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'e purpose of this paper is to introduce the concept of fuzzy Lyapunov functions to study the notion of stability of equilibrium
points for fuzzy dynamical systems associated with fuzzy initial value problems, through the principle of Zadeh. Our contribution
consists in a qualitative characterization of stability by a study of the trajectories of fuzzy dynamical systems, using auxiliary
functions, and they will be called fuzzy Lyapunov functions. And, among the main results that have been proven is that the
existence of fuzzy Lyapunov functions is a necessary and sufficient condition for stability. Some examples are given to illustrate the
obtained results.

1. Introduction

'e topics of fuzzy dynamical systems have been rapidly
growing in recent years, and the first characterization of this
concept is presented in [1]. Fuzzy dynamical systems have
been dealt with different approaches. Some authors use the
extension principle in order to extend deterministic systems
of differential equations to the fuzzy case [2–7]. Others
construct the fuzzy dynamical systems by using a family of
differential inclusions [8–10].

'e notion of stability for this type of dynamical systems
has been studied by many researchers [3, 7, 8, 10–15]. In
[12], the authors introduced the concept of fuzzy equilib-
rium point stability of fuzzy initial value problems defined
F(Rn), where F(Rn) is the fuzzy set space on Rn, by using
equilibrium points. 'e authors in [10] have studied the
stability of invariant sets for dynamical systems. According
to them, equilibrium points have been considered as a
special case of fuzzy invariant sets. 'ese approaches have
some shortcomings because they require knowledge of the
explicit form of the solution of the fuzzy differential
equation, which is not always possible to find.

'e aim of this paper is to present an alternative ap-
proach to these methods to prove the stability of an equi-
librium point by introducing fuzzy Lyapunov functions,

which are defined on F(Rn) and obtained by the Zadeh’s
extension of a Lyapunov function onRn. Moreover, without
having the explicit solution of the fuzzy problem. 'is is an
important point because the fuzzy space F(Rn) is bigger
than the space Rn. 'us, the case of Lyapunov functions on
Rn will be particular cases of fuzzy Lyapunov functions
because Rn is a classic subset of F(Rn).

2. Preliminaries

In this section, we recall some basic tools of fuzzy set theory.
Let PK(Rn) denote the family of all nonempty compact

convex subsets of Rn.
'e distance between two nonempty bounded subsets A

and B of Rn is defined by the Hausdorff metric:

d(A, B) � max ρ(A, B), ρ(B, A)􏼈 􏼉, (1)

where ρ(A, B) � supa∈Ainfb∈B‖a − b‖ and ‖.‖ denotes the
usual Euclidean norm in Rn.

(PK(Rn), d) is a complete and separable metric space
(see [16]).

Remember that a fuzzy subset u of a classical set X is
characterized by a mapping μu: X⟶ [0, 1] called the
membership function of u, and μu(x) means the degree of
membership of x in u.

Hindawi
International Journal of Differential Equations
Volume 2020, Article ID 6218424, 7 pages
https://doi.org/10.1155/2020/6218424

mailto:elallaoui199@gmail.com
https://orcid.org/0000-0001-7197-4951
https://orcid.org/0000-0002-5150-1185
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6218424


In the following, to simplify, we denote by u the
membership function μu.

'e α-cuts of a fuzzy set u are defined by

[u]
α

� x ∈ X : u(x)≥ α{ }, for 0< α≤ 1, (2)

and the support of u is defined by

Supp(u) � x ∈ X : u(x)> 0{ } � [u]
0
. (3)

Denote by F(X) the set of fuzzy subsets of X with
nonempty and compact α−cuts. We are only interested here
in F(Rn), so the metric is given by

D(u, v) � sup
0≤α≤1

d [u]
α
, [v]

α
( 􏼁. (4)

Now, we recall some properties of the extension
principle.

