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1Laboratory of Mathematics and Applied Sciences, University of Ghardaia, Ghardaı̈a 47000, Algeria
2Laboratory of Mathematics, Djillali Liabes University of Sidi-Bel-Abbes, Sidi-Bel-Abbes, Algeria
3NEERLab, Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21252, USA

Correspondence should be addressed to G. N’Guérékata; nguerekata@aol.com
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Our aim in this paper is to investigate the existence, uniqueness, and Mittag–Leffler–Ulam stability results for a Cauchy problem
involving ψ-Caputo fractional derivative with positive constant coefficient in Banach and Fréchet Spaces. ,e techniques used are
a variety of tools for functional analysis. More specifically, we apply Weissinger’s fixed point theorem and Banach contraction
principle with respect to the Chebyshev and Bielecki norms to obtain the uniqueness of solution on bounded and unbounded
domains in a Banach space. However, a new fixed point theorem with respect to Meir–Keeler condensing operators combined
with the technique of Hausdorff measure of noncompactness is used to investigate the existence of a solution in Banach spaces.
After that, by means of new generalizations of Grönwall’s inequality, theMittag–Leffler–Ulam stability of the proposed problem is
studied on a compact interval. Meanwhile, an extension of the well-known Darbo’s fixed point theorem in Fréchet spaces
associated with the concept of measures of noncompactness is applied to obtain the existence results for the problem at hand.
Finally, as applications of the theoretical results, some examples are given to illustrate the feasibility of the main theorems.

1. Introduction

Fractional differential equations gained much attention due
to their applications in various fields of science and engi-
neering (see, for instance, [1–7] and the references therein).
For more information about the basic theory of fractional
differential equations, we can refer to the monographs
[8–11] and references cited therein. Besides the classical and
fractional-order differential and integral operators, there is
another kind of fractional derivatives that appears in the
literature called ψ-Caputo fractional derivative, which was
introduced by Almeida in [12], where the kernel operator
contains a special function of an arbitrary exponent.
According to this idea, a wide class of well-known fractional
derivatives are obtained like Caputo and Caputo–Hadamard
for particular choices of ψ(t). Additionally, some interesting

details about the ψ-fractional derivatives and integrals can be
found in [13–23]. Moreover, fixed point theory is a very
useful tool in the theory of the existence of solutions to
functional and differential equations; the reader is advised to
see references [24–29] in which many scholars turned to the
existence and uniqueness of solutions for differential
equations involving different kinds of fractional derivatives
under various boundary conditions. On the contrary, the
notion of measure of noncompactness was first introduced
by Kuratowski [30] in 1930 which was further extended to
general Banach spaces by Banás and Goebel [31]. Later
Darbo formulated his celebrated fixed point theorem in 1955
for the case of the Kuratowski measure of noncompactness
(cf. [32]) which generalizes both the classical Schauder fixed
point principle and (a special variant of) Banach’s con-
traction mapping principle. After that, the Darbo fixed point
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theorem has been generalized in many different directions;
we suggest some works for reference [33–36]. ,e reader
may also consult [37–43] and references therein where
several applications of the measure of noncompactness can
be found.

Very recently Dudek [44] proved a new fixed point
theorem using the concept of measures of noncompactness
in Fréchet spaces which generalize the famous Darbo’s fixed
point theorem. To see more applications about the useful-
ness of this new fixed point theorem to prove the existence of
solutions for certain classes of functional integral equations
in Fréchet spaces, the reader can refer to [45–50].

On the contrary, one of the important parts of the
qualitative theory of linear and nonlinear differential
equations is the Ulam–Hyers stability, first formulated by
Hyers and Ulam in 1940 [51–53]. Furthermore, the frac-
tional Ulam stability was introduced by Wang et al. [54].
For some recent results of stability analysis by different
types of fractional derivative operator, we refer the reader
to articles [55–64], as well as to the recent book by Abbas
et al. [65] and the references cited therein. More recently,
some authors explored another form of stability known as
Mittag–Leffler–Ulam–Hyers for the solutions of fractional
differential equations [66–73].

Inspired by the above works, our goal is to extend the studies
in [29, 37, 45, 72]. More precisely, we consider first the problem
of the existence, uniqueness, and Mittag–Leffler–Ulam–Hyers
stability for the following initial value problem of the fractional
differential equation with constant coefficient λ> 0 in Banach
spaces of the form:

c
D

α;ψ
a+ x(t) � λx(t) + f(t, x(t)), t ∈ J ≔ [a, b],

x(a) � ϕ0,

⎧⎨

⎩ (1)

where cD
α;ψ
a+ is the ψ-Caputo fractional derivatives such that

0< α≤ 1, f: J × X⟶ X is a given function satisfying some
assumptions that will be specified later, X is a Banach space
with norm ‖·‖, and ϕ0 ∈ X. Moreover, we also extend the
above problem to give a uniqueness results on unbounded
domains in a Banach space via Banach contraction principle
coupled with Bielecki-type norm.

Next, we turn our attention to the existence of solutions
for the same problem (1) in the Fréchet spaces. In precise
terms, we investigate the existence of solutions for the
following problem:

c
D

α;ψ
a+ x(t) � λx(t) + f(t, x(t)), t ∈ J′ ≔ [a,∞),

x(a) � ϕ0.

⎧⎨

⎩

(2)

,e structure of the present work is organized as fol-
lows: in Section 2, we collect some basic concepts on the
fractional integrals and derivatives, auxiliary results,
lemmas and notions of measures of noncompactness, and
fixed point theorems that are used throughout this paper.
In Section 3, based on Weissinger’s fixed point theorem
combined with the Chebyshev norm, we give a uniqueness
result for problem (1) on a compact interval in a Banach
space. In Section 4, using the ideas of Hausdorff measure of

noncompactness and Meir–Keeler condensing operator,
we present the existence of solutions of IVP (1) in Banach
spaces. In Section 5, we discuss the Mittag–Leffler–Ulam
stability results for the problem at hand. In Section 6, we
apply the Banach fixed point theorem coupled with a
Bielecki-type norm to derive the uniqueness of solution on
unbounded domains in a Banach space. In Section 7, we
look into the existence of solutions for the IVP (2) in the
Fréchet spaces via Darbo’s fixed point theorem. ,e last
section provides a couple of examples to illustrate the
applicability of the results developed.

2. Preliminaries and Background Materials

In this section, we present some basic notations, definitions,
and preliminary results, which will be used throughout this
paper.

Let J ≔ [a, b](0< a< b<∞) be a finite interval and
ψ: J⟶ R be an increasing function with ψ′(t)≠ 0, for all
t ∈ J, and let C(J,X) be the Banach space of all continuous
functions x from J into X with the supremum (uniform)
norm:

‖x‖∞ � sup
t∈J

‖x(t)‖. (3)

Ameasurable function x: J⟶ X is Bochner integrable
if and only if ‖x‖ is Lebesgue integrable.

By L1(J,X), we denote the space of the Bochner inte-
grable functions x: J⟶ X, with the norm

‖x‖1 � 􏽚
b

a
‖x(t)‖dt. (4)

Now, we define the Hausdorff measure of non-
compactness and give some of its important properties.

