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In this paper, we introduce a fuzzy fractional semigroup of operators whose generator will be the fuzzy fractional derivative of the
fuzzy semigroup at t � 0. We establish some of their proprieties and some results about the solution of fuzzy fractional
Cauchy problem.

1. Introduction

Fractional semigroups are related to the problem of frac-
tional powers of operators initiated first by Bochner [1].
Balakrishnan [2] studied the problem of fractional powers of
closed operators and the semigroups generated by them.$e
fractional Cauchy problem associated with a Feller semi-
group was studied by Popescu [3]. Abdeljawad et al. [4]
studied the fractional semigroup of operators. $e semi-
group generated by linear operators of a fuzzy-valued
function was introduced by Gal and Gal [5]. Kaleva [6]
introduced a nonlinear semigroup generated by a nonlinear
function.In the last few decades, fractional differentiation
has been used by applied scientists for solving several
fractional differential equations and they proved that the
fractional calculus is very useful in several fields of appli-
cations and real-life problems such as, but certainly not
limited, in physics (quantum mechanics, thermodynamics,
and solid-state physics), chemistry, theoretical biology and
ecology, economics, engineering, signal and image pro-
cessing, electric control theory, viscoelasticity, fiber optics,
stochastic-based, finance, tortoise walk, Baggs and Freed-
man model, normal distribution kernel, time-fractional
nonlinear dispersive PDEs, fractional multipantograph
system, time-fractional generalized Fisher equation and

time-fractional k(m, n) equation, and nonlinear time-frac-
tional Schrodinger equations [7–14].

$e concept of fuzzy fractional derivative was intro-
duced by [15] and developed by [16–19], but these re-
searchers tried to put a definition of a fuzzy fractional
derivative. Most of them used an integral from the fuzzy
fractional derivative. Two of which are the most popular
ones, Riemann–Liouville definition and Caputo definition.
All definitions mentioned above satisfy the property that the
fuzzy fractional derivative is linear. $is is the only property
inherited from the first fuzzy derivative by all of the defi-
nitions. $e obtained fractional derivatives in this calculus
seemed complicated and lost some of the basic properties
that usual derivatives have such as the product rule and the
chain rule. However, the semigroup properties of these
fractional operators behave well in some cases. Recently,
Harir et al. [20] defined a newwell-behaved simple fractional
derivative called “the fuzzy conformable fractional deriva-
tive” depending just on the basic limit definition of the
derivative. $ey proved the product rule and the fractional
mean value theorem and solved some (conformable) frac-
tional differential equations [18].

Here, we introduce the fuzzy fractional semigroups of
operators associated with the fuzzy conformable fractional
derivative, for proving to be a very fruitful tool to solve
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differential equations.$en, we show that this semigroup is a
solution to the fuzzy fractional Cauchy problem
x(q)(t) � f(x(t)), x(0) � x0, and q ∈ (0, 1] according to
the fuzzy conformable fractional derivative which was in-
troduced in [20].

2. Preliminaries

Let us denote by RF � u: R⟶ [0, 1]{ } the class of fuzzy
subsets of the real axis satisfying the following properties
[21]:

(i) u is normal, i.e., there exists an x0 ∈ R such that
u(x0) � 1,

(ii) u is the fuzzy convex, i.e., for x, y ∈ R and 0< λ≤ 1,

u(λx +(1 − λ)y)≥min[u(x), u(y)]. (1)

(iii) u is upper semicontinuous,
(iv) [u]0 � cl x ∈ R | u(x) > 0{ } is compact.

$en, RF is called the space of fuzzy numbers. Obvi-
ously, R ⊂ RF. For 0< α≤ 1, denote [u]α � x ∈ R{

|u(x)≥ α}, then from (i) to (iv), it follows that the α-level sets
[u]α ∈ PK(R), for all 0≤ α≤ 1, are a closed bounded interval
which we denote by [u]α � [uα

1 , uα
2].

Here, PK(R) denotes the family of all nonempty
compact convex subsets of R and defines the addition and
scalar multiplication in PK(R) as usual.

Lemma 1 (see [22]). Let u, v: RF⟶ [0, 1] be the fuzzy
sets. *en, u � v if and only if [u]α � [v]α, for all α ∈ [0, 1].