Definition 1 (Zadeh’s extension principle, see [2, 5, 6]). Let
f: X⟶ Z be a function, and let A be a fuzzy subset of X.
Zadeh’s extension of f is the function 􏽢f: F(X)⟶ F(Z)

which applied to A gives us the fuzzy subset 􏽢f(A) of Z with
the membership

μ􏽢f(A)
(z) �

sup
x∈f−1(z)

μA(x), if f− 1(z)≠∅,

0, if f− 1(z) � ∅,

⎧⎪⎨

⎪⎩
(5)

where f− 1(z) � x: f(x) � z􏼈 􏼉.

'e following result is very useful for fuzzy differential
equations (see [17–21]).

Theorem 1 (see [5, 6]). Let f: X⟶ Z be a continuous
function, and let A be a fuzzy subset of X. ,en, for all
α ∈ [0, 1],

[􏽢f(A)]
α

� f [A]
α

( 􏼁. (6)

'e idea of the Zadeh’s extension approach is as follows.
We consider the following fuzzy initial value problem:

dx
dt

� F(x(t)),

x(0) � x0 ∈ F Rn( ),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where F: F(Rn)⟶ F(Rn) is the Zadeh’s extension of a
continuous function f: Rn⟶ Rn.

A solution of (7) is defined as Zadeh’s extension of the
deterministic solution φt(x0) of the initial value problem
associated:

dx

dt
� f(x(t)),

x(0) � x0 ∈ Rn.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

'e fuzzy solution of equation (7) is denoted by 􏽢φt(x0).
'e family 􏽢φt satisfies the properties of a flow, and the

result is given in the following theorem.

Theorem 2 (see [11]). ,e fuzzy solution 􏽢φt(x0) verifies the
properties:

(1) 􏽢φ0(x0) � x0
(2) 􏽢φt+s(x0) � 􏽢φt(􏽢φs(x0)), for all x0 ∈ F(Rn) and t ∈ R+

So, the family 􏽢φt defines a flow 􏽢φt: F(Rn)⟶ F(Rn),
which associates each x0 with a point 􏽢φt(x0).

'e phase space of 􏽢φt is the metric space (F(Rn), D)

φt is continuous with respect to the initial condition, so
􏽢φt is also continuous

'us, the family 􏽢φt: F(Rn)⟶ F(Rn) is a dynamical
system inF(Rn), for that it is called a fuzzy dynamical system.

Example 1. Consider the following nonlinear differential
equation:

x′ � g(x),

x(0) � x0 ∈ R+,

⎧⎨

⎩ (9)

where g(x) � δx(1 − x).
'is system determines the flow φt: R⟶ R given by

φt x0( 􏼁 �
x0

x0 − x0 − 1( 􏼁e−δt
, for t≥ 0. (10)

We consider the fuzzy initial value problem:

x′ � 􏽢g(x),

x(0) � x0 ∈ F R+( ),

⎧⎨

⎩ (11)

where 􏽢g is the Zadeh’s extension of g defined by

[􏽢g(x)]
α

� g [x]
α

( 􏼁 � δx
−
α 1 − x

+
α( 􏼁, δx

+
α 1 − x

−
α( 􏼁􏼂 􏼃, (12)

for [x]α � [x−
α , x+

α] and α ∈ [0, 1].
For x0 ∈F(R), α ∈ [0, 1] and [x0]

α � [x−
0α, x+

0α]. 'e
fuzzy solution of problem (11) is the family 􏽢φt given by

􏽢φt x0( 􏼁􏼂 􏼃
α

� φt x0􏼂 􏼃
α

( 􏼁 �
x−
0α

x−
0α − x−

0α − 1( 􏼁e−δt
,

x+
0α

x+
0α − x+

0α − 1( 􏼁e−δt
􏼢 􏼣.

(13)

According to'eorem 2, 􏽢φt is a fuzzy dynamical system.

We will define now an equilibrium point for the fuzzy
initial value problem (7) through the extended flow.

Definition 2 (see [12]). We say that x ∈ F(Rn) is a fuzzy
equilibrium point for 􏽢φt when 􏽢φt(x) � x, for every t≥ 0.

