreover, the convergence of the series given in equation
(6) depends upon the convergence-control parameters,
c1, c2, c3, c4, . . .

If the series converges at p � 1, one has

w x, c1, c2, c3, . . .(  � w0(x) + 
∞

j�1
wj x, c1, c2, c3, . . .( .

(11)

*e general solution of equation (1) can be determined
approximately in the form

w
m

x, c1, c2, c3, . . .(  � w0(x) + 
m

j�1
wj x, c1, c2, c3, . . . , cm( .

(12)

Substituting equation (12) in equation (1), we get the
following expression for the residual error:

R x, ci(  � L w
m

x, ci( (  + b(x) + N w
m

x, ci( ( ,

i � 1, 2, 3, . . . , m.
(13)

IfR(x, ci) � 0, then wm(x, ci) is the exact solution of the
given equation, but this does not happen, especially in
nonlinear problems.

*e optimal values of the convergence-control param-
eters (ci) can be identified via various methods, such as the
least square method, the Galerkin method, the collocation
method, the Ritz method, and the Kantorovich method. In
order to find the optimal values of c1, c2, c3, c4, . . . by the least
square method, we first construct functional

J ci(  � 
b

a
R
2

x, ci( dx, (14)

and then minimize it, where a and b are in the domain of the
given problem and R is given by equation (13).*e unknown
convergence-control parameters ci, i � 1, 2, 3, . . . , m, can be
identified from the following condition:

zJ

zci

� 0, i � 1, 2, 3, . . . , m. (15)

With these parameters known, the mth-order approxi-
mate solution given by equation (12) is well determined. *e
least square method is a powerful technique and has been
used in many other methods such as the optimal auxiliary
function method (OAFM), optimal homotopy perturbation
method (OHPM), and optimal homotopy asymptotic
method (OHAM) with Daftardar–Jeffery polynomials
(OHAM-DJ) for calculating the optimum values of arbitrary
constants [28–30].

3. Mathematical Formulation

A two-dimensional steady incompressible fluid flow coupled
with heat transfer by convection over a vertical plate in
a stream of cold fluid at temperature T∞ which moved over
the right surface of the plate with a uniform velocity U∞,
whereas the left surface of the plate was heated by convection
from a hot fluid at temperature Tf which provided a heat
transfer coefficient hf, is considered. *e density difference
as a result of buoyancy force influences and the effect of the
magnetic field were taken into account in the momentum
equation; the internal heat generation and the thermal ra-
diation effects were taken into description in the energy
equation (the Boussinesq approximation). *e continuity,
momentum, and energy equations describing the flow are
summarized by the following boundary value problem
[21, 24]:

zu

zx
+

zv

zy
� 0, (16)

u
zu

zx
+ v

zu

zy
� υ

z
2
u

zy
2 + gβ T − T∞(  −

δ
ρ
B
2
0u, (17)

International Journal of Differential Equations 3



u
zT

zx
+ v

zT

zy
�

k

ρcp

z
2
T

zy
2 −

1
ρcp

zqr

zy
+

Q

ρcp

T − T∞( , (18)

with the boundary conditions defined as follows:

u(x, 0) � v(x, 0) � 0,

−k
zT

zy
(x, 0) � hf Tw − T(x, 0) ,

y �∞,

(19)

u⟶ u∞,

T(x,∞) � T∞,

y⟶∞,

(20)

where u and v are the velocity components along the flow
direction (x-direction) and normal to the flow direction (y-
direction), υ is the kinematic viscosity, β is the thermal
volumetric expansion coefficient, g is the gravitational ac-
celeration, k is the thermal conductivity, cp is the specific
heat of the fluid at constant pressure, T is the temperature of
the fluid inside the thermal boundary layer, ρ is the density,
qr is the radiative heat flux in the y-direction, u∞ is
a constant free-stream velocity, δ is the electrical conduc-
tivity of the base fluid, B0 is the imposed magnetic field, T∞
is the constant temperature of the ambient fluid,Q is the heat
released per unit per mass, and hf is the heat transfer
coefficient.

It is assumed that the viscous dissipation is neglected, the
physical properties of the fluid are constant, and the
Boussinesq and boundary layer approximation may be
adopted for steady laminar flow. *e radiative heat flux qr is
described by Rosseland approximation as

qr � −
4σ∗

3k′
zT

4

zy
, (21)

where k′ and σ∗ are the mean absorption coefficient and the
Stefan–Boltzmann constant, respectively. Suppose the
temperature variations within the flow are adequately small
so that T4 can be expressed as a linear function after using
Taylor series to expand T4 about the free stream temperature
T∞ and ignoring higher-order terms. *is results in the
following approximation:

T
4

� 4T
3
∞T − 3T

4
∞. (22)

On using equation (22) in equation (21), we have

qr �
−16σ∗T3

∞
3k′

zT

zy
. (23)

Plugging equation (23) into equation (18), we get the
following equation:

u
zT

zx
+ v

zT

zy
� α +

16σ∗T3
∞

3k′
.
α
k

 
z
2
T

zy
2 +

α
k

Q T − T∞( ,

(24)

where α � k/ρcp is the thermal diffusivity; from this equa-
tion, it is clearly seen that the effect of radiation is to enhance
the thermal diffusivity. If we take NR � kk′/4σ∗T3

∞ as the
radiation parameter in equation (24), the equation becomes

u
zT

zx
+ v

zT

zy
�

α
ko

.
z
2
T

zy
2 +

α
k

Qo T − T∞( , (25)

where ko � 3NR/3NR + 4. It is clear that the classical so-
lution for the energy equation without the thermal radiation
influence can be obtained from equation (25), which reduces
to the following equation:

u
zT

zx
+ v

zT

zy
� α

z
2
T

zy
2 +

α
k

Qo T − T∞( . (26)

A similarity variable η and dimensionless stream
function f(η) are introduced as follows:

η � y

���
u∞
υx



,

u

u∞
� f′,

v �
1
2

����
u∞υ

x



ηf′ − f( .