*e following arithmetic operations on fuzzy numbers are
well known and frequently used below. If u, v ∈ RF, then

[u + v]
α

� u
α
1 + v

α
1 , u

α
2 + v

α
2􏼂 􏼃,

[u − v]
α

� u
α
1 − v

α
2 , u

α
2 − v

α
1􏼂 􏼃,

[λu]
α

� λ[u]
α

�
λu

α
1 , λu

α
2􏼂 􏼃, if λ≥ 0,

λu
α
2 , λu

α
1􏼂 􏼃, if λ< 0.

⎧⎨

⎩

(2)

For u, v ∈ RF, if there exists w ∈ RF such that u � v + w,
then w is the Hukuhara difference of u and v denoted by u⊖v.

Let us define d: RF × RF⟶ R+ ∪ 0{ } by the equation

d(u, v) � sup
α∈[0,1]

dH [u]
α
, [v]

α
( 􏼁, for all u, v ∈ RF, (3)

where dH is the Hausdorff metric defined in PK(R).

dH [u]
α
, [v]

α
( 􏼁 � max u

α
1 − v

α
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, u

α
2 − v

α
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯. (4)

Theorem 1 (see [23]). (RF, d) is a complete metric space.
We list the following properties of d(u, v):

d(u + w, v + w) � d(u, v),

d(u, v) � d(v, u),

d(ku, kv) � |k|d(u, v),

d(u, v)≤d(u, w) + d(w, v),

(5)

for all u, v, w ∈ RF and λ ∈ R.

Theorem 2 (see [24]). *ere exists a real Banach space X

such that RF can be the embedded as a convex cone C with
vertex 0 inX. Furthermore, the following conditions hold true:

(i) *e embedding j is isometric,
(ii) *e addition in X induces the addition in RF,
(iii) *e multiplication by a nonnegative real number in

X induces the corresponding operation in RF,
(iv) C − C � a − b/a, b ∈ RF􏼈 􏼉 is dense in X,
(v) C is closed.

Remark 1. Let 􏽥j: RF⟶ X as 􏽥j(u) � j((−1)u), u ∈ RF. It
verifies the following properties: ‖􏽥j(u) − 􏽥j(v)‖ � d(u, v),
􏽥j(su + tv) � s􏽥j(u) + t􏽥j(v), for all u, v ∈ RF, t, s≥ 0 􏽥j(RF)

−j(RF) � C, since (−1)RF � RF.

3. Fuzzy q-Semigroup of Operators

Definition 1 (see [20]). Let F: (0, a)⟶ RF be a fuzzy
function. qth order “fuzzy conformable fractional derivative”
of F is defined by (where the limit is taken in themetric space
(RF, d)).

Tq(F)(t) � lim
ε⟶0+

F t + εt1− q
􏼐 􏼑⊖F(t)

ϵ
,

� lim
ε⟶0+

F(t)⊖F t − εt1− q
􏼐 􏼑

ε
,

(6)

for all t> 0, q ∈ (0, 1). Let F(q)(t) stand for Tq(F)(t). Hence,

F
(q)

(t) � lim
ε⟶0+

F t + εt1− q
􏼐 􏼑⊖F(t)

ε
� lim

ε⟶0+

F(t)⊖F t − εt1− q
􏼐 􏼑

ε
.

(7)

If F is q-differentiable in some (0, a) and limt⟶0+ F(q)(t)

exists, then

F
(q)

(0) � lim
t⟶0+

F
(q)

(t). (8)
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Definition 2. Let F ∈ C((0, a),RF)∩ L1((0, a),RF). Define
the fuzzy fractional integral for q ∈ (0, 1].

Iq(F)(t) � I t
q− 1

F􏼐 􏼑(t) � 􏽚
t

0

F(x)

x
1−q

dx, (9)

where the integral is the usual Riemann improper integral.

Definition 3. Let q ∈ (0, a], for any a> 0. A family T(t){ }t≥0
of operators from RF is called a fuzzy fractional q-semi-
group (or fuzzy q-semigroup) of operators if

(i) T(0) � I, where I is the identity mapping on RF,
(ii) T(s + t)(1/q) � T(s(1/q))T(t(1/q)), for all s, t≥ 0.