Definition 3 Let x ∈ F(Rn) be an equilibrium point of 􏽢φt:

(1) x is said to be Lyapunov stable, if and only if for every
ε> 0, there exists η> 0 such that, if D(x0, x)< η, then
for every t≥ 0, we have D(􏽢φt(x0), x)< ε

(2) x is said to be asymptotically stable if it is Lyapunov
stable and there exists r> 0 such that, if D(x0, x)< r,
then limt⟶+∞D(􏽢φt(x0), x) � 0

(3) x is said to be exponentially stable if it is asymp-
totically stable and there exist β> 0, c> 0, and σ > 0
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such that, if D(x0, x)< β, then D(􏽢φt(x0), x)≤
c D(x0, x)e− σt, ∀t≥ 0

For more details on stability, we refer to [11, 12, 21–25].
Stability of equilibrium points for 􏽢φt in F(Rn) is

characterized by the following result.

Theorem 3 (see [10]). Let x ∈ Rn be an equilibrium point of
φt. So, the following statements are satisfied:

x is stable for φt if and only if χ x{ } is stable for 􏽢φt

x is asymptotically stable for φt if and only if χ x{ } is
asymptotically stable for 􏽢φt

Remark 1 (see [10]). Let U be a neighborhood of x, then
U � x ∈F(Rn): [x]0 ⊆U􏽮 􏽯 is a neighborhood of χ x{ }.

3. Main Results

Before establishing the stability results via Lyapunov func-
tions, we introduce the notion of the fuzzy Lyapunov
function, inspired by the definition of Lyapunov functions in
the classical case and the relation between the stability of the
equilibrium points of the problem (7) and that of the
problem (8) given in 'eorem 3.

Let g: Rn⟶ R be a function, and let
􏽢g: F(Rn)⟶ F(R) be the Zadeh’s extension of f. We
denote by 􏽢g(x)≻0,∀x ∈ F(Rn) (with 0 being the null ele-
ment of R which is also an element of F(R) with the
membership function χ 0{ } if g(x)> 0,∀x ∈ Rn ).

Definition 4. A function V: F(Rn)⟶ F(R) is a fuzzy
Lyapunov-candidate function, if V is Zadeh’s extension of a
deterministic function V: Rn⟶ R such that:

(1) V(0) � 0
(2) ∀x ∈ U\ 0{ }, V(x)> 0 for a neighborhood U of the

origin

V is called the Lyapunov-candidate function associated
with V.

Remark 2. Let V be a fuzzy Lyapunov-candidate function
and V be the Lyapunov-candidate function associated.'en,

V(0) � 0 if and only if V χ 0{ }􏼐 􏼑 � χ 0{ }. (14)

Indeed,

V χ 0{ }􏼐 􏼑 � χ 0{ }⇔ V χ 0{ }􏼐 􏼑􏽨 􏽩
α

� χ 0{ }􏽨 􏽩
α
, ∀α ∈ [0, 1],

⇔V χ 0{ }􏽨 􏽩
α

􏼐 􏼑 � χ 0{ }􏽨 􏽩
α
, ∀α ∈ [0, 1],

⇔V(0) � 0.

(15)

From Remark 1, Remark 2, and the previous definition, a
fuzzy Lyapunov-candidate function V: F(Rn)⟶ F(R)

satisfies the following properties:

(1) V(χ 0{ }) � χ 0{ }

(2) ∀x ∈ U\ χ 0{ }􏽮 􏽯,V(x)≻0 for a neighborhood U of the
origin χ 0{ }

Definition 5. If a fuzzy Lyapunov-candidate function V
satisfies

_V(x)≤ 0, ∀x ∈W\ 0{ }, (16)

for a neighborhood W of the origin, where V is the Lya-
punov-candidate function associated with V.

We say that V is a fuzzy Lyapunov function, and in this
case, V is called the Lyapunov function associated.

Theorem 4
(1) ,ere exists a fuzzy Lyapunov function for the fuzzy

dynamical system 􏽢φt associated with the problem (7),
if and only if χ 0{ } is Lyapunov stable.

