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In this paper, we are concerned with the nonsteady Boussinesq system under mixed boundary conditions. *e boundary
conditions for fluid may include Tresca slip, leak and one-sided leak conditions, velocity, static (or total) pressure, rotation, and
stress (or total stress) together, and the boundary conditions for temperature may include Dirichlet, Neumann, and Robin
conditions together. Relying on the relations among strain, rotation, normal derivative of velocity, and shape of the boundary
surface, we get variational formulation. *e formulations consist of a variational inequality for velocity due to the boundary
conditions of friction type and a variational equation for temperature. For the case of boundary conditions including the static
pressure and stress, we prove that if the data of the problem are small enough and compatibility conditions at the initial instance
are satisfied, then there exists a unique solution on the given interval. For the case of boundary conditions including the total
pressure and total stress, we prove the existence of a solution without restriction on the data and parameters of the problem.

1. Introduction

In this paper, we are concerned with the Boussinesq
equation for heat convection

zv

zt
− 2∇ · (μ(θ)E(v)) +(v · ∇)v + ∇p � 1 − α0θ( f,

∇ · v � 0,

zθ
zt

− ∇ · (κ(θ)∇θ) + v · ∇θ � g,

v(0) � v0, θ(0) � θ0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

under mixed boundary conditions. Here, v, p, and θ are, re-
spectively, velocity, pressure, and temperature, and α0 is the
parameter for buoyancy effect, f is the body force, g is the heat
source, μ is the viscosity, and κ is the thermal conductivity.
*e strain tensor E(v) is the one with the components
εij(v) � (1/2)(zxi

vj + zxj
vi). System (1) is a special case of

zv

zt
− 2∇ · (μ(θ)E(v)) +(v · ∇)v + ∇p � 1 − α0θ( f,

∇ · v � 0,

zθ
zt

− ∇ · (κ(θ)∇θ) + v · ∇θ − α2μ(θ)E(v): E(v) � α1θf · v + g,

v(0) � v0, θ(0) � θ0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

which is a mathematical model for nonsteady motion of
heat-conducting incompressible Newtonian fluid. Here, α1
is the parameter for dissipation of energy due to expansion,
α2 is a positive real number, and for two matrices A � aij}

and B � bij}, A: B � ijaijbij and |A| � (ija
2
ij)

1/2. *e
term μ(θ)E(v): E(v) represents the dissipation of energy
due to viscosity (the Joule effect). Owing to the dissipation of
energy due to viscosity μ(θ)E(v): E(v), study of (2) is
usually more difficult than the Boussinesq system.

For the papers concerned with (2), we refer to Introduction
of [1]. Here, we more mention [2–5] concerned with (2), where
α1 � 0. In [2], the problem under nonhomogeneous Dirichlet
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boundary conditions for velocity and temperature in the time-
dependent domain was studied, and existence of a local-in-time
solution or existence of the solution on the given interval for
small data was proved. In [3], existence of a strong solution and
periodic solution for the 2D problem was studied under the
boundary conditions and domain as above. In [4], under ho-
mogeneous Dirichlet boundary conditions for velocity and
temperature, existence of a strong solution and periodic solution
were studied when data of the problem are small enough.
Łukaszewicz and Krzyżanowski [5] dealt with the initial
boundary value problem on a time-dependent domain with the
homogeneous Dirichlet boundary condition for velocity and
temperature, and they proved the existence and uniqueness of
local weak solutions and the existence of a global weak solution
for small initial data.

Several papers are concerned with (1). In [6, 7], the existence
and uniqueness (for 2D) of a solution to the problemwere studied
under the homogeneous Dirichlet boundary condition for ve-
locity and mixture of nonhomogeneous Dirichlet and Neumann
boundary conditions for temperature. In [8], for the problemwith
nonhomogeneous Dirichlet boundary conditions for velocity and
temperature, the existence of the time periodic solution was
proved (see [9]). In [10–13], problem (1) on the time-dependent
domain was studied under the nonhomogeneous Dirichlet
boundary condition for velocity and temperature. In [14, 15], the
problem on exterior domains with the homogeneous Dirichlet
boundary condition for velocity and nonhomogeneous Dirichlet
boundary condition for temperaturewas studied. In [16], problem
(1) was studied under the mixture of the nonhomogeneous
Dirichlet boundary condition and the stress boundary condition
for fluid and the mixture of nonhomogeneous Dirichlet, Neu-
mann, and Robin boundary conditions for temperature. *ey
proved the existence of a unique local-in-time solution under a
compatibility condition at the initial instance (see (27) and (31) of
[16]). In [17], problem (1) in the cylindrical pipe with inflow and
outflow was studied under slip boundary conditions for velocity
and the Neumann conditions for temperature. In that, it was
proved that there exists a solution on the given interval when
norms of derivatives in the direction along the cylinder of the
initial velocity, initial temperature, and the external force are small
enough. In [18], the existence of a solution to problem (1) on the
time-dependent domain was studied under the mixture of the
Dirichlet condition of velocity, total pressure, and rotation
boundary conditions for fluid and the mixture of Dirichlet,
Neumann, and Robin boundary conditions for temperature.