Definition 4. A q-semigroup T(t) is called a c0-q-semigroup
if

(a) $e function g:[0,∞)⟶ RF, defined by
g(t) � T(t)(x), is continuous at t � 0, for all
x ∈ RF, i.e.,

lim
t⟶0+

T(t)(x) � x. (10)

(b) $ere exist constants w≥ 0 and M≥ 1 such that
d(T(t)x, T(t)y) ≤Mew(tq/q)d(x, y), for all t≥ 0, x,

y ∈ RF.

Example 1. Define on RF the linear operator
T(t)x � e2

�
t

√

x. $en, T(t){ }t≥0 is a fuzzy (1/2)-semigroup.
Indeed

(i) T(0) � I, T(0)x � x, for all x ∈ RF,
(ii) For t, s≥ 0, x ∈ RF,

T(s + t)
2
x � e

2
����
(s+t)2

√

x � e
2(s+t)

x � e
2s

e
2t

x􏼐 􏼑,

� T s
2

􏼐 􏼑 e
2t

x􏼐 􏼑 � T s
2

􏼐 􏼑T t
2

􏼐 􏼑x.
(11)

(a) For t, s≥ 0, x ∈ RF, d(T(t)x, x) � d(e2
�
t

√

x, x),
then (e2

�
t

√

− 1)≥ 0, and then using Remark 1, we
deduce that (e2

�
t

√

− 1)x + x � e2
�
t

√

x. $erefore, the
Hukuhara difference e2

�
t

√

x⊖x(T(t)x⊖x) exists and
we have

T(t)x⊖x � e
2

�
t

√

x⊖x � e
2

�
t

√

− 1􏼒 􏼓x. (12)

$en,

d(T(t)x, x) � d e
2

�
t

√

x⊖x, 􏽥0􏼒 􏼓 � d e
2

�
t

√

x⊖x, 􏽥0􏼒 􏼓,

� d e
2

�
t

√

− 1􏼒 􏼓x, 􏽥0􏼒 􏼓 � e
2

�
t

√

− 1􏼒 􏼓d(x, 􏽥0).

(13)

Since limt⟶0+ e2
�
t

√

− 1 � 0, then limt⟶0+ T(t)x � x.
(b) For t≥ 0, x, y ∈ R F, d (T(t)x, T(t)y) �

d(e2
�
t

√

x, e2
�
t

√

y) � e2
�
t

√

d(x, y). Consequently,
T(t){ }t≥0 is a fuzzy c0-q-semigroup on RF.

Definition 5. $e conformable q-derivative ofT(t) at t � 0 is
called the q-infinitesimal generator of the fuzzy q-semigroup
T(t){ }t≥0, with domain equals

D(A) � x ∈ RF: lim
t⟶0+

T
(q)

(t)x exists􏼚 􏼛. (14)

We will write A for such generator.

Lemma 2. Let A: RF⟶ RF and A1 � jAj− 1: C⟶ C

tow the operator.
A is the operator of the fuzzy q-semigroup T(t){ }t≥0 on

RF if and only if A1 is the operator of the q-semigroup
T1(t)􏼈 􏼉t≥0 defining on the convex closed set C and

T1 � jT(t)j− 1.
By using Definition 5, the proof is similar to the proof of

Lemma 5 in [18] and is omitted.

Theorem 3. Let T(t){ }t≥0 be a c0-q-semigroup with infini-
tesimal generator A, 0< q≤ 1. *en, for all x ∈ RF such that
T(t)x ∈ D(A), for all t≥ 0; the mapping t⟶ T(t)x is
q-differentiable and

T
(q)

(t)x � AT(t)x, ∀t≥ 0. (15)

Proof. Let q ∈ (0, 1] and x ∈ RF, for t≥ 0, and we have

T(t + s)
(1/q)

x � T(t)
(1/q)

T(s)
(1/q)

x. (16)

Since T(t)x ∈ D(A), then
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T
(q)