Definition 1 (see [31]). Let X be a Banach space and B a
bounded subset of X. ,en the Hausdorff measure of
noncompactness of B is defined by

χ(B) � inf ε> 0: B can be covered by finitely many balls with radius< ε􏼈 􏼉.

(5)

To discuss the problem in this paper, we need the fol-
lowing lemmas.

Lemma 1. Let A, B ⊂ X be bounded. 5en the Hausdorff
measure of noncompactness has the following properties. For
more details and the proof of these properties see [31]:

(1) χ(A) � 0⟺A is relatively compact
(2) A ⊂ B⟹ χ(A)≤ χ(B)

(3) χ(A∪B) � max χ(A), χ(B)􏼈 􏼉

(4) χ(A) � χ(A) � χ(conv(A)), where A and convA

represent the closure and the convex hull of A,
respectively

(5) χ(A + B)≤ χ(A) + χ(B), where A + B � x + y : x ∈􏼈

A, y ∈ B}

(6) χ(βA)≤ |β|χ(A), for any β ∈ R
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Now, we recall some fixed point theorems that will be used
later

Theorem 1 (Weissinger’s fixed point theorem
[74]). Assume (E, d) to be a nonempty complete metric space
and let βj ≥ 0 for every j ∈ N such that 􏽐

∞
j�0 βj converges.

Furthermore, let the mapping T : E⟶ E satisfy the fol-
lowing inequality:

d T
j
u, T

j
v􏼐 􏼑≤ βjd(u, v), (6)

for every j ∈ N and every u, v ∈ E. 5en, T has a unique fixed
point u∗. Moreover, for any v0 ∈ E, the sequence T jv0􏼈 􏼉

∞
j�1

converges to this fixed point u∗.
On the contrary, in 1969, the concepts of the Meir–Keeler

contraction mapping were introduced by Meir and Keeler.

Definition 2 (see [75]). Let (E, d) be a metric space. ,en a
mapping T on E is said to be a Meir–Keeler contraction
(MKC, for short); if for any ε> 0, there exists δ > 0 such that

ε≤ d(u, v)< ε + δ⟹ d(Tu,Tv)< ε, ∀u, v ∈ E. (7)

In [34], the authors defined the notion of the
Meir–Keeler condensing operator on a Banach space and
gave some fixed point results.

Definition 3 (see [34]). Let C be a nonempty subset of a
Banach spaceX and μ arbitrary measure of noncompactness
onX. We say that an operatorT: C⟶ C is a Meir–Keeler
condensing operator if for any ε> 0, there exists δ > 0 such
that

ε≤ μ(Ω)< ε + δ⟹ μ(TΩ)< ε, (8)

for any bounded subset Ω of C.
,e following fixed point theorem with respect to the

Meir–Keeler condensing operator which is introduced by
Aghajani et al. [34] plays a key role in the proof of our main
results.

Theorem 2 (see [34]). LetΩ be a nonempty, bounded, closed,
and convex subset of a Banach space X. Also, let μ be an
arbitrary measure of noncompactness onX. IfT: Ω⟶Ω is
a continuous and Meir–Keeler condensing operator, then T

has at least one fixed point and the set of all fixed points ofT
in Ω is compact.

The following lemmas are needed in our argument.

Lemma 2 (see [76]). LetX be a Banach space. If B ⊂ C(J,X)

is bounded, then χ(B(t))≤ χC(B) for any t ∈ J, where
B(t) � x(t): x ∈ B{ }, t ∈ J, and χC is the Hausdorff measure
of noncompactness defined on the bounded sets of C(J,X).
Furthermore if B is equicontinuous, then t⟶ χ(B(t)) is
continuous on J, and

χC(B) � max
t∈J

χ(B(t)). (9)

Lemma 3 (see [77]). Let X be a Banach space and let B ⊂ X
be bounded. 5en for each ε, there is a sequence xn􏼈 􏼉

∞
n�1 ⊂ B,

such that

χ(B)≤ 2χ xn􏼈 􏼉
∞
n�1( 􏼁 + ε. (10)

We call B ⊂ L1(J,X) uniformly integrable if there exists
η ∈ L1(J,R+) such that

‖x(t)‖ ≤ η(t), for allx ∈ B and a.e. t ∈ J. (11)

Lemma 4 (see [78]). If xn􏼈 􏼉
∞
n�1 ⊂ L1(J,X) is uniformly in-

tegrable, then t⟼ χ( xn(t)􏼈 􏼉
∞
n�1) is measurable, and

χ 􏽚
t

a
xn(s)ds􏼨 􏼩

∞

n�1
􏼠 􏼡≤ 2􏽚

t

a
χ xn(s)􏼈 􏼉

∞
n�1( 􏼁ds. (12)

Before introducing the basic facts on fractional opera-
tors, we recall three types of functions that are important in
fractional calculus: the gamma, beta, and Mittag–Leffler
functions

Definition 4 (see [79]). ,e gamma function, or the second-
order Euler integral, denoted Γ(·) is defined as

Γ(α) � 􏽚
+∞

0
e

− t
t
α− 1dt, α> 0. (13)

Definition 5 (see [79]). ,e beta function, or the first-order
Euler function, can be defined as

B(α, β) � 􏽚
1

0
(1 − t)

α− 1
t
β− 1dt, α, β> 0. (14)

We use the following formula which expresses the beta
function in terms of the gamma function:

B(α, β) �
Γ(α)Γ(β)

Γ(α + β)
, α, β> 0. (15)

,e next function is a direct generalization of the ex-
ponential series.

Definition 6 (see [79]). ,e one-parameter Mittag–Leffler
function Eα(·) is defined as

Eα(z) � 􏽘
∞

k�0

z
k

Γ(αk + 1)
, (z ∈ R, α> 0). (16)

For α � 1, this function coincides with the series ex-
pansion of ez, i.e.,

E1(z) � 􏽘
∞

k�0

z
k

Γ(k + 1)
� 􏽘
∞

k�0

z
k

k!
� e

z
. (17)

Definition 7 (see [79]). ,e two-parameter Mittag–Leffler
function Eα,β(·) is defined as

Eα,β(z) � 􏽘
∞

k�0

z
k

Γ(αk + β)
, α, β> 0 and z ∈ R. (18)
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Now, we give some results and properties from the
theory of fractional calculus. We begin by defining
ψ-Riemann–Liouville fractional integrals and derivatives,
in what follows.

Definition 8 (see [2, 12]). For α> 0, the left-sided ψ-Rie-
mann–Liouville fractional integral of order α for an inte-
grable function x: J⟶ R with respect to another function
ψ: J⟶ R that is an increasing differentiable function such
that ψ′(t)≠ 0, for all t ∈ J, is defined as follows:

I
α;ψ
a+ x(t) �

1
Γ(α)

􏽚
t

a
ψ′(s)(ψ(t) − ψ(s))

α− 1
x(s)ds, (19)

where Γ is the gamma function.
Note that equation (19) is reduced to the Riemann–Liouville

and Hadamard fractional integrals when ψ(t) � t and
ψ(t) � ln t, respectively.