On the contrary, for movement of fluid (v, p), different
kinds of boundary conditions are used, and in practice, we deal
with the mixture of some kinds of boundary conditions. On
someportions of the boundary, we can use boundary conditions
with stress or rotation, whereas when there is flux through a
portion of the boundary, we can deal with the static pressure p

or the total pressure (Bernoulli’s pressure) (1/2)|v|2 + p

boundary conditions. *ere are many literature studies for the
Navier–Stokes problem with mixed boundary conditions (see
Introduction of [19, 20] and references therein). Recently,
Navier–Stokes system with mixed boundary conditions in-
cluding friction-type conditions was studied (cf. [20, 21]).

In [1], problem (2) is studied under mixed boundary
conditions, and the boundary conditions for fluid may include

Tresca slip, leak and one-sided leak conditions, velocity, total
pressure, rotation, and total stress together, and the conditions
for temperature may include Dirichlet, Neumann, and Robin
conditions together. From the result of [1], we can get results
for (1) with the boundary conditions as in [1]; however, the
result demands that the parameter for buoyancy effect α0 is
small enough in accordance with the data of the problem, and
the solution includes “defect measure” as in [22]. Also, for (2)
and (1), the problem with a mixed boundary condition in-
cluding the static pressure (not total pressure) and stress (not
total stress) together is not yet considered.

When one of static pressure, stress, or the outflow
boundary condition is given on a portion of the boundary,
for the initial boundary value problems of the Navier–Stokes
equations, the existence of a unique local-in-time solution
and a unique solution on a given interval for small data of the
problem are proved. From the mathematical point of view,
themain difficulty of such problems results from the fact that
in a priori estimation of solution, the term arising from the
nonlinear term (v · ∇)v is not canceled (cf. Preface in [23]).

In the present paper, we are first concerned with heat
convection equation (1) under mixed boundary conditions
including the static pressure and stress. *e boundary
conditions for fluid may include conditions of friction type
(Tresca slip, threshold leak, and one-sided leak conditions),
velocity, static pressure, rotation, and stress together, and the
conditions for temperature may include Dirichlet, Neu-
mann, and Robin conditions together. Due to the boundary
conditions of friction type, it is difficult to follow the
methods in [16, 20]. *e main difficulty of this problem is
from the estimate of approximate solutions, and due to
simultaneous velocity and temperature, the estimate is more
difficult than the case of the Navier–Stokes equations. Also,
in this paper, we prove the existence of a solution to (1) with
the boundary conditions as in [1] without restriction on the
parameter for buoyancy effect α0.

*is paper consists of 5 sections. In the last part of
Section 1, we give notations.

In Section 2, the problems to study and assumptions for
future are stated. According to the boundary conditions for
fluid, Problems I and II are distinguished. Problem I includes
the static pressure and the stress conditions, whereas
Problem II includes the total pressure and the total stress
boundary conditions. Assumption for Problem I is stronger
than the one for Problem II.

In Section 3, we first get a variational formulation for
Problem I which consists of six formulae with six unknown
functions, that is, using velocity, tangent stress on slip surface,
normal stress on the leak surface, normal stresses on one-sided
leak surfaces, and temperature together as unknown functions
(Problem I-VE).*en, we get a new variational formulation for
Problem I consisting of one variational inequality for velocity
and a variational equation for temperature (Problem I-VI).

*e variational formulation for Problem II is obtained in
the same way as in [1], and smoothness of the solution with
respect to t is weaker than the one in Problem I. In the end of
Section 3, the main results of this paper are stated (*eorems 1
and 2). *e main result for Problem I asserts that if the data of
the problem are small enough and compatibility conditions at
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the initial time (conditions 4 and 6 of *eorem 1) hold, then
there exists a unique smooth solution. *e main result for
Problem II asserts the existence of a solutionwithout restriction
on the parameter for buoyancy unlike [1].

Section 4 is devoted to the proof of *eorem 1. To this
end, first in Section 4.1, we consider an approximate
problem, where the variational inequality for velocity is
replaced by an equation with the gradient of the Moreau
regularization of the functional due to the boundary con-
ditions of friction type. Developing the method for the proof
of *eorem 4.4 of [21], we get existence and estimations of
approximate solutions for small data under the compatibility
conditions at initial time. In Section 4.2, we complete the
proof of the existence and uniqueness of a solution.

Section 5 is devoted to the proof of *eorem 2. *e
existence of solutions to an approximate problem and rel-
ative compactness of the set of solutions are studied. *en,
passing to limit, we get the conclusion.