(2) χ 0{ } is asymptotically stable if and only if there is a
fuzzy Lyapunov function V verifying

_V(x)< 0, ∀x ∈W\ 0{ }, (17)

for a neighborhood W of the origin, where V is the Lyapunov
function associated with V.

Proof
(1) It is known that there exists a fuzzy Lyapunov

functionV if and only if there is a Lyapunov function
V associated. In the fact V is a Lyapunov function
associated with system (8). 'en, 0 is stable for φt,
and according to 'eorem 3, χ 0{ } is stable for 􏽢φt.

(2) According to 'eorem 3, χ 0{ } is asymptotically stable
for 􏽢φt if and only if 0 is asymptotically stable for φt.
And, this last point is equivalent to say that there is a
Lyapunov function V that verifies

_V(x)< 0, ∀x ∈W\ 0{ }, (18)

for a neighborhood W of the origin.
So, letV be the function constructed by Zadeh’s extension

applied to V, the desired fuzzy Lyapunov function. □

Still using the notion of fuzzy Lyapunov functions, we
have the following result concerning the exponential stability.

Theorem 5. Let x0 ∈ Rn and x0 ∈F(Rn) such that
x0 ∈ [x0]

1. ,en, 0 is exponentially stable for φt if and only if
χ 0{ } is exponentially stable for 􏽢φt.

Proof. It should be noted that the condition x0 ∈ [x0]
1

implies that x0 ∈ [x0]
α for all α ∈ [0, 1].

(⇒) Suppose that 0 is exponentially stable for φt, then 0
is asymptotically stable for φt and there exist
β> 0, c> 0, and σ > 0 such that, if ‖x0‖< β, then

φt x0( 􏼁
����

����< c x0
����

����e
−σt

, ∀t≥ 0. (19)

If we have

D x0, χ 0{ }􏼐 􏼑< β, (20)

which means that
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max ρ x0􏼂 􏼃
α
, χ 0{ }􏼐 􏼑, ρ χ 0{ }, x0􏼂 􏼃

α
􏼐 􏼑􏽮 􏽯< β, ∀α ∈ [0, 1].

(21)

So, we get

sup
y0∈ x0[ ]

α
y0

����
����< β, ∀α ∈ [0, 1],

(22)

which implies that

∀α ∈ [0, 1],

∀y0 ∈ x0􏼂 􏼃
α
,

y0
����

����< β,

(23)

which leads us to obtain

∀α ∈ [0, 1],

∀y0 ∈ x0􏼂 􏼃
α
,

φt y0( 􏼁
����

����≤ c y0
����

����e
−σt

.

(24)

'erefore,

sup
z0∈ x0[ ]

α
φt z0( 􏼁

����
����≤ c y0

����
����e

−σt
, ∀y0 ∈ x0􏼂 􏼃

α
.

(25)

So, we have

ρ φt x0􏼂 􏼃
α

( 􏼁, χ 0{ }􏽨 􏽩
α

􏼐 􏼑≤ c y0
����

����e
−σt

, ∀y0 ∈ x0􏼂 􏼃
α
. (26)

'us, we obtain

ρ 􏽢φt x0( 􏼁􏼂 􏼃
α
, χ 0{ }􏽨 􏽩

α
􏼐 􏼑

≤ c‖y0‖e
− σt

, ∀y0 ∈ x0􏼂 􏼃
α

≤ c sup
y0∈ x0[ ]

α
y0

����
����e

−σt

≤ cρ x0􏼂 􏼃
α
, χ 0{ }􏽨 􏽩

α
􏼐 􏼑e

−σt

≤ cmax ρ x0􏼂 􏼃
α
, χ 0{ }􏽨 􏽩

α
􏼐 􏼑, ρ χ 0{ }􏽨 􏽩

α
, x0􏼂 􏼃

α
􏼐 􏼑􏽮 􏽯e

− σt
.