,e integer order of the differential operator x[1]
ψ with

respect to another function ψ: J⟶ R that is an increasing
differentiable function such that ψ′(t)≠ 0, for all t ∈ J is
defined by

x
[1]
ψ (t) �

1
ψ′(t)

d

dt
x(t). (20)

Furthermore, for n ∈ N, we use the symbol x[n]
ψ to in-

dicate the n-th composition of x[1]
ψ with itself; that is, we put

x
[n]
ψ (t) ≔ x

[1]
ψ x

[n− 1]
ψ (t) �

1
ψ′(t)

d
dt

􏼠 􏼡

n

x(t), n≥ 2. (21)

Definition 9 (see [12]). Let n ∈ N and let ψ, x ∈ Cn(J,R), be
two functions such that ψ is increasing and ψ′(t)≠ 0, for all
t ∈ J. ,e left-sided ψ–Riemann–Liouville fractional de-
rivative of a function x of order α is defined by

D
α;ψ
a+ x(t) � x

[n]
ψ I

n− α;ψ
a+ x(t)

�
1
Γ(n − α)

1
ψ′(t)

d
dt

􏼠 􏼡

n

· 􏽚
t

a
ψ′(s)(ψ(t) − ψ(s))

n− α− 1
x(s)ds,

(22)

where n � [α] + 1.

Definition 10 (see [12]). Let n ∈ N and let ψ, x ∈ Cn(J,R),
be two functions such that ψ is increasing and ψ′(t)≠ 0, for
all t ∈ J. ,e left-sided ψ-Caputo fractional derivative of x of
order α is defined by

c
D

α;ψ
a+ x(t) � I

n− α;ψ
a+ x

[n]
ψ (t), (23)

where n � [α] + 1 for α ∉ N and n � α for α ∈ N.
From the definition, it is clear that

c
D

α;ψ
a+ x(t) �

􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
n− α− 1

Γ(n − α)
x

[n]
ψ (s)ds, if α ∉ N,

x
[n]
ψ (t), if α ∈ N.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

,is generalization (24) yields the Caputo fractional
derivative operator when ψ(t) � t. Moreover, for ψ(t) � ln t,
it gives the Caputo–Hadamard fractional derivative.

Some basic properties are listed in the following lemma.

Lemma 5 (see [2, 12]). Let α, β> 0, and x ∈ C(J,R). 5en
for each t ∈ J, we have

(1) cD
α;ψ
a+ I

α;ψ
a+ x(t) � x(t)

(2) Iα;ψ
a+

cD
α;ψ
a+ x(t) � x(t) − x(a), 0< α≤ 1

(3) Iα;ψ
a+ (ψ(t) − ψ(a))β− 1 �

(Γ(β)/Γ(β + α))(ψ(t) − ψ(a))β+α− 1

(4) cD
α;ψ
a+ (ψ(t) − ψ(a))β− 1 �

(Γ(β)/Γ(β − α))(ψ(t) − ψ(a))β− α− 1

(5) cD
α;ψ
a+ (ψ(t) − ψ(a))k � 0, for all k ∈ 0, . . . , n − 1{ },

n ∈ N

Remark 1. Note that for an abstract function x: J⟶ X,
the integrals which appear in the previous definitions are
taken in Bochner’s sense (see, for instance, [80]).

In the sequel, we will make use of the following gen-
eralizations of Grönwall’s lemmas

Theorem 3 (see [23]). Let u, v be two integrable functions
and w continuous, with domain J. Let ψ ∈ C1(J,R+) be an
increasing function such that ψ′(t)≠ 0, ∀t ∈ J. Assume that

(1) u and v are nonnegative
(2) w is nonnegative and nondecreasing.

If

u(t)≤ v(t) + w(t) 􏽚
t

a
ψ′(s)(ψ(t) − ψ(s))

α− 1
u(s)ds, t ∈ J,

(25)

then

u(t)≤ v(t) + 􏽚
t

a
􏽘

∞

n�0

(w(t)Γ(α))
n

Γ(nα)
ψ′(s)(ψ(t) − ψ(s))

nα− 1
v(s)ds,

t ∈ J.

(26)

Corollary 1 (see [23]). Under the hypotheses of 5eorem 3,
let v be a nondecreasing function on J. 5en, we have

u(t)≤ v(t)Eα Γ(α)w(t)(ψ(t) − ψ(a))
α

( 􏼁, t ∈ J. (27)

where Eα(·) is a Mittag–Leffler function with one parameter.
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Lemma 6 (see [14]). Let α, β> 0. 5en for all t ∈ J, we have

I
α;ψ
a+ Eα β(ψ(t) − ψ(a))

α
( 􏼁 �

1
β

Eα β(ψ(t) − ψ(a))
α

− 1( 􏼁(􏼠 􏼡.

(28)

Remark 2. Observe that from Lemma 6 if β � 1, we can get
the following inequality:

I
α;ψ
a+ Eα (ψ(t) − ψ(a))

α
( 􏼁≤Eα (ψ(t) − ψ(a))

α
( 􏼁( 􏼁. (29)

For the existence of solutions for the problem (1), we
need the following lemma.

Lemma 7. Let f ∈ C(J × R,R). 5en x ∈ C(J,R) is the
solution of

c
D

α;ψ
a+ x(t) � λx(t) + f(t, x(t)), t ∈ J,

x(a) � ϕ0 ∈ R,

⎧⎨

⎩ (30)

if and only if it is the solution of the integral equation:

x(t) � ϕ0 + I
α;ψ
a+ (λx(t) + f(t, x(t)))

� ϕ0 + λ􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
x(s)ds

+ 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
f(s, x(s))ds.

(31)

Proof. Let x(t) be a solution of the problem (30). Define
h(t) � λx(t) + f(t, x(t)). ,en,

c
D

α;ψ
a+ x(t) � h(t), 0< α≤ 1. (32)

Since

c
D

α;ψ
a+ x(t) � I

1− α;ψ
a+

1
ψ′(t)

d
dt

x􏼠 􏼡(t) � h(t), 0< α≤ 1,

(33)

taking the ψ-Riemann–Liouville fractional integral of order
α to the above equation, we get

I
1;ψ
a+

1
ψ′(t)

d
dt

x􏼠 􏼡(t) � I
α;ψ
a+ h(t), 0< α≤ 1. (34)

Since

I
1;ψ
a+

1
ψ′(t)

d
dt

x􏼠 􏼡(t) � I
1
a+

d
dt

x􏼠 􏼡(t)

� x(t) − x(a),

(35)

we get

x(t) � ϕ0 + I
α;ψ
a+ h(t). (36)

Using the definition of h(t), we obtain equation (31).
Conversely, suppose that x(t) is the solution of the equation
(31). ,en, it can be written as

x(t) � ϕ0 + I
α;ψ
a+ h(t), (37)

where h(t) � λx(t) + f(t, x(t)). Since h(t) is continuous
and ϕ0 is constant, operating the ψ-Caputo fractional dif-
ferential operator cD

α;ψ
a+ on both sides of equation (37), we

obtain

c
D

α;ψ
a+ x(t) �

c
D

α;ψ
a+ ϕ0 +

c
D

α;ψ
a+ I

α;ψ
a+ h(t). (38)

Using Lemma 5, the following is obtained:

c
D

α;ψ
a+ x(t) � λx(t) + f(t, x(t)). (39)

From equation (37), we get x(a) � ϕ0. ,is proves that
x(t) is the solution of the Cauchy problem (30) which
completes the proof.