(t)(x) � lim
ε⟶0

T t + εt1− q
􏼐 􏼑x⊖T(t)x

ε
,

� lim
ε⟶0

j
− 1

T1 t + εt1− q
􏼐 􏼑jx − j

− 1
T1(t)jx

ε
,

� j
− 1 lim

ε⟶0

T1 t + εt1− q
􏼐 􏼑jx − T1(t)jx

ε
⎛⎝ ⎞⎠,

� j
− 1 lim

ε⟶0

T1 t
q

+ t + εt1− q
􏼐 􏼑

q
− t

q
􏼐 􏼑

(1/q)
jx − T1(t)jx

ε
⎛⎜⎝ ⎞⎟⎠,

� j
− 1 lim

ε⟶0

T1(t)T1 t + εt1− q
􏼐 􏼑

q
− t

q
􏼐 􏼑

(1/q)
jx − T1(t)jx

ε
⎛⎜⎝ ⎞⎟⎠,

� j
− 1 lim

ε⟶0

T1(t) T1 t + εt1− q
􏼐 􏼑

q
− t

q
􏼐 􏼑

(1/q)
jx − T1(0)jx􏼔 􏼕

ε
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠.

(17)

Now, using $eorem 2.4 in [20], we get

T1 t + εt1− q
􏼐 􏼑

q
− t

q
􏼐 􏼑

(1/q)
jx − T1(0)jx􏼔 􏼕

ε

� T1(t)T
(q)
1 (c)

t + εt1− q
􏼐 􏼑

q
− t

q
􏽨 􏽩

qε
jx,

(18)

for some 0< c< (t + εt1− q)q − tq. If ε⟶ 0, then c⟶ 0
and limε⟶0T

(q)
1 (c) � T

(q)
1 (0) � A1.

Consequently,

T
q
1(t)jx � T1(t)A1jx lim

ε⟶0

t + εt1− q
􏼐 􏼑

q
− t

q
􏽨 􏽩

qε
. (19)

By using L’Hopital’s Rule, we get
limε⟶0([((t + εt1− q)q − tq)]/qε) � 1.

T
(q)

(t)(x) � j
− 1

T1(t)A1jx( 􏼁,

� j
− 1

A1T1(t)jx( 􏼁,

� j
− 1

A1jj
− 1

T1(t)jx,

� AT(t)(x).

(20)

□

Example 2. Let f: RF⟶ RF be continuous on [0, 1].
Define

(T(t)f)(x) � f x +
1
q
t
q

􏼠 􏼡, q ∈ (0, 1]. (21)

$en, T(t) is obviously a c0-q-semigroup of contraction
on RF.

Remark 2. If M � 1 and w � 0 in Definition 4, we say that
T(t){ }t≥0 is a contraction fuzzy semigroup.

For q ∈ (0, 1],

T(t + s)
(1/q)

f􏼐 􏼑(x) � f x +
1
q

(t + s)
(1/q)

􏽨 􏽩
q

􏼠 􏼡,

� f x +
1
q

t +
1
q

s􏼠 􏼡,

� T t
(1/q)

􏼐 􏼑T s
(1/q)

􏼐 􏼑f􏼐 􏼑(x).

(22)

T(0) � I and T(t)f ∈ RF whenever f ∈ RF and that

d(T(t)f, 􏽥0)≤d(f, 􏽥0), t≥ 0. (23)

4. Fuzzy Fractional Cauchy Problems

Let F: RF⟶ RF be continuous and consider the frac-
tional initial value problem

x
(q)

(t) � F(x(t)), x t0( 􏼁 � x0, (24)

where q ∈ (0, 1).
It is well known that instead of the differential equation

(24), it is possible to study an equivalent fractional integral
equation.

x(t) � x0 + IqF(x(t)), (25)

for all t≥ 0 and q ∈ (0, 1).
A solution x(t) of equation (24) is independent of the

initial time t0. In fact, let k0 < a and denote
y(t) � x(k0 + (1/q)tq). $en,
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y
(q)

(t) � x
(q)

k0 +
1
q
t
q

􏼠 􏼡 � F x k0 +
1
q
t
q

􏼠 􏼡􏼠 􏼡 � F(y(t)),

(26)

and y(t0) � x(k0 + (1/q)t
q
0) � y0. Hence, y(t) and x(t) are

solutions of the same fractional differential equation with a
different initial value.

Theorem 4. Let q ∈ (0, 1).
If x(t) is a solution to the fuzzy fractional initial value

problem,

x
(q)

(t) � F(x(t)), x t0( 􏼁 � x0. (27)

*en, T(t)(x0) � x(t) is a fuzzy semigroup. Furthermore,
T(t)(x0) is q-differentiable w.r.t t and T(q)(t)(x0) � F(x(t))

� F(T(t)(x0)).