(27)

'erefore, for all α ∈ [0, 1],

ρ 􏽢φt x0( 􏼁􏼂 􏼃
α
, χ 0{ }􏽨 􏽩

α
􏼐 􏼑≤ cD x0, χ 0{ }􏼐 􏼑e

−σt
. (28)

In the same way, for α ∈ [0, 1], we have

ρ χ 0{ }􏽨 􏽩
α
, 􏽢φt x0( 􏼁􏼂 􏼃

α
􏼐 􏼑 � inf

y0∈ x0[ ]
α
φt y0( 􏼁

����
����

≤ φt x0( 􏼁
����

����

≤ c x0
����

����e
−σt

≤ c sup
y0∈ x0[ ]

α
y0

����
����e

−σt
.

(29)

'en,

ρ χ 0{ }􏽨 􏽩
α
, 􏽢φt x0( 􏼁􏼂 􏼃

α
􏼐 􏼑≤ cD x0, χ 0{ }􏼐 􏼑e

−σt
. (30)

From (28) and (30), we can conclude that

d 􏽢φt x0( 􏼁􏼂 􏼃
α
, χ 0{ }􏽨 􏽩

α
􏼐 􏼑≤ cD x0, χ 0{ }􏼐 􏼑e

−σt
, (31)

and therefore

D 􏽢φt x0( 􏼁, χ 0{ }􏼐 􏼑≤ cD x0, χ 0{ }􏼐 􏼑e
−σt

, (32)

which shows that χ 0{ } is exponentially stable for 􏽢φt.
(⇐) If χ 0{ } is exponentially stable, then χ 0{ } is asymp-

totically stable and there exist β> 0, c> 0, and σ > 0 such
that, if D(x0, χ 0{ })< β, then, for all t≥ 0,

D 􏽢φt x0( 􏼁, χ 0{ }􏼐 􏼑< cD x0, χ 0{ }􏼐 􏼑e
−σt

. (33)

If we have ‖x0‖< β, which means that

D χ x0{ }, χ 0{ }􏼒 􏼓< β. (34)

So, by using (33) and the fact that x0 ∈ [χ x0{ }]
α for all

α ∈ [0, 1], we get

D 􏽢φt χ x0{ }􏼒 􏼓, χ 0{ }􏼒 􏼓≤ c D χ x0{ }, χ 0{ }􏼒 􏼓e
−σt

. (35)

'erefore,

sup
0≤α≤1

d φt χ x0{ }􏼔 􏼕
α

􏼒 􏼓, χ 0{ }􏽨 􏽩
α

􏼒 􏼓

≤ c sup
0≤α≤1

d χ x0{ }􏼔 􏼕
α
, χ 0{ }􏽨 􏽩

α
􏼒 􏼓e

−σt
.

(36)

Consequently,

φt x0( 􏼁
����

����< c x0
����

����e
− σt

, ∀t≥ 0, (37)

which proves the second part. □

As a consequence of the previous results, we have the
following corollary.

Corollary 1. If 0 is an equilibrium point for φt and
f: Rn⟶ Rn with f′(0) � 0, and R(λi) is the real part of
the eigenvalue λi associated with 0:

(1) If R(λi)< 0,∀i, then there exists a fuzzy Lyapunov
function V verifying

_V(x)< 0, ∀x ∈W\ 0{ }, (38)

for a neighborhood W of the origin, where V is the
Lyapunov function associated with V.
In other words, χ 0{ } is asymptotically stable for (7).

(2) If R(λi)> 0, for some i, then there is no fuzzy Lya-
punov function. In other words, χ 0{ } is unstable for (7).

To illustrate the elaborate results, we take as application
the real model which describes a population, and it is the
Malthusian model.

Example 2. We consider the deterministic Malthusian
model with a negative variation rate (population in
retraction):

x′(t) � −λx(t), λ> 0,

x(0) � x0 ∈ R.

⎧⎨

⎩ (39)

'e deterministic flow is given by
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φt x0( 􏼁 � x0e
− λt

. (40)

Note that 0 is an equilibrium point for φt, which is
exponentially stable indeed.