Now, we are ready to present our main results. □

3. Uniqueness Result with respect to the
Chebyshev Norm and Weissinger’s Fixed
Point Theorem

First of all, we define what we mean by a solution of equation
(1).

Definition 11. A function x ∈ C(J,X) is said to be a solution
of equation (1) if x satisfies the equation
cD

α;ψ
a+ x(t) � λx(t) + f(t, x(t)) on J and the condition

x(a) � ϕ0.

Theorem 4. Let the following assumptions hold:

(H1) 5e function f: [a, b] × X⟶ X is continuous.
(H2) 5ere exists a constant L> 0 such that

‖f(t, x) − f(t, y)‖≤ L‖x − y‖, (40)

for any x, y ∈ X and t ∈ J.
Then there exists a unique solution of equation (1) on J.

Proof. In view of Lemma 7, we introduce an operator
T: C(J,X)⟶ C(J,X) associated with equation (1) as
follows:

Tx(t) � ϕ0 + λ􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
x(s)ds

+ 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
f(s, x(s))ds.

(41)

Clearly, the fixed points of the operator T are solutions
of equation (1). Weissinger’s fixed point theorem will be
used to prove that T has a fixed point. For this reason, we
shall show thatT is a contraction. Let x, y ∈ C(J,X). ,en,
for every n ∈ N and t ∈ J, using (H2), we have
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T
n
x(t) − T

n
y(t)

����
���� � ‖T T

n− 1
x(t)􏼐 􏼑 − T T

n− 1
y(t)􏼐 􏼑

�����

�����

≤ 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
f s,T

n− 1
x(s)􏼐 􏼑 − f s,T

n− 1
y(s)􏼐 􏼑

�����

�����ds

+ λ􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
T

n− 1
x(s) − T

n− 1
y(s)

����
����ds

≤ (L + λ) 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
T

n− 1
x(s) − T

n− 1
y(s)

����
����ds

≤ (L + λ)
2

􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
2α− 1

Γ(2α)
T

n− 2
x(s) − T

n− 2
y(s)

����
����ds

⋮

≤ (L + λ)
n

􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
nα− 1

Γ(nα)
‖x(s) − y(s)‖ds.

(42)

,erefore, we conclude

T
n
x − T

n
y

����
����∞ ≤

(L + λ)(ψ(b) − ψ(a))
α

( 􏼁
n

Γ(nα + 1)
‖x − y‖∞,

(43)

for each n ∈ N and all x, y ∈ C(J,X).
Now let

βn �
(L + λ)(ψ(b) − ψ(a))

α
( 􏼁

n

Γ(nα + 1)
. (44)

By Definition (6), we have

􏽘

∞

n�0
βn � 􏽘

∞

n�0

(L + λ)(ψ(b) − ψ(a))
α

( 􏼁
n

Γ(nα + 1)

� Eα (L + λ)(ψ(b) − ψ(a))
α

( 􏼁.

(45)

,erefore, the existence of the unique fixed point of T
follows from Weissinger’s fixed point theorem. ,at is, (1)
fd1 has a unique solution. ,is completes the proof. □

4. Existence Result via Meir–Keeler
Condensing Operators

In this section, we can weaken the condition (H2) to a linear
growth condition. But now ,eorem 2 that we apply will
only guarantee the existence not also the uniqueness of the
solution.

Theorem 5. Assume that the hypothesis (H1) holds. Fur-
thermore, we impose the following:

(H3) 5ere exist continuous functions μ, ]: J⟶ R+

such that

‖f(t, x)‖≤ μ(t) + ](t)‖x‖, (46)

for any x ∈ X and t ∈ J.
(H4) For each bounded set B ⊂ X, and each t ∈ J, the
following inequality holds:

χ(f(t, B))≤ ](t)χ(B). (47)

Then the problem (1) has at least one solution defined on
J provided that

4 ]∗ + λ( 􏼁ℓα,ψ < 1, (48)

where

]∗ � sup
t∈J

](t),

ℓα,ψ �
(ψ(b) − ψ(a))

α

Γ(α + 1)
.

(49)

Proof. Consider the operator T defined by equation (41)
and define a bounded closed convex set

Ωr � x ∈ C(J,X): ‖x‖∞ ≤ r􏼈 􏼉. (50)

with

r≥
ϕ0

����
���� + ℓα,ψμ

∗

1 − ]∗ + λ( 􏼁ℓα,ψ
,

μ∗ � sup
t∈J

μ(t).

(51)

We shall show that the operator T satisfies all the as-
sumptions of ,eorem 2. We split the proof into four steps:

Step 1. ,e operator T maps the set Ωr into itself. By
the assumption (H3), we have
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‖Tx(t)‖≤ ϕ0
����

���� + 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
‖f(s, x(s))‖ds

+ λ􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
‖x(s)‖ds

≤ ϕ0
����

���� + 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
(μ(s) +(](s) + λ)‖x(s)‖)ds

≤ ϕ0
����

���� + μ∗ + ]∗ + λ( 􏼁‖x‖∞( 􏼁 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
ds

≤ ϕ0
����

���� +
(ψ(b) − ψ(a))

α

Γ(α + 1)
μ∗ + ]∗ + λ( 􏼁r( 􏼁

� ϕ0
����

���� + ℓα,ψ μ∗ + ]∗ + λ( 􏼁r( 􏼁

≤ r.

(52)

,us

‖Tx‖∞ ≤ r. (53)

,is proves that T transforms the ball Ωr into itself.
Step 2.,e operatorT is continuous. Suppose that xn􏼈 􏼉 is
a sequence such that xn⟶ x in Ωr as n⟶∞. It is
easy to see that f(s, xn(s))⟶ f(s, x(s)), as n⟶ +

∞ due to the continuity of f. On the contrary, taking
(H3) into consideration, we get the following inequality:

ψ′(s)(ψ(t) − ψ(s))
α− 1

f s, xn(s)( 􏼁 − f(s, x(s))
����

����≤ 2(μ(s)

+ ](s)r)ψ′(s)(ψ(t) − ψ(s))
α− 1

.

(54)

We notice that since the function s⟼ 2(μ(s)+

](s)r)ψ′(s)(ψ(t) − ψ(s))α− 1 is the Lebesgue integrable

over [a, t]. ,is fact together with the Lebesgue
dominated convergence theorem implies that

􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)

· f s, xn(s)( 􏼁 − f(s, x(s))
����

����ds⟶ 0 as n⟶ +∞.