(27)

Differentiating u and v with respect to x andy, re-
spectively, we get

zu

zx
� −

u∞f″η
2x

,

zv

zy
�

u∞ηf″
2x

,

(28)

where f′ � df/dη and u∞ is a constant free-stream velocity.
Substituting equation (28) into equation (15), the equation
of continuity is satisfied identically. From equation (27), we
can also obtain:

zu

zy
� u∞f″

���
u∞
υx



,

z
2
u

zy
2 �

u
2
∞
υx

f
‴

.

(29)

*e nondimensional form of the temperature θ(η) is
defined as follows:

θ(η) �
T − T∞

Tw − T∞
, (30)

where Tw is a constant temperature of the wall.
Substituting equations (27)–(30) into equation (17), we

obtain

f
‴

+
1
2
ff″ + Grxθ − Mf ′ � 0, (31)

where
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Grx �
gβ Tw − T∞( x

u
2∞

,

M
2

�
δB

2
0x

ρu∞
.

(32)

Grx is the local Grashof number, and M is the magnetic
parameter.

From equation (30), we have

zT

zx
� −

θ′η
2x

Tw − T∞( ,

z
2
T

zy
2 � θ″

u∞
υx

Tw − T∞( .

(33)

Substituting equations (27)–(30) and (33) into equation
(25), we get

θ″ + koPr
1
2

fθ′ + λxθ(η)  � 0, (34)

with the boundary conditions

θ′(0) � −Bix[1 − θ(0)],

θ(∞) � 0,
(35)

where Pr � υ/α is the Prandtl number, λx � Qox/u∞ρcp is
the internal heat, and

Bix �
hf

k

���υx

u∞



. (36)

Equations (19) and (27) give the transformed boundary
conditions for velocity fields as follows:

f(η) � f′(η) � 0, η � 0. (37)

For the momentum and energy equations to have
a similarity solution, the parameters Grx, λx, M

2, and Bix
must be constants and not functions of x as in equations (32)
and (36). *is condition can be met if the heat transfer
coefficient hf is proportional to 1/

��
x

√
and the thermal ex-

pansion coefficient is proportional to 1/x. We therefore
assume

hf � cx
−1/2

,

β � mx
−1

,

B
2
0 � d

2
x

−1
,

Q � tx
−1

,

(38)

where c, t, d, and m are constants.
Putting equation (38) into equations (32) and (36), we

get

Gr �
mgυ Tw − T∞( 

u
2
∞

,

λ �
t

u∞ρcp

,

M �

����
δ

ρu∞



d,

Bi �
c

k

���υ
u∞



,

(39)

with Gr, λ, and M being defined by equation (39); the so-
lutions of equation (40) with boundary condition equation
(41) produce similarity solutions. Equations (20) and (27)
suggested that f′(η) � 1 as η⟶∞.

*us, the transformed equations representing the flow
problem with their respective boundary conditions are
expressed in equations (40) and (41):

f
‴

+
1
2

ff″ + Grθ − Mf′ � 0,

θ″ + kopr
1
2

fθ′ + λθ  � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

f(η) � f′(η) � 0,

θ′(η) � −Bi[1 − θ(0)], η � 0,

f′(η) � 1, θ(η) � 0, η⟶∞.

⎧⎪⎪⎨

⎪⎪⎩
(41)

4. Solution of the Problem

Applying the OHAM on equation (40), we can construct the
following homotopy:

(1 − p) f
‴

  − H1(p) f
‴

+
1
2

ff″ + Grθ − Mf′  � 0

(1 − p) θ″(  − H2(p) θ″ + koPr
1
2

fθ′ + λθ(η)   � 0

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(42)

where p ∈ [0, 1] and the primes denote differentiation of the
function f with respect to η; f, θ , H1, andH2 are considered
as follows:

f � f0 + pf1 + p
2
f2 + p

3
f3,

θ � θ0 + pθ1 + p
2θ2 + p

3θ3,

H1(p) � pc1 + p
2
c2 + p

3
c3,

H2(p) � pc4 + p
2
c5 + p

3
c6.

(43)
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Using equation (43) in equation (42), simplifying, and
equating the coefficients of the same powers of p, we get the
following set of zeroth-, first-, second-, and third-order
problems.