Let V(x) � x2 on R.
V is a Lyapunov function, and we have

_V(x) � V′(x) · f(x) � −2λx2 < 0, for x≠ 0.
So, 0 is asymptotically stable for φt. Moreover, we have

φt x0( 􏼁
����

���� � x0e
− λt

�����

�����≤ x0
����

����e
−λt

, (41)

which shows that 0 is exponentially stable for φt.
But, when we do statistics, we focus on simple and then

we generalize the property studied on the entire population,
so it is more realistic to consider the initial condition as a
fuzzy quantity. And, in this case, the model is of the fol-
lowing form:

x′(t) � −λx(t), λ ∈F R+( ),

x(0) � x0 ∈F(R).

⎧⎨

⎩ (42)

'e fuzzy flow associated with problem (42) is given by

􏽢φt x0( 􏼁 � x0e
− λt

, x0 ∈ F(R), (43)

where (􏽢φt)t≥0 is a fuzzy dynamical system.
Let V(x) � 􏽢V(x) be the fuzzy Lyapunov function as-

sociated with problem (42) given by

[V(x)]
α

� V [x]
α

( 􏼁 � minPα, maxPα􏼂 􏼃, (44)

for [x]α � [xα−, xα+], α ∈ [0, 1], where

Pα � xα−( 􏼁
2
, xα+( 􏼁

2
, xα−.xα+􏽮 􏽯. (45)

Note that χ 0{ } is an equilibrium point for 􏽢φt.
By using 'eorem 4, we conclude that χ 0{ } is asymp-

totically stable for 􏽢φt, and we have

D 􏽢φt x0( 􏼁, χ 0{ }􏼐 􏼑 � D x0e
−λt

, χ 0{ }􏼐 􏼑

� sup
α∈[0,1]

d e
− λt x0􏼂 􏼃

α
, e

−λt 0{ }􏼐 􏼑

≤ sup
α∈[0,1]

d x0􏼂 􏼃
α
, 0{ }( 􏼁e

−λt

� D x0, χ 0{ }􏼐 􏼑e
−λt

.

(46)

'at is to say, χ 0{ } is exponentially stable for 􏽢φt.
Note that we can deduce directly from'eorem 5 the last

point.
Figure 1 represents the dynamic of 􏽢φt around χ 0{ }, where

we considered in problem (42) the following parameters: x0
is “around 35,” which can be modeled by a triangular fuzzy
number x0 � (30; 35; 40), whose α−cuts are given by

x0􏼂 􏼃
α

� x
−
0α, x

+
0α􏼂 􏼃 � [30 + 5α, 40 − 5α], for α ∈ [0, 1].

(47)

And, λ is the symmetric triangular fuzzy number defined
by λ � (0.4; 0.5; 0.6), whose α−cuts are given by

[λ]
α

� [0.4 + 0.1α, 0.6 − 0.1α], for α ∈ [0, 1]. (48)

Example 3. Consider the following system:

x′(t) � −x + y,

y′(t) � −x − y,

x(0) � x0, y(0) � y0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(49)

'is system can be written as

X′(t) � G(X(t)),

X(0) � X0 � x0, y0( 􏼁 ∈ R2,

⎧⎨

⎩ (50)

where X(t) � (x(t), y(t)) ∈ R2 and

G(X(t)) � (−x(t) + y(t), −x(t) − y(t)), for t ∈ R+
.

(51)

We consider the fuzzy initial value problem:

X′ � 􏽢G(X(t)),

X(0) � X0 ∈ F R2( 􏼁,

⎧⎨

⎩ (52)

where 􏽢G is Zadeh’s extension applied to G.
We study the stability of the equilibrium point (0, 0) for

system (50).
We define on R2 the following function:

V(X) � V(x, y) � x
2

+ y
2
. (53)

It is easy to verify that V is a Lyapunov function, and we
have

_V(x, y) � 2x(−x + y) + 2y(−x − y)< 0, forx≠ 0, y≠ 0.