(55)

It follows that ‖Txn − Tx‖∞⟶ 0 as n⟶ +∞,
which implies the continuity of the operator T.
Step 3. T(Ωr) is equicontinuous.
For any a< t1 < t2 < b and x ∈ Ωr, we get

Tx t2( 􏼁 − Tx t1( 􏼁
����

����≤ 􏽚
t1

a

ψ′(s) ψ t1( 􏼁 − ψ(s)( 􏼁
α− 1

− ψ t2( 􏼁 − ψ(s)( 􏼁
α− 1

􏽨 􏽩

Γ(α)
(λ‖x(s)‖ +‖f(s, x(s))‖)ds

+ 􏽚
t2

t1

ψ′(s) ψ t2( 􏼁 − ψ(s)( 􏼁
α− 1

Γ(α)
(λ‖x(s)‖ +‖f(s, x(s))‖)ds

≤
μ∗ + ]∗ + λ( 􏼁r

Γ(α + 1)
ψ t1( 􏼁 − ψ(a)( 􏼁

α
+ 2 ψ t2( 􏼁 − ψ t1( 􏼁( 􏼁

α
− ψ t2( 􏼁 − ψ(a)( 􏼁

α
􏼂 􏼃

≤ 2
μ∗ + ]∗ + λ( 􏼁r

Γ(α + 1)
ψ t2( 􏼁 − ψ t1( 􏼁( 􏼁

α
,

(56)
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where we have used the fact that (ψ(t1)−

ψ(a))α − (ψ(t2) − ψ(a))α ≤ 0. ,erefore,

Tx t2( 􏼁 − Tx t1( 􏼁
����

����≤ 2
μ∗ + ]∗ + λ( 􏼁r

Γ(α + 1)
ψ t2( 􏼁 − ψ t1( 􏼁( 􏼁

α
.

(57)

As t2⟶ t1, the right-hand side of the above inequality
tends to zero independently of x ∈ Ωr. Hence, we
conclude that T(Ωr)⊆C(J,X) is bounded and
equicontinuous.
Step 4. Now, we prove that T: Ωr⟶Ωr is a
Meir–Keeler condensing operator. To do this, suppose
ε> 0 is given. We will prove that there exists δ > 0 such
that

ε≤ χC(B)< ε + δ⟹ χC(TB)< ε, for anyB ⊂ Ωr. (58)

For every bounded and equicontinuous subset B ⊂ Ωr

and ε′ > 0 using Lemma 3 and the properties of χ, there
exist sequences xn􏼈 􏼉

∞
n�1 ⊂ B such that

χ(T(B)(t))≤ 2χ 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
􏼨

· λ xn(s)􏼈 􏼉
∞
n�1 + f s, xn(s)􏼈 􏼉

∞
n�1( 􏼁( 􏼁ds􏼉􏼩 + ε′.

(59)

Next, by Lemma 4 and (H4), we have

χ(T(B)(t))≤ 4􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
λχ xn(s)􏼈 􏼉

∞
n�1( 􏼁 + χ f s, xn(s)􏼈 􏼉

∞
n�1( 􏼁( 􏼁( 􏼁􏼁ds + ε′

≤
4 ]∗ + λ( 􏼁

Γ(α)
􏽚

t

a
ψ′(s)(ψ(t) − ψ(s))

α− 1χ xn(s)􏼈 􏼉
∞
n�1( 􏼁ds + ε′

≤ 4
]∗ + λ( 􏼁(ψ(b) − ψ(a))

α

Γ(α + 1)
χC(B) + ε′

� 4 ]∗ + λ( 􏼁ℓα,ψχC(B) + ε′.

(60)

As the last inequality is true, for every ε′ > 0, we infer

χ(T(B)(t))≤ 4 ]∗ + λ( 􏼁ℓα,ψχC(B). (61)

Since T(B) ⊂ Ωr is bounded and equicontinuous, we
know from Lemma 3 that

χC(T(B)) � max
t∈J

χ(T(B)(t)). (62)

,erefore, we have

χC(T(B))≤ 4 ]∗ + λ( 􏼁ℓα,ψχC(B). (63)

Observe that from the last estimates

χC(T(B))≤ 4 ]∗ + λ( 􏼁ℓα,ψχC(B)< ε⟹ χC(B)<
1

4 ]∗ + λ( 􏼁ℓα,ψ
ε.

(64)

Let us now take

δ �
1 − 4 ]∗ + λ( 􏼁ℓα,ψ

4 ]∗ + λ( 􏼁ℓα,ψ
ε, (65)

so we get

ε≤ χ(B)< ε + δ. (66)

which means that T: Ωr⟶Ωr is a Meir–Keeler
condensing operator. It follows from ,eorem 2 that
the operator T defined by (41) has at least one fixed
point x ∈ Ωr, which is just the solution of the initial
value problem (1). ,is completes the proof of
,eorem 5. □

5. Mittag–Leffler–Ulam–Hyers
Stability Analysis

In this section, we discuss the Mittag–Leffler–Ulam–Hyers
stability analysis of the solutions to the proposed problem
(1).

Now, we consider the Mittag–Leffler–Ulam–Hyers sta-
bility for problem (1).
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Let ε, λ> 0 and Φ: J⟶ R+ be a continuous function.
We consider the following inequalities:

c
D

α;ψ
a+ x(t) − λx(t) − f(t, x(t))

����
����≤ εEα (ψ(t) − ψ(a))

α
( 􏼁,

t ∈ J,

(67)

c
D

α;ψ
a+ x(t) − λx(t) − f(t, x(t))

����
����≤ εΦ(t)Eα (ψ(t) − ψ(a))

α
( 􏼁,

t ∈ J.

(68)

Definition 12 (see [71, 73]). Equation (1) is Mit-
tag–Leffler–Ulam–Hyers stable, with respect to
Eα((ψ(t) − ψ(a))α) if there exists a real number c> 0 such
that for each ε> 0 and for each solution y ∈ C(J,X) of the
inequality (67), there exists a solution x ∈ C(J,X) of
equation (1) with

‖y(t) − x(t)‖≤ cεEα (ψ(t) − ψ(a))
α

( 􏼁, t ∈ J. (69)

Definition 13 (see [71, 73]). Equation (1) is generalized
Mittag–Leffler–Ulam–Hyers stable, with respect to
Eα((ψ(t) − ψ(a))α) if there exists ω: C(R+,R+) with
ω(0) � 0 such that for each ε> 0 and for each solution
y ∈ C(J,X) of the inequality (67), there exists a solution
x ∈ C(J,X) of equation (1) with

‖y(t) − x(t)‖≤ω(ε)Eα (ψ(t) − ψ(a))
α

( 􏼁, t ∈ J. (70)

Remark 3 (see [71, 73]). It is clear that Definition 12⟹
Definition 13,

Remark 4 (see [71, 73]). A function y ∈ C(J,X) is a solution
of the inequality (67) if and only if there exists a function
z ∈ C(J,X) (which depends on solution y) such that

(i) ‖z(t)‖≤ εEα((ψ(t) − ψ(a))α), t ∈ J

(ii) cD
α;ψ
a+ y(t) � λy(t) + f(t, y(t)) + z(t), t ∈ J

Nowwe are ready to state ourMittag–Leffler–Ulam–Hyers
stability of solution to the problem (1). ,e arguments are
based on the Grönwall inequality equation (27).

Theorem 6 Assume that (H1) and (H2) hold. 5en
problem (1) is Mittag–Leffler–Ulam–Hyers stable on J and
consequently generalized Mittag–Leffler–Ulam–Hyers stable.

Proof. Let ε, λ> 0 and let y ∈ C(J,X) be a function which
satisfies the inequality (67) and let x ∈ C(J,X) be the unique
solution of the following problem:

c
D

α;ψ
a+ x(t) � λx(t) + f(t, x(t)), t ∈ J ≔ [a, b],

x(a) � ϕ0.

⎧⎨

⎩ (71)

By Lemma 7, we have

x(t) � ϕ0 + 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
(λx(s) + f(s, x(s)))ds.