*e zeroth-order problems are

f
″′
0(η) � 0,

θ″′0(η) � 0,
(44)

subjected to boundary conditions

f0(0) � f0′(0) � 0, f0′(∞) � 1,

θ0′(0) � −Bi(1 − θ(0)), θ0(∞) � 0.
(45)

*e first-order problems are

f
″′
1 η, c1(  � c1

1
2
f0f0″ + Grθ0 − Mf0′ 

θ1″ η, c1(  � c4Pr
1
2
k0f0θ0′ + λk0θ0 

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (46)

subjected to boundary conditions

f1(0) � f1′ (0) � f1′ (∞) � 0, θ1′(0) � θ1(∞) � 0. (47)

*e second-order problems are

f
″′
2 η, c1, c2(  � 1 + c1( f1″ + c1

1
2
f0f1″ +

1
2
f1f0″ + Grθ1 − Mf1′  + c2

1
2
f0f0″ + Grθ0 − Mf0′ 

θ2″ η, c4, c5(  � 1 + c4( θ1″ +
1
2
k0Pr c4θ1′ + c5θ0′( f0 + c4θ0′f1  + Prλk0 c4θ1 + c5θ0( 

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (48)

subjected to boundary conditions

f2(0) � f2′ (0) � f2′ (∞) � 0, θ3′(0) � θ2(∞) � 0. (49)

*e third-order problems are

f3″ η, c1, c2, c3(  � 1 + c1( f
″′
2 + c2f

″′
1 +

1
2
c1 f1f1″ + f0f2″ + f0″f2(  +

1
2
c2 f0f1″ + f0″f1( 

+
1
2
c3f0f0″ + Gr c1θ2 + c2θ1 + c3θ0(  + c3f

″′
0 − M c1( f2′ + c2f1′ + c3f0′( 

θ3″ η, c4, c5, c6(  � 1 + c4( θ2″ + c5θ1″ +
1
2
Prk0 c4θ2′ + c5θ1′ + c6θ0′( f0 + c4θ1′ + c5θ0′( f1 + c4θ0′f2 

+Prλk0 c4θ2 + c5θ1 + c6θ0( 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (50)

subjected to boundary conditions

f3(0) � f3′(0) � f3′(∞) � 0,

θ3′(0) � θ3(∞) � 0.
(51)

Solving in-sequence equations (44), (46), (48), and (50)
with boundary condition equations (45), (47), (49), and (51)
and using the OHAM for p � 1, we obtain the following
solutions:

f0(η) �
1
2n
η2,

θ0(η) � Bi(1 − θ(0))(n − η),

(52)
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f1 η, c1(  � c1
1
48

η5

5n
2 −

nη2

2
  +

GrnBi

6
(1 − θ(0)) η3 −

η4

4n
− nη2  −

M

12
η4

2n
− nη2  ,

θ1 η, c4(  � c4Prn
3
Bi(1 − θ(0))

−k0

48
η4

n
4 − 1  + k0λ

η2

2n
2 −

η3

6n
3 −

1
3

  ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(53)

f2 η, c1, c2(  � 1 + c1( c1
1
48

η5

5n
2 +

nη2

2
  + GrnBi(1 − θ(0)) 

η3

6
−

η4

24n
−

nη2

6
  −

M

12
η4

24n
− nη2 

+ c1
c1

24
1
8

η8

84n
3 −

η5

60
−

n
3η2

168
  + GrBi(1 − θ(0))

η6

20
−

η7

70n
−

nη5

30
−

n
4η2

60
  − M

η7

70n
2 −

η5

60
−

n
3η2

120
  

+
1
12

c1
1
8

η8

1680n
3 −

η5

120
+
31n

3η2

1680
  + GrBi(1 − θ(0))

η6

120
−

η7

840n
−

nη5

60
+

n
4η2

48
  −

M

2
η7

420n
2 −

η5

60
+

n
3η2

30
  

+ Grc4prBi(1 − θ(0))
k0

48
n
3η3

6
−

η7

210n
−
7n

4η2

30
  + λ

nη5

120
−

η6

720
−

n
3η3

18
+

n
4η2

15
  

·
−Mc1

6
1
8

η7

210n
2 −

nη4

24
+

n
3η2

15
  + GrBi(1 − θ(0))

nη5

20
−

η6

120
−

n
2η4

12
+

n
4η2

15
  − M

η6

120n
−

nη4

24
+
7n

3η2

120
  

+ c2
1
48

η5

5n
2 −

nη2

2
  + GrnBi(1 − θ(0))

η3

6
−

η4

24n
−

nη2

6
  −

M

6
η4

4n
−

nη2

2
  ,

(54)

θ2 η, c4, c5(  � prn
3
Bi(1 − θ(0)) 1 + c4( c4

k0

48
1 −

η4

n
4  + λ

η2

2n
2 −

η3

6n
3 −

1
3

   +
1
4
k0

· c
2
4Prn

2 k0

504
1 −

η7

n
7  + λ

η5

20n
5 −

η6

60n
6 −

1
30

   −
c5

12
1 −

η4

n
4 

−c1c4n
2 1
24

η7

210n
7 −

η4

24n
4 +

31
840

  +
GrnBi(1 − θ(0))

3
η5

20n
5 −

η6

120n
6 −

η4

12n
4 +

5
120

  −
M

6
η6

60n
6 −

η4

12n
4 +

1
15

  