Proof. Let q ∈ (0, 1) and k> 0. As obtained above, y(t) �

x(k + (1/q)tq) is a solution of the fractional initial value
problem y(q)(t) � F(y(t)), y(0) � x(k). Hence,

T(s + t)
(1/q)

x0( 􏼁 � x 0 +
1
q

(s + t)
(1/q)

􏼐 􏼑
q

􏼠 􏼡 � x
1
q

s +
1
q

t􏼠 􏼡.

(28)

We set k � (1/q)s, then

T(s + t)
(1/q)

x0( 􏼁 � x k +
1
q

t􏼠 􏼡 � y t
(1/q)

􏼐 􏼑 � T t
(1/q)

􏼐 􏼑x(k),

� T t
(1/q)

􏼐 􏼑x
1
q

s􏼠 􏼡 � T t
(1/q)

􏼐 􏼑T s
(1/q)

􏼐 􏼑 x0( 􏼁,

(29)

and T(0)(x0) � x(0) � x0. Being a solution to a differential
equation, T(t)(x0) is q-differentiable with respect to t and
T(q)(t)(x0) � x(q)(t) � F(x(t)). □

Theorem 5. Let q ∈ (0, 1]. Suppose that a fuzzy semigroup
T(t)(x) is q-differentiable w.r.t t, for all x ∈ RF. *en,
T(t)(x0) is a solution to the fractional initial value problem

x
(q)

(t) � F(x(t)), x t0( 􏼁 � x0, (30)

where F(x(t)) � T(q)(0)(x0).

Proof. By the q-semigroup property and using proof of
$eorem 3, we obtain

T
(q)

(t) x0( 􏼁 � lim
ε⟶0

T t + εt1− q
􏼐 􏼑 x0( 􏼁⊖T(t) x0( 􏼁

ε
,

� lim
ε⟶0

T t
q

+ t + εt1− q
􏼐 􏼑

q
− t

q
􏼐 􏼑

(1/q)
x0( 􏼁⊖T(t) x0( 􏼁

ε
,

� lim
ε⟶0

T t + εt1− q
􏼐 􏼑

q
− t

q
􏼐 􏼑

(1/q)
T(t) x0( 􏼁⊖T(t) x0( 􏼁

ε
,

� lim
ε⟶0

T t + εt1− q
􏼐 􏼑

q
− t

q
􏼐 􏼑

(1/q)
T(t) x0( 􏼁⊖T(0)T(t) x0( 􏼁

ε
,

� T
(q)

(0)T(t) x0( 􏼁,

(31)

and T(0)(x0) � x0.
Finally, we show that the fuzzy exponential function is a

generalization of the fuzzy semigroup introduced in [5]. □

Theorem 6. If A: RF⟶ RF is a bounded linear operator,
then the fuzzy exponential function has a power series
representation

e
tq/q( )A

(x) � 􏽘
∞

k�0

t
kq

q
k
k!

A
k
x, t≥ 0. (32)

Proof. Let A: RF⟶ RF be a bounded linear operator as
defined by Gal and Gal in [5]. $en,

ϕ(r) � sup
d(x,y) < r

d(Ax, Ay) � r‖A‖, (33)

and hence by [6] satisfies the condition. Consequently,

e
tq/q( )A

x0( 􏼁 � lim
n⟶∞

I +
tqA

qn
􏼠 􏼡

n

x0( 􏼁 (34)

is a solution to the Cauchy problem x(q)(t) � Ax(t),

x(0) � x0. Define S(t) by a power series as

S(t) � 􏽘
∞

k�0

t
kq

q
k
k!

A
k
. (35)

Now, by $eorem 3.9 in [5],
(pose (sq/q) � twith e(sq/q)A and S(s)) in [5], so S(t) is a
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fuzzy semigroup, and hence by $eorem 5, S(t)(x0) is a
solution to the problem

x
(q)

(t) � Ax(t), x(0) � x0. (36)

Since a bounded linear operator is Lipschitzian, it follows
by $eorem 6.1 in [25] that the problem
x(q)(t) � Ax(t), x(0) � x0, has a unique solution. Hence,
e(tq/q)A(x0) � S(t)(x0), for all x0 ∈ RF. □
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