(72)

Since we have assumed that y is a solution of the in-
equality (67), we have the following by Remark 4:

c
D

α;ψ
a+ y(t) � λy(t) + f(t, y(t)) + z(t), t ∈ J ≔ [a, b],

y(a) � ϕ0.

⎧⎨

⎩

(73)

Again by Lemma 7, we have

y(t) � ϕ0 + 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
(λy(s) + f(s, y(s))

+ z(s))ds.

(74)

On the contrary, we have, for each t ∈ J,

‖y(t) − x(t)‖≤ 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
‖z(s)‖ds

+ 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)

· ‖f(s, y(s)) − f(s, x(s))‖ds

+ λ􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
‖y(s) − x(s)‖ds.

(75)

Hence, using Remark 2 and part (i) of Remark 4 and
(H2), we can get

‖y(t) − x(t)‖≤ εEα (ψ(t) − ψ(a))
α

( 􏼁

+(L + λ) 􏽚
t

a

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)

· ‖y(s) − x(s)‖ds.

(76)

Applying Corollary 1 (the Grönwall inequality equation
(27)) to the above inequality with u(t) � ‖y(t)−

x(t)‖, v(t) � εEα((ψ(t) − ψ(a))α), and w(t) � L + λ/Γ(α).
Since v(t) is a nondecreasing function on J, we conclude that

‖y(t) − x(t)‖≤ v(t)Eα (L + λ)(ψ(t) − ψ(a))
α

( 􏼁, t ∈ J,

(77)

which yields

‖y(t) − x(t)‖≤Eα (ψ(t) − ψ(a))
α

( 􏼁Eα (L + λ)(ψ(b) − ψ(a))
α

( 􏼁ε,

t ∈ J.

(78)

Taking for simplicity

International Journal of Differential Equations 9



c � Eα (L + λ)(ψ(b) − ψ(a))
α

( 􏼁, (79)

then (78) becomes

‖y(t) − x(t)‖≤ cεEα (ψ(t) − ψ(a))
α

( 􏼁, t ∈ J. (80)

In consequence, it follows that

‖y − x‖∞ ≤ cεEα (ψ(t) − ψ(a))
α

( 􏼁. (81)

,us, the problem (1) is Mittag–Leffler–Ulam–Hyers
stable. Furthermore, if we set ω(ε) � cε;ω(0) � 0, then the
problem (1) is generalized Mittag–Leffler–Ulam–Hyers
stable. ,is completes the proof. □

6. UniquenessResultwith respect to theBielecki
Norms andBanach’s Fixed Point Theoremon
an Unbounded Domain

In this section, we present an uniqueness result concerning
the problem (1) on unbounded domain, i.e., in the case
J′ � [a, +∞).

Theorem 7. If f: J′ × X⟶ X be a continuous function
that satisfies the Lipschitz condition with respect to the second
variable, i.e., there exists a positive constant M such that

‖f(t, x) − f(t, y)‖≤M‖x − y‖, (82)

for all t ∈ J′ and each x, y ∈ X.

Then, the problem (1) possesses a unique solution de-
fined on J′ � [a, +∞).

Proof. Consider the Banach space C(J′,X) equipped with a
Bielecki norm type ‖·‖B defined as below:

‖x‖B ≔ sup
t∈J′

‖x(t)‖

Eα β(ψ(t) − ψ(a))
α

( 􏼁
, (83)

where β> 0 will be chosen later and Eα(·) is the Mittag–Leffler
function which is given inDefinition 6. (formore properties on
the Bielecki-type norm, see [25, 28]).

Consider the operator A: C(J′,X)⟶ C(J′,X) de-
fined by

Ax(t) � ϕ0 + 􏽚
t

a
G

α
ψ(t, s)f(s, x(s))ds. t ∈ J′, (84)

where

G
α
ψ(t, s) �

ψ′(s)(ψ(t) − ψ(s))
α− 1

Γ(α)
. (85)

Now, we prove that the operator A is a contraction
mapping on C(J′,X) with respect to the Bielecki norm. To
this end, we apply the Banach fixed point theorem to prove
that A has a fixed point. Given x, y ∈ C(J′,X) and t ∈ J′,
using the inequality (82), and Lemma 6, we can get

‖Ax(t) − Ay(t)‖≤ 􏽚
t

a
G

α
ψ(t, s)

M‖x(s) − y(s)‖

Eα β(ψ(s) − ψ(a))
α

( 􏼁
Eα β(ψ(s) − ψ(a))

α
( 􏼁ds

+ λ􏽚
t

a
G

α
ψ(t, s)

‖x(s) − y(s)‖

Eα β(ψ(s) − ψ(a))
α

( 􏼁
Eα β(ψ(s) − ψ(a))

α
( 􏼁ds

≤
M + λ
β

Eα β(ψ(t) − ψ(a))
α

− 1( 􏼁‖x − y‖B( 􏼁.

(86)

Hence, we have

‖Ax − Ay‖B ≤
M + λ
β

1 −
1

Eα β(ψ(t) − ψ(a))
α

( 􏼁
􏼠 􏼡‖x − y‖B.

(87)

Note that Eα(·) is a monotone increasing function on J′,
then we get

‖Ax − Ay‖B ≤
M + λ
β

‖x − y‖B. (88)

Since we can choose β> 0 sufficiently large such that

M + λ
β
< 1, (89)

it follows that the mappingA is a contraction with respect to
the Bielecki norm. Hence, by the Banach fixed point the-
orem,A has a unique fixed point which is a unique solution

of the initial value problem (1) in the space C(J′,X). ,is
completes the proof. □

7. An Existence Result in Fréchet Spaces via
Darbo’s Fixed Point Theorem

By using Darbo’s fixed point theorem, we give in this section
our last existence theorem concerning the IVP (2) in the
Fréchet spaces.

Firstly, we need to fix the notation. Let J′ � [a, +∞) and
let Jn ≔ [a, n], n ∈ N∗.

In this section, we let E ≔ C(J′,X) to be the Fréchet
space of all continuous functions x from J′ intoX, equipped
with the family of seminorms:

‖x‖n � sup
t∈Jn

‖x(t)‖, n ∈ N∗. (90)
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Definition 14. A nonempty subset B ⊂ E is said to be
bounded if

sup
x∈B

‖x‖n <∞, n ∈ N∗. (91)

Next we present some facts concerning the notion of a
sequence of measures of noncompactness in the Fréchet
spaces [44, 50].

In what follows, F will be a real Fréchet space. If B is a
nonempty subset of F, then B and ConvB denote the closure
and the closed convex closure of B, respectively. Also, we
denote by mF the family of all nonempty and bounded
subsets of F and nF the family of all relatively compact
subsets of F .

Definition 15. A family of functions μn􏼈 􏼉n∈N where
μn: mF⟶ R+ � [0,∞) is said to be a family of measures of
noncompactness in the real Fréchet space F if it satisfies the
following conditions:

(1) ,e family Kerμn � B ∈mF ; μn(B) � 0, for n ∈ N􏼈 􏼉

is nonempty and Kerμn ∈ nF

(2) B1 ⊂ B2⟹μn(B1)≤ μn(B2), for all B1, B2 ∈mF and
n ∈ N∗

(3) μn(ConvB) � μn(B), for all B ∈mF and n ∈ N
(4) If (Bi) is a sequence of closed subsets ofmF such that

Bi+1 ⊂ Bi for (i � 1, 2, 3, . . .), and limi⟶∞μn(Bi) � 0
for each n ∈ N, then B∞ ≔ ∩∞i�1Bi ≠∅

,e following lemmas are needed in our argument.