+λ c5
η2

2n
2 −

η3

6n
3 −

1
3

  + c
2
4Prn

2 k0

48
η2

2n
2 −

η6

30n
6 −

7
15

  + λ
η4

24n
4 −

η5

120n
5 −

η2

6n
2 +

2
15

   ,

f3 � 1 + c1(  1 + c1( c1
1

240n
2 η5 − η2  +

1
6

Bi[1 − θ(0)]Grn η3 − η2 −
1
4n

η4 − η2   −
M

24n
η4 − η2  

+ c1
1
24

c1
1

672n
3 η8 − η2  +

1
480

η5 +
1
480

η2 + BiGr[1 − θ(0)]
1
20
η6 −

1
20
η2 −

1
70n

η7 − η2 

−
1
30

η5 − η2 n − M
1

70n
2 η7 − η2  +

1
60

η2 − η5   +
1
12

c1
1

13440n
3 η8 − η2  +

1
960

η2 − η5 

+ BiGr[1 − θ(0)]
1
120

η6 − η2  −
1

840n
η7 − η2  −

1
60

η5 − η2 n −
M

2
1

420n
2 η7 − η2  −

1
60

η5 − η2  

+ GrPrBi[1 − θ(0)]c4
1
48

k0
1
6
n
3 η3 − η2  −

1
210n

η7 − η2   + λ
1
120

n η5 − η2  −
1
720

η6 − η2  −
1
18

η3 − η2 n
3

  

−
1
6

Mc1
1

680n
2 η7 − η2  −

1
192

η4 − η2 n + BiGr[1 − θ(0)]n
1
20

η5 − η2 −
1
6n

η6 − η2  

−
1
12

η4 − η2 n − M
1

120n
η6 − η2  −

n

24
η4 − η2  

+c2
1

240n
2 η5 − η2 BiGrn[1 − θ(0)]

1
6
η3 −

1
6
η2 −

1
24n

η4 − η2   −
M

24n
η4 − η2  

+ c2c1
1

240n
2 η5 − η2  +

1
6

BiGrn[1 − θ(0)] η4 − η2 −
1
4n

η4 − η2   −
M

24n
η4 − η2  
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1
2
c
3
1

3.5073 × 10− 7

n
4 η11 − η2  +

1
720n

2
−1
288

GrBi[1 − θ(0)]
−M

288n
  +

1
172800n

2
−1
2

BiGr[1 − θ(0)] −
M

n
    η10 − η2  

+
13

362880n
BiGr[1 − θ(0)] +

1
504

−1
24

BiGr[1 − θ(0)] +
M

n
  

−1
2

BiGr[1 − θ(0)] +
M

n
    η9 − η2 

+
1
336

−1
1152

n −
1
72

BiGrn
2
[1 − θ(0)] +

Mn

144n
2 +

BiGr[1 − θ(0)]n

2016
BiGr[1 − θ(0)]n

2
−

M

2n
 

+
BiGrn[1 − θ(0)]n

336
−BiGr[1 − θ(0)]n

24
−

M

24n
  +

1
80640n

2
−n

48
−

BiGr[1 − θ(0)]

3
n
2

+
Mn

6
  η8 − η2 

+
1
210

−n

96
−

BiGr[1 − θ(0)]

6
n
2

+
Mn

12
 

−BiGr[1 − θ(0)]

2
−

M

2n
  +

1
1260

(GrBin[1 − θ(0)]])
2

 

+
1
210

−BiGr[1 − θ(0)]

24
−

M

24n
 

−n

48
−

BiGr[1 − θ(0)]

3
n
2

+
Mn

6
  η7 − η2 

+
BiGrn[1 − θ(0)]n

120
−n

96
−

BiGrn[1 − θ(0)]

6
n
2

+
Mn

12
 

BiGrn[1 − θ(0)]

720
−n

48
−

BiGrn[1 − θ(0)]

3
n
2

+
Mn

6
   η6 − η2 

+
−n

5760
−

BiGrn[1 − θ(0)]

360
n
2

+
Mn

720
 

−n

48
−

BiGrn[1 − θ(0)]

3
n
2

+
Mn

6
  η5 − η2 

+
c1c2Gr

4n
c1c2

n

10080n
2 η7 − η2  −

n

1152
η4 − η2  + BiGrn[1 − θ(0)]

1
20n

η5 − η2  −
n

12
η4 − η2  

−
M

12
1
60n

η6 − η2  −
n

12
η4 − η2   +

c3

24n
η4 − η2 

+
1
4n

c1
3.8580x10− 6

n
3 c

2
1 η11 − η2  +

c1

720
1
12

c1 −
BiGr[1 − θ(0)]

20n
−

M

20n
2 

+
1
24

c1
−3BiGr[1 − θ(0)]

5n
−
3M

5n
2 

−GrPrBik0c4[1−θ(0)]

240n
−

Mc1

240n
2 η10 − η2 

+
1
504

c1
−GrPrBiλc4[1−θ(0)]

24
+

GrBic1[1 − θ(0)]

12
−

Mc1

6
−GrBi[1 − θ(0)]

4
−

M

4n
   η9 − η2 

·
c1

336n
2

1
12

+
c1

12
  +

c2

4032n
2 +

c1

336
−GrMBinc1[1 − θ(0)]

6
+

c1

24
−2GrBin[1 − θ(0)]

3
−

1
24

+
M

3
 

+
GrPrBiλc4[1 − θ(0)]

6
n +

c1

12
−GrBin[1 − θ(0)]

3
−

1
48

+
M

6
  η8 − η2 

+
c1 1 + c1( 

210
−BiGr[1 − θ(0)]