(54)

And, (0, 0) is therefore asymptotically stable.
Now, we want to study the stability of system (51).
We have X0 ∈ F(R2), then χ (0,0){ } will be an equilibrium

point of the fuzzy dynamical system associated with (51).
Let V(X) � 􏽢V(X), for X ∈ F(R2).
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Figure 1: Dynamic of 􏽢φt around χ 0{ }.
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V is the fuzzy Lyapunov function associated with (51),
whose α−cuts are

[V(X)]
α

� V [X]
α

( 􏼁, for α ∈ [0, 1]. (55)

From'eorem 4, we deduce that χ (0,0){ } is asymptotically
stable for problem (52).

We can also show the asymptotic stability of χ (0,0){ } using
Corollary 1 indeed.

It is easy to check that λ1 � −1 + i and λ2 � − 1 − i are
the eigenvalues associated with system (50).

We have R(λ1) � R(λ2)< 0, and therefore χ (0,0){ } is
asymptotically stable for the fuzzy initial value problem (52).

Now, we show that χ (0,0){ } is exponentially stable for
system (51) indeed.

We have
_V(X) � _V(x, y) � −2 x

2
+ y

2
􏼐 􏼑≤ −2V(X). (56)

By using Grönwall’s inequality, for X0 � (x0, y0) ∈ R2,
we can obtain

V(X)≤V X0( 􏼁e
−2t

, for t≥ 0, (57)

which leads us to have

‖X‖ � ‖(x, y)‖≤ x0, y0( 􏼁
����

����e
− t

� X0
����

����e
− t

, for t≥ 0. (58)

'en, (0, 0) is exponentially stable for (50).
Using 'eorem 5, we can conclude that χ (0,0){ } is ex-

ponentially stable for (51).
Let X0 ∈ F(R2), whose membership function

μ: R2⟶ [0, 1] is defined as, for (x, y) ∈ R2,

μ(x, y) �

0, (x≤ 300 orx≥ 360), (y≤ 600 ory≥ 700),

y − 600
50

, (x≤ 300 orx≥ 360), 600≤y≤ 650,

700 − y

50
, (x≤ 300 orx≥ 360), 650≤y≤ 700,

x − 300
30

, 300≤ x≤ 330, (y≤ 600 ory≥ 700),

min
x − 300

30
,
y − 600

50
􏼚 􏼛, 300≤ x≤ 330, 600≤y≤ 650,

min
x − 300

30
,
700 − y

50
􏼚 􏼛, 300≤ x≤ 330, 650≤y≤ 700,

360 − x

30
, 330≤ x≤ 360, (y≤ 600 ory≥ 700),

min
360 − x

30
,
y − 600

50
􏼚 􏼛, 330≤ x≤ 360, 600≤y≤ 650,

min
360 − x

30
,
700 − y

50
􏼚 􏼛, 330≤ x≤ 360, 650≤y≤ 700.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)
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Figure 2: Dynamic of 􏽢φt around χ (0,0){ }.
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It is easy to verify that, for all α ∈ [0, 1],

X0􏼂 􏼃
α

� [300 + 30α, 360 − 30α] ×[600 + 50α, 700 − 50α].

(60)

Figure 2 shows the stability of χ (0,0){ } for problem (52).

4. Conclusion

In this work, we studied the stability of fuzzy dynamical
systems using Lyapunov functions. We began by defining
the fuzzy Lyapunov function in a way analogous to that of
the classical case. We achieved to show some equivalence
results between stability by different types whether it is
stability, asymptotic stability, or exponential stability and the
existence of a fuzzy Lyapunov function. Our results will be
used in further works to generalize the notion of the stability
of fuzzy dynamical systems.
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Paranaense de Matemática, vol. 38, no. 6, pp. 159–171, 2020.

[25] H. Rezazadeh, H. Aminikhah, and A. R. Sheikhani, “Stability
analysis of Hilfer fractional differential systems,” Mathe-
matical Communications, vol. 21, no. 1, 2016.

International Journal of Differential Equations 7