Lemma 8 (see [77]). If B is a bounded subset of a Fréchet
space F , then for each ε> 0, there is a sequence xk􏼈 􏼉

∞
k�1 ⊂ B,

such that

μn(B)≤ 2μn xk􏼈 􏼉
∞
k�1( 􏼁 + ε, for each n ∈ N∗. (92)

Lemma 9 (see [78]). If xk􏼈 􏼉
∞
k�1 ⊂ L1(Jn,X) is uniformly

integrable, then μn( xk􏼈 􏼉
∞
k�1) is measurable, for n ∈ N∗ and

μn 􏽚
t

a
xk(s)ds􏼨 􏼩

∞

k�1
􏼠 􏼡≤ 2􏽚

t

a
μn xk(s)􏼈 􏼉

∞
k�1( 􏼁ds, (93)

for each t ∈ Jn.

Definition 16. LetΩ be a nonempty subset of a Fréchet space
F , and let A: Ω⟶ F be a continuous operator which
transforms bounded subsets of Ω onto bounded ones. One
says that A satisfies the Darbo condition with constants
kn􏼈 􏼉n∈N∗ with respect to a family of measures of non-
compactness μn􏼈 􏼉n∈N∗, if

μn(A(B))≤ knμn(B), (94)

for each bounded set B ⊂ Ω and n ∈ N∗.
If kn < 1, n ∈ N∗, then A is called a contraction with

respect to μn􏼈 􏼉n∈N∗.
,e following generalization of the classical Darbo fixed

point theorem for the Fréchet spaces plays a key role in the
proof of our main results.

Theorem 8. (see [44]). Let Ω be a nonempty, bounded,
closed, and convex subset of a Fréchet space F and let
A: Ω⟶Ω be a continuous mapping. Suppose that A is a
contraction with respect to a family of measures of non-
compactness μn􏼈 􏼉n∈N∗. 5en A has at least one fixed point in
the set Ω.

Definition 17. A function x ∈ C(J′,X) is said to be a so-
lution of equation (2) if x satisfies the equation cD

α;ψ
a+ x(t) �

f(t, x(t)) on J′, and the condition x(a) � ϕ0.
Now, we shall prove the following theorem concerning

the existence of solutions of problem (2).

Theorem 9. Let f: J′ × X⟶ X be a continuous function
such that the following assumptions hold:

(H5) 5ere exists a continuous functions p: J′ ⟶ R+

such that

‖f(t, x)‖≤p(t)(1 +‖x‖), for all t ∈ J′, and eachx ∈ X.

(95)

(H6) For each bounded set D ⊂ X and for each t ∈ J′, we
have

μ(f(t, D))≤p(t)μ(D), (96)

where μ is a measure of noncompactness on the Banach space
X.

For n ∈ N∗, let

p
∗
n � sup

t∈Jn

p(t),

ℓn,ψ �
(ψ(n) − ψ(a))

α

Γ(α + 1)
.

(97)

Define on E the family of measures of noncompactness by

μn(D) � sup
t∈Jn

μ(D(t)), (98)

where D is a bounded and equicontinuous set of E, and
D(t) � x(t) ∈ X: x ∈ D{ }, t ∈ Jn.

If

4 p
∗
n + λ( 􏼁ℓn,ψ < 1, (99)

for each n ∈ N∗, then the problem (2) has at least one solution.

Proof. Consider the operator A defined by (84), but in the
Fréchet space E ≔ C(J′,X).

Note that, the fixed points of the operator A are solu-
tions of the problems (2). For any n ∈ N∗, let Rn be a positive
real number with

Rn ≥
ϕ0

����
���� + ℓn,ψp

∗
n

1 − p
∗
n + λ( 􏼁ℓn,ψ

, (100)

and we consider the ball
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BRn
� x ∈ E: ‖x‖n ≤Rn􏼈 􏼉. (101)

Notice that BRn
is closed, convex, and bounded subset of

the Fréchet space E. We shall show that the operator A

satisfies all the assumptions of,eorem 8.We split the proof
into three steps.

Step 1. ,e operator A maps the set BRn
into itself. For

any n ∈ N∗, and each x ∈ BRn
and t ∈ Jn, by (H5), we

have

‖Ax(t)‖≤ ϕ0
����

���� + 􏽚
t

a
G

α
ψ(t, s)(p(s)(1 +‖x(s)‖) + λ‖x(s)‖)ds

≤ ϕ0
����

���� +
(ψ(n) − ψ(a))

α

Γ(α + 1)
p
∗
n + p

∗
n + λ( 􏼁‖x‖n( 􏼁

≤ ϕ0
����

���� + ℓn,ψ p
∗
n + p

∗
n + λ( 􏼁Rn( 􏼁

≤Rn.

(102)

,us

‖Ax‖n ≤Rn. (103)

,is proves that A transforms the ball BRn
into itself.

Step 2. ,e operator A is continuous. Suppose that
xk􏼈 􏼉k∈N is a sequence such that xk⟶ x in BRn

as
k⟶∞. ,en for each t ∈ Jn, we have

Axn(t) − A(t)
����

����≤ 􏽚
t

a
G

α
ψ(t, s) f s, xk(s)( 􏼁 − f(s, x(s))

����
����ds

+ λ􏽚
t

a
G

α
ψ(t, s) xk(s) − x(s)

����
����ds.

(104)

Since xk⟶ x as k⟶ +∞, the Lebesgue dominated
convergence theorem implies that

Axk − Ax
����

����n
⟶ 0 as k⟶ +∞, (105)

which implies the continuity of the operator A.
Step 3. Our aim in this step is to show that A is μn

contraction on BRn
. For every bounded equicontinuous

subset D ⊂ BRn
and ε> 0 using Lemma 8, there exist

sequences xk􏼈 􏼉
∞
k�1 ⊂ D such that for all t ∈ Jn, we have

μ(A(D)(t)) ≤ 2μ 􏽚
t

a
G

α
ψ(t, s) λ xn(s)􏼈 􏼉

∞
n�1 + f s, xn(s)􏼈 􏼉

∞
n�1( 􏼁( 􏼁ds􏼨 􏼩 + ε.

(106)

Next, by Lemma 9 and (H6), we have

μ(A(D)(t))≤ 4 􏽚
t

a
G

α
ψ(t, s)μ λ xn(s)􏼈 􏼉

∞
n�1 + f s, xn(s)􏼈 􏼉

∞
n�1( 􏼁( 􏼁ds􏼨 􏼩 + ε

≤ 4 􏽚
t

a
G

α
ψ(t, s)(p(s) + λ)μ xk(s)􏼈 􏼉

∞
k�1( 􏼁ds􏼨 􏼩 + ε

≤
4p
∗
n (ψ(n) − ψ(a))

α

Γ(α + 1)
μn(D) + ε

� 4 p
∗
n + λ( 􏼁ℓn,ψμn(D) + ε.