2
−

M

2n
  −

c
2
1M

1260
−BiGr[1 − θ(0)]n

2
−

n

16
+

Mn

2
  +

c2

210
−BiGr[1 − θ(0)]

2
−

M

2n
   η7 − η2 

+
c1 1 + c1( 

120
BiGr[1 − θ(0)]n +

PrBiGr[1 − θ(0)]

120
c1c4

k0n
3

48
−
λn

3

3
  +

c2BiGrn[1 − θ(0)]

120
  η6 − η2 

+
c1 1 + c1( 

60
−n

48
−

BiGrn
2
[1 − θ(0)]

3
+

Mn

6
  +

c2

60
−n

48
−

BiGrn
2
[1 − θ(0)]

3
+

Mn

6
 

+
c1

60


c1

24
−n

3

672
−

BiGrn
4
[1 − θ(0)]

30
+

Mn
3

60
  +

c1

12
31n

3

6720
+

BiGrn
4
[1 − θ(0)]

24
−

Mn
3

30
 

·
−Mc1

6
n
3

60
+
2BiGrn

4
[1 − θ(0)]

15
−
7Mn

3

60
  + Grc4PrBi[1 − θ(0)]

−k0n
4

720
+
2λn

4

15
  η5 − η2 
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+
1
2n

c
2
1 c1 + 1( 

1
80640n

2  η8 − η2  −
n

5760
η5 − η2 

+
BiGrn[1 − θ(0)]

6
1
120

η6 − η2  −
1

480n
η7 − η2  −

nη5

6
 

−M

12
1

420n
η7 − η2  −

n

60
η5 − η2  

+
c
3
1

48n
−

Mc1

6
8.2672 × 10− 7

n
2  η10 − η2  −

n

40320
η7 − η2  +

n
3

7200
η5 − η2  + BiGrn[1 − θ(0)]

·
1

6720
η8 − η2  −

1
60480n

η9 − η2  −
n

2520
η7 − η2  +

n
3

900
η5 − η2  

− M
1

60480n
η9 − η2  −

n

5040
η7 − η2  −

1
5040

7n
2

7200
η5 − η2   

+ c2
1

80640n
2 η8 − η2  −

n

5760
η5 − η2  + BiGrn[1 − θ(0)]

1
720

η6 − η2  −
1

5040n
η7 − η2  −

n

360
η5 − η2  

−
M

6
1

840n
η7 − η2  −

n

120
η5 − η2  

+
c1c2

4n

c3

240n
2 η5 − η2 GrPrBic1[1 − θ(0)]n

3
  c4 1 + c4(  λ

1
120n

2 η5 − η2  −
1

720n
3 η6 − η2  −

1
18

η3 − η2  

−
k0

48
1

210n
4 η7 − η2  −

1
6

η3 − η2  

+
k0

4
c
2
4n

2Pr λ
1

6720n
5 η8 − η2  −

1
30240n

6 η9 − η2  −
1
180

η3 − η2   +
k0

504
1
6

η3 − η2  −
1

720n
7 η10 − η2   

+
c5

72
η3 − η2  −

1
210n

4 η7 − η2 

− M
c
2
1c2Gr

4n
1 + c1( 

1
10080n

2 η7 − η2  −
n

1152
η4 − η2  +

BiGrn[1 − θ(0)]

6
1
20

η5 − η2 

−
1

120n
η6 − η2  −

n

12
η4 − η2 

−M

12
1
60n

η6 − η2  −
n

12
η4 − η2  

+
c
1
3

48n

1.5031 × 10− 6

n
3 η11 − η2  − 6.2004 × 10− 6 η8 − η2  −

n
3

80640
η5 − η2 

+ BiGr[1 − θ(0)]
1

10080
η9 − η2  −

1
50400n

η10 − η2  −
n

10080
η8 − η2  −

n
4

3600
η5 − η2  

− M
1

50400n
2 −

1
20160

η8 − η2  −
n
3

7200
η5 − η2  

+
c1

12
7.5156 × 10− 8

n
3 η11 − η2  − 3.1002 × 10− 6 η8 − η2  + 3.8442 × 10− 5

n
3 η5 − η2 

+ BiGr[1 − θ(0)]
1

60480
η9 − η2  −

1.6534 × 10− 6

n
η10 − η2  −

n

20160
η8 − η2  +

n
4

2880
η5 − η2  

−
M

2
3.3069 × 10− 6

n
2 η10 − η2  −

1
20160

η8 − η2  +
n
3

1800
η5 − η2  
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· BiPrGrc4[1 − θ(0)]
k0

48
n
3

720
η5 − η2  −

6.6138x10− 6

n
η10 − η2  −

n
4

1800
η5 − η2  

+ λ
n

40320
η8 − η2  − 2.7557x10− 6 η9 − η2  −

n
3

2160
η6 − η2  +

n
4

900
η5 − η2  

− M
c
2
1c2Gr

4n

c1

24
1

60480n
3 η10 − η2  −

1
20160

η7 − η2  −
n
3

16128
η4 − η2  + BiGr[1 − θ(0)]

·
1

1120
η8 − η2  −

1
5040n

η9 − η2  −
n

1260
η7 − η2  −

n
4

720
η4 − η2  

− M
1

5040n
2 η9 − η2  −

1
2520

η7 − η2  −
n
3

1440
η4 − η2  

+
c1

12
8.2672x10− 7

n
3 η10 − η2  −

1
40320

η7 − η2  + 1.9221x10− 4
n
3 η4 − η2 

+ BiGr[1 − θ(0)]
1

6720
η8 − η2  −

1
60480n

η9 − η2  −
n

2520
η7 − η2  +

n
4

576
η4 − η2  

−M

2
1

30240n
2 η9 − η2  −

1
2520

η7 − η2  +
n
3

360
η4 − η2  

+ PrBiGrc4[1 − θ(0)]
k0

48
n
3

120
η5 − η2  −

1
15120n

η9 − η2  −
n
4

360
η4 − η2  

+ λ
n

5040
η7 − η2  −

1
40320

η8 − η2  −
n
3

360
η5 − η2  +

n
4

180
η4 − η2  

−Mc1

6
8.2672x10− 6

n
2 η9 − η2  −

n

5760
η6 − η2  +

n
3

1440
η4 − η2 

+ BiGrn[1 − θ(0)]
1
840

η7 − η2  −
1

6720n
η8 − η2  −

n

360
η6 − η2  +

n
3

180
η4 − η2  

−M
1

6720n
η8 − η2  −

n

720
η6 − η2  +

7n
3

1440
η4 − η2  

−
Mc

2
1c2Gr

4n

1
10080n

2 η7 − η2  −
n

1152
η4 − η2  + BiGrn[1 − θ(0)]

1
120n

η5 − η2 

−
1

720n
η6 − η2  −

n

72
η4 − η2  −

M

6
1

120n
η6 − η2  −

n

24
η4 − η2  

+
c
2
1c2

4n

1
4032n

2 η8 − η2  −
1
420

(BiGr[1 − θ(0)]) +
M

n
η7 − η2  +

BiGr[1 − θ(0)]n

120
  η6 − η2 

+
−n

2880
−

BiGr[1 − θ(0)]n
2

180
+

Mn

360
  η5 − η2 

+
c1

n

1
80640n

2 η7 − η2  −
n

5760
η4 − η2  +

BiGr[1 − θ(0)]n

6
1
120

η6 − η2  −
1

840n
η7 − η2  −

n

60
η5 − η2 

−
M

12
1

420n
η7 − η2  −

n

60
η5 − η2  
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+
c1c2n

3

4n
GrPrBic1[1 − θ(0)]

−c1c4n
2
c5k0

48
2.7557 × 10− 7

n
7 η10 − η2 

−8.2672 × 10− 7

n
4 η7 − η2  + 2.5628 × 10− 4 η3 − η2 

+
GrBi[1 − θ(0)]n

3
1

6720n
5 η8 − η2  −

1
60480n

6 η9 − η2  −
1

2520n
4 η7 − η2  −

1
144

η3 − η2  

·
−M

6
1

30240n
6 η9 − η2  −

1
2520n

4 η7 − η2  −
1
90

η3 − η2  

·
k0

4
λ

c5

120n
2η

5
−

1
720n

3 η6 − η2  −
1
18

η3 − η2  

+ c
2
4n

2Pr

k0

48
1

120n
2 η5 − η2  −

1
15120n

6 η9 − η2  −
7
90

η3 − η2  

λ
1

5040n
4 η7 − η2  −

1
40320n

5 η8 − η2  −
1

360n
2 η5 − η2  +

1
45

η3 − η2  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ c2c4PrBic1[1 − θ(0)]n
3 k0

48
1
6

η3 − η2  −
1

210n
4 η7 − η2   + λk0

1
120n

2 η5 − η2  −
1

720n
3 η6 − η2 

−
1
18

η3 − η2 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ c3Bi[1 − θ(0)]
n

6
η3 − η2  −

1
24

η4 − η2  .

(55)

Adding up solution components (52)–(56), the four-
term solution obtained by the OHAM for p � 1 is

f η, c1, c2, c3(  � f0(η) + f1 η, c1(  + f2 η, c1, c2(  + f3 η, c1, c2, c3( ,

θ η, c4, c5, c6(  � θ0(η) + θ1 η, c4(  + θ2 η, c4, c5(  + θ3 η, c4, c5, c6( .

⎧⎨

⎩ (56)

For the calculations of the unknown convergence-con-
trol parameters in equation (56), we used the least square
method for Prandtl number, Pr� 0.72, Grashof number,
Gr� 0.1,
radiation parameter, Ra � 0.1, magnetic parameter,
M � 0.1, and internal heat generation, λ � 0.1, and we
obtain

c1 � 0.16266623,

c2 � 0.33462218,

c3 � 0.00016952,

c4 � 37.96314130,

c5 � 15845.12896756,

c6 � 0.0018555.

(57)

5. Results and Discussion

*e system of nonlinear higher-order ordinary differential
equation (40) with boundary conditions (41) was solved
analytically via the optimal homotopy asymptotic method
(OHAM). Analytical computations have been carried out for
different embedded parameters in the flow model control-
ling the fluid dynamics in the flow regime. *e influence of
different parameters in the flow model on the velocity and
temperature profiles has been analyzed for different values of
Prandtl number (Pr), internal heat generation (λ), magnetic
parameter (M), Biot number (Bi), radiation parameter
(Ra), and Grashof number (Gr), and the results have been
displayed in figures and tables for the selected parameters.