(107)

As the last inequality is true, for every ε> 0, we infer

μ(A(D)(t)) ≤ 4 p
∗
n + λ( 􏼁ℓn,ψμn(D). (108)

,us

μn(A(D))≤ 4 p
∗
n + λ( 􏼁ℓn,ψμn(D). (109)

Using the condition (99), we claim that A is a kn

contraction on BRn
. It follows from ,eorem 8 that the

operator A defined by (84) has at least one fixed point
x ∈ BRn

, which is just the solution of initial value

problem (2). ,is completes the proof of ,eorem
9. □

8. Examples

In this section, we give a couple of examples to illustrate the
usefulness of our main result.

Let

X � c0 � x � x1, x2, . . . , xk, . . .( 􏼁: xk⟶ 0(k⟶∞)􏼈 􏼉.

(110)

be the Banach space of real sequences converging to zero,
endowed its usual norm
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‖x‖∞ � sup
k≥1

xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (111)

Example 1. Consider the following initial value problem of a
fractional differential posed in c0:

CH
D

0.5
1+ x(t) � 0.5x(t) + f(t, x(t)),

t ∈ [1, e],

u(1) � 0.5, 0.25, . . . , 0.5n
, . . .( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(112)

Note that, this problem is a particular case of IVP (1),
where

α � 0.5,

a � 1,

b � e,

λ � 0.5,

ψ(t) � ln(t),

(113)

and f: [1, e] × c0⟶ c0 given by

f(t, x) �
1

(t + 1)

1
k2 + arctan xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼒 􏼓􏼨 􏼩

k≥1
,

for t ∈ [1, e], x � xk􏼈 􏼉k≥1 ∈ c0.

(114)

It is clear that condition (H1) holds. Moreover, for any
x, y ∈ c0 and t ∈ [1, e], we have

‖f(t, x) − f(t, y)‖≤
1
2

‖x − y‖, (115)

where we have used the trigonometric identity arctan(u) −

arctan(v) � arctan(u − v/1 + uv) and
arctan(u)≤ u,∀u, v ∈ R+. Hence condition (H2) holds with
L � 1/2.,erefore, by,eorem 4, the IVP (112) has a unique
solution x ∈ C([1, e], c0). Moreover, the inequality
appearing in (67) has the following expression:

CH
D

0.5
1+ x(t) − 0.5x(t) − f(t, x(t))

�����

�����≤ εE0.5(
���
ln t

√
),

ε> 0, t ∈ [1, e].

(116)

By,eorem 6, the IVP (112) isMittag–Leffler–Ulam–Hyers
stable with

‖y − x‖∞ ≤ cεEα (ψ(t) − ψ(a))
α

( 􏼁, (117)

where

c � E0.5(1)≃5.0090. (118)

Let now

X � ℓ1 � x � x1, x2, . . . , xk, . . .( 􏼁, 􏽘
∞

k�1
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<∞

⎧⎨

⎩

⎫⎬

⎭, (119)

be the Banach space with the norm

‖x‖ � 􏽘
∞

k�1
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (120)

Example 2. Consider the following initial value problem of a
fractional differential posed in ℓ1:

c
D

0.9
0+ x(t) � 0.1x(t) + f(t, x(t)), t ∈ [0, 1],

x(0) � (1, 0, . . . , 0, . . .).

⎧⎨

⎩ (121)

In this case, we take

α � 0.9,

a � 0,

b � 1,

λ � 0.1,

ψ(t) � t,

(122)

and f: [0, 1] × ℓ1⟶ ℓ1 given by

f(t, x) �
1

et + 9
1
2k

+
xk

‖x‖ + 1
􏼠 􏼡􏼨 􏼩

k≥1
,

for t ∈ [0, 1], x � xk􏼈 􏼉k≥1 ∈ ℓ
1
.

(123)

It is clear that condition (H1) holds and as

‖f(t, x)‖≤
1

e
t

+ 9
(1 +‖x‖), x, y ∈ ℓ1. (124)

Hence condition (H3) holds with μ(t) � ](t) � 1/et + 9;
we get easily μ∗ � ]∗ � 0.1. On the contrary, for any
bounded set B ⊂ ℓ1, we have

χ(f(t, B))≤
1

e
t

+ 9
χ(B), for any t ∈ [0, 1]. (125)

Hence, (H4) is satisfied. Now, we shall check that
condition (48) is satisfied. Indeed

4 ]∗ + λ( 􏼁ℓα,ψ≃ 0.8318< 1,

r≥
ϕ0

����
���� + ℓα,ψμ

∗

1 − ]∗ + λ( 􏼁ℓα,ψ
≃1.3938.

(126)

,en r can be chosen as r � 1.4. Consequently, all the
hypothesis of ,eorem 5 are satisfied, and we conclude that
the IVP (121) has at least one solution x ∈ C([0, 1], ℓ1).

Example 3. Consider the following scalar initial value
problem:

c
D

0.5,ψ
0+ x(t) � 2x(t) +

1
t
2

+ 1
(1 + sinx(t)),

t ∈ [0, +∞),

u(0) � 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(127)

where
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α � 0.5,

a � 0,

λ � 2,

ψ(t) � t
2
,

X � R,

f(t, x) �
1

t
2

+ 1
(1 + sinx), for t ∈ [0, +∞), x ∈ R.

(128)

Clearly, f: [0, +∞) × R⟶ R is continuous. On the
contrary, for any t ∈ [0, +∞), x, y ∈ R, we have

|f(t, x) − f(t, y)|≤ |x − y|. (129)

Hence the inequality (82) holds withM � 1. Moreover, if
we choose, β> 3, it follows that the mapping A is a con-
traction. Hence by ,eorem 7, the IVP (127) has a unique
solution on [0, +∞).

Example 4. Let us consider problem (2) with specific data:

α �
1
2
,

a � 0,

λ �
1
8
,

X � c0,

ϕ0 � (1, 0, . . . , 0, . . .),

(130)

and E ≔ C[0, +∞),X be the Fréchet space of all continuous
functions x from [0, +∞) into X, equipped with the family
of seminorms:

‖x‖n � sup
t∈[0,n]

‖x(t)‖, n ∈ N∗. (131)

In order to illustrate ,eorem 9, we take ψ(t) � σ(t)

where σ(t) is the sigmoid function [19] which can be
expressed as in the following form:

σ(t) �
1

1 + e
− t, (132)

and a convenience of the sigmoid function is its derivative:

σ′(t) � σ(t)(1 − σ(t)). (133)

Taking also f: [0, +∞) × c0⟶ c0 given by

f(t, x) �
σ(t)

8
1

k + 1
+ ln 1 + xk(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼒 􏼓􏼨 􏼩

k≥1
,

for t ∈ [0, +∞), x � xk􏼈 􏼉k≥1 ∈ c0.

(134)

,e hypothesis (H5) is satisfied with p(t) � σ(t)/8. So,
for any n ∈ N∗, we have

p
∗
n � sup

t∈[0,n]

p(t)

�
σ(n)

8
,

4 p
∗
n + λ( 􏼁ℓn,ψ � (σ(n) + 1)

���������

σ(n) − 1/2
π

􏽳

≤
��
2
π

􏽲

< 1.

(135)

It follows from ,eorem 9 that the problem (2) with the
data (130), (132), and (134) has at least one solution defined
on R+.
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