Table 1 depicts the validity of the method for the con-
sidered boundary layer flow. In Table 1, a comparison of the
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values for the Nusselt number (–θ’(0)) and surface tem-
perature (θ(0)) for Pr� 0.72 and Gr � λ � Ra � M � 0 is
presented, and it is in an excellent agreement with the

corresponding values reported by Olanrewaju et al. [7], Aziz
[22], Ishak [20], andMakinde and Oladapo Olanrewaju [24].
Table 2 shows a comparison of the values of the skin-friction

Table 2: A comparison of values of the skin-friction coefficient and the Nusselt number obtained by the OHAM in the present study and
numerical solutions reported by Olanrewaju et al. for various parameter values entrenched in the flow model.

Bi Gr Pr λ Ra
OHAM result Numerical result reported by

Olanrewaju et al. [7]
f“(0) –θ’(0) f“(0) –θ’(0)

0.1 0.1 0.72 0.1 0.1 0.386314 0.066809 0.386316 0.066810
1.0 0.1 0.72 0.1 0.1 0.460824 0.176788 0.460825 0.176790
10 0.1 0.72 0.1 0.1 0.483259 0.213879 0.483261 0.213880
0.1 0.5 0.72 0.1 0.1 0.557238 0.069728 0.557241 0.069730
0.1 1.0 0.72 0.1 0.1 0.723309 0.071735 0.723310 0.071736
0.1 0.1 3.00 0.1 0.1 −0.074539 0.231310 −0.074540 0.231312
0.1 0.1 7.10 0.1 0.1 −0.015859 0.261731 −0.015860 0.261733
0.1 0.1 0.72 0.5 0.1 0.280068 0.110630 0.280070 0.110631
0.1 0.1 0.72 0.6 0.1 0.298363 0.102050 0.298365 0.102052
0.1 0.1 0.72 0.1 0.5 0.392334 0.065303 0.392337 0.065305
0.1 0.1 0.72 0.1 1.0 0.398723 0.063696 0.398724 0.063698
0.1 0.1 0.72 0.1 2.0 0.408877 0.061176 0.408879 0.061177

Table 1: A comparison of the values obtained for the Nusselt number and surface temperature with an increase in the local Biot number in
this study and by Olanrewaju et al., Aziz, Ishak, and Makinde and Oladapo Olanrewaju in previous studies.

Bi
OHAM (present

study Olanrewaju et al. [7] Aziz [22] Ishak [20] Makinde and Oladapo Olanrewaju [24]

–θ’(0) θ(0) –θ’(0) θ(0) –θ’(0) θ(0) –θ’(0) –θ’(0)
0.05 0.042764 0.14464 0.042767 0.14466 0.0428 0.1447 0.042767 0.0428
0.10 0.074722 0.25272 0.074724 0.25275 0.0747 0.2528 0.074724 0.0747
0.20 0.119296 0.40351 0.119295 0.40352 0.1193 0.4035 0.119295 0.1193
0.40 0.169993 0.57501 0.169994 0.57501 0.1700 0.5750 0.169994 0.1700
0.60 0.198049 0.66990 0.198051 0.66991 0.1981 0.6699 0.198051 0.1981
0.80 0.215862 0.73015 0.215864 0.73016 0.2159 0.7302 0.215864 0.2159
1.00 0.228176 0.77179 0.228178 0.77181 0.2282 0.7718 0.228178 0.2282
5.00 0.279129 0.94415 0.279131 0.94417 0.2791 0.9441 0.279131 0.2791
10.00 0.287145 0.97127 0.287146 0.97128 0.2871 0.9713 0.287146 0.2871
20.00 0.291331 0.98541 0.291329 0.98543 0.2913 0.9854 0.291329 0.2913
30.00 0.292752 0.99023 0.292754 0.99024 — — — 0.2928
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Figure 1: Velocity profiles for various values of the Prandtl number
(Pr) when Bi� 0.1, Gr � 0.1, M� 0.1, λ � 0.1, and Ra � 0.1
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Figure 2: Velocity profiles for various values of the Biot number
(Bi) when Pr� 0.72, Gr � 0.1, M� 0.1, λ � 0.1, and, Ra� 0.1.
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coefficient f″(0) and the local Nusselt number (−θ′(0))

obtained by the OHAM in this study and the numerical
method reported by Olanrewaju et al. [7] for various values
of embedded parameters and shows an excellent agreement.
As illustrated in Table 2, the skin friction and the rate of heat
transfer at the plate surface increased with an increase in the
local Grashof number, the internal heat generation pa-
rameter, the Biot number, and the radiation absorption
parameter. However, an increase in the Prandtl number
reduced the skin friction but increased the rate of heat
transfer at the plate surface.

Figures 1–6 exhibit the effects of various parameters on
the nondimensional velocity profiles within the boundary
layer. Generally, the fluid velocity is zero at the plate surface
and rises slowly away from the plate towards the free stream

value satisfying the boundary condition. *e velocity profile
for different values of the Prandtl number, thermal radia-
tion, and internal heat generation is described in Figures 1, 3,
and 4, respectively. It is evident from the figures that the
variation of values of the Prandtl number, internal heat
generation, and radiation parameter had little effect or
immaterial effect on the fluid velocity. Even though the
velocity profile shows a bit decreasing trend as the value of
the Prandtl number increases, it is insignificant. Similarly,
from Figures 3 and 4, we see that the variation of values of
the radiation parameter and internal heat generation has no
significant effect even if the velocity profile shows a little
increasing tendency in both cases. *e effect of the Biot
number and Grashof number on the fluid velocity is
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Figure 6: Velocity profiles for various values of the magnetic
parameter (M) when Pr� 0.72, λ� 0.1, Gr � 0.1, M� 0.1, Ra� 0.1,
and Bi� 0.1.
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Figure 3: Velocity profiles for various values of the radiation
parameter when Pr� 0.72, Gr � 0.1, M� 0.1, λ � 0.1, and Bi� 0.1.
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Figure 4: Velocity profiles for various values of the internal heat
generation parameter (λ) when Pr� 0.72, Gr� 0.1,M� 0.1, Ra� 0.1,
and Bi� 0.1.
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Figure 5: Velocity profiles for various values of the Grashof
number (Gr) when Pr� 0.72, λ� 0.1,M� 0.1, Ra� 0.1, and Bi� 0.1.
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depicted in Figures 2 and 5, respectively. As one can observe
from the figures, increase in the Biot number and Grashof
number enhances the fluid velocity. In addition, the curves
show that the peak value of velocity increases rapidly near
the wall of the plate as the Grashof number increases, and it
is understood that the rate of heat transfer at the plate surface
increases with the increase of the Grashof number. Figure 6
reveals that an increase in the magnetic parameter results in
the decrease of the fluid velocity. In reality, the existence of
the magnetic field in an electrically conducting fluid in-
troduces a force called Lorentz force which acts contrary to
the flow if the magnetic field is applied normal to the fluid
flow.*is type of resistive force leads to slowing down of the
flow field.*us, our result and physical reality are consistent.

*e influences of various embedded parameters on the
fluid temperature within the boundary layer are illustrated
in Figures 7–10. *e figures illustrate the behaviour of the
temperature profiles within the boundary layer. Com-
monly, at the plat surface, the fluid temperature is high
and exponentially decreases to zero far away from the
plate, satisfying boundary conditions. Figures 7 and 8,
respectively, demonstrate the behaviour of dimensionless
temperature profiles for different values of internal heat
generation λ and the thermal radiation parameter, and it is
seen that the temperature profile increases with the in-
crease of some values of both internal heat generation and
thermal radiation parameter. *erefore, the internal heat
generation parameter and radiation parameter enhance
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Figure 8: Temperature profiles for various values of the radiation
parameter (Ra) when λ� 0.1, M� 0.1, Gr � 0.1, Pr� 0.72, and
Bi� 0.1.
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Figure 9: Temperature profiles for various values of the Prandtl
number (Pr) when λ� 0.1, M� 0.1, Gr � 0.1, Ra� 0.1, and Bi� 0.1.
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Figure 7: Temperature profiles for various values of internal heat
generation (λ) when Pr� 0.72, M� 0.1, Gr � 0.1, Ra� 0.1, and
Bi� 0.1.
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Figure 10: Temperature profiles for various values of the Biot
number (Bi) when λ� 0.1, M� 0.1, Gr � 0.1, Ra� 0.1, and Pr� 0.1.
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the thermal diffusion within the boundary layer. It is seen
from Figure 9 that the temperature profile decrease for
increasing values of the Prandtl number at all points
which indicates that thermal boundary layer thickness is
reduced under the influence of the Prandtl number.
Figure 10 illustrates that the Biot number causes the fluid
temperature to increase. Generally, from these figures, it is
notable that the thermal boundary layer thickness in-
creased with an increase in the Biot number, internal heat
generation, and thermal radiation but decreased with
increasing values of the Grashof number, magnetic pa-
rameter, and Prandtl number. *us, the convective sur-
face heat transfer, the internal heat generation parameter,
and the radiation parameter improved thermal diffusion,
whereas an increase in the Prandtl number and the in-
tensity of buoyancy force slowed down the rate of thermal
diffusion within the boundary layer.

6. Conclusion

In this study, the optimal homotopy asymptotic method was
successfully applied to investigate the effects of thermal
radiation, internal heat generation, Prandtl number, Grashof
number, and Biot number on the laminar boundary layer
flow over a vertical plate in the presence of a convective
surface boundary condition.*e present analysis leads to the
following conclusions:

(1) With the increase in the Grashof number, the fluid
velocity and the values of the skin-friction coefficient
increase, but the fluid temperature and the value of
the Nusselt number reduce with the increase in the
Grashof number.

(2) With the increase in the Prandtl number, the fluid
temperature, the coefficient of skin friction, and heat
transfer rate decrease, but the significant effect is not
observed on the fluid velocity.

(3) *e fluid velocity, temperature profile, and skin-
friction coefficient increase with the increase in the
Biot number.

(4) *e fluid temperature, the values of the skin-friction
coefficient, and the heat transfer rate increase with
the increase of internal heat generation.

(5) With the increase of the radiation absorption pa-
rameter, the fluid temperature, the coefficient of skin
friction, and the heat transfer rate enhance.

(6) Both fluid velocity and temperature profile fall with
the increase in the magnetic parameter.

(7) *e results confirm that the optimal homotopy as-
ymptotic method is powerful in solving nonlinear
differential problems.
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