*roughout this paper, we will use the following nota-
tion. Let Ω be a connected bounded open subset of
Rl, l � 2, 3. zΩ ∈ C0,1,

zΩ � ∪11i�1Γi � ΓD ∪ ΓR, (3)

ΓD ∩ ΓR � ∅, Γi ∩Γj � ∅ for i≠ j, and Γi � ∪jΓij, where Γij
are connected open subsets of zΩ, and Γij ∈ C2,1 for i �

2, 3, 7 and Γij ∈ C1 for others. When X is a Banach space,
X � Xl and X∗ is a dual space of X. Let Wα,p(Ω) be Sobolev
spaces; H1(Ω) � W1,2(Ω), and so H1(Ω) � H1(Ω) 

l. An
inner product and norm in the spaces L2(Ω) and L2(Ω) are
denoted, respectively, by (·, ·) and ‖ · ‖, and ·, ·〈 〉 means the
duality pairing between a Sobolev space X and its dual
one. Also, (·, ·)Γi is an inner product in L2(Γi) or L2(Γi),
and ·, ·〈 〉Γi means the duality pairing between H1/2(Γi) and
H− (1/2)(Γi) or between H1/2(Γi) and H− (1/2)(Γi). *e inner
product and norms inRl, respectively, are denoted by (·, ·)Rl

and |·|. Sometimes, the inner product between a and b in Rl

is denoted by a · b.
Let n(x) and τ(x) be, respectively, outward normal and

tangent unit vectors at x in zΩ. When f ∈ H− 1/2(Γi), if
f, w Γi ≥ 0(≤ 0)∀w ∈ C∞0 (Γi) with w≥ 0, then we denote
by f≥ 0(≤ 0) on Γi. For convergence in spaces, ⟶ , ⇀,
and ⇀⇀ mean, respectively, strong, weak, and weak ∗ con-
vergence. Derivative of f(t, x) with respect to t is denoted by
f′. We also assume that 0<T<∞.

2. Problems and Assumptions

For temperature, we are concerned with the boundary
conditions

θ|ΓD � 0,

κ(θ)
zθ
zn

+ β(x)θ 

ΓR

� gR(t, x),

β(x), gR(t, x) − given functions on ΓR, (0, T) × ΓR.

(4)

Stress tensor S is the one with components
sij � − pδij + 2μεij(v), and stress vector on the boundary
surface is σ(v, p) � S · n. *e value of the normal stress
vector on the boundary surface is σn(v, p) � σ · n. And
στ(v, p) � σ(v, p) − σn(v, p)n. Total stress tensor St is the
one with components st

ij � − (p + (1/2)|v|2)δij+ 2μ(θ)εij(v),
and the total stress vector on the boundary surface is
σt(θ, v, p) � St · n. *e value of the total normal stress vector
on the boundary surface is σt

n(θ, v, p) � σt · n. And
σt
τ(θ, v, p) � σt(θ, v, p) − σt

n(θ, v, p)n.
For Problem I, we assume that μ and κ are independent

of θ. *us, Problem I is the one with the boundary
conditions

v|Γ1 � 0,

vτ
Γ2

� 0, − p|Γ2 � ϕ2,

vn

Γ3
� 0, rot v ×n|Γ3 �

ϕ3
μ

,

vτ
Γ4

� 0, − p + 2μεnn(v)( 
Γ4

� ϕ4,

vn

Γ5
� 0, 2 μεnτ(v) + αvτ( 

Γ5
� ϕ5, α: a matrix,

− pn + 2μεn(v)( 
Γ6

� ϕ6,

vτ
Γ7

� 0, − p + μ
zv

zn
· n 

Γ7

� ϕ7,

vn � 0, στ(v)


≤gτ , στ(v) · vτ + gτ vτ


 � 0 on Γ8,

vτ � 0, σn(v, p)


≤gn, σn(v, p)vn + gn vn


 � 0 on Γ9,

vτ � 0, vn ≥ 0, σn(v, p) + g+n ≥ 0, σn(v, p) + g+n( vn � 0 on Γ10,

vτ � 0, vn ≤ 0, σn(v, p) − g− n ≤ 0, σn(v, p) − g− n( vn � 0 on Γ11,

(5)
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and Problem II is the one with the boundary conditions

v|Γ1 � 0,

vτ
Γ2

� 0, − p +
1
2
|v|

2
 

Γ2
� ϕ2,

vn

Γ3
� 0, rot v ×n|Γ3 �

ϕ3
μ(θ)

,

vτ
Γ4

� 0, − p −
1
2
|v|

2
+ 2μ(θ)εnn(v) 

Γ4
� ϕ4,

vn

Γ5
� 0, 2 μ(θ)εnτ(v) + αvτ( 

Γ5
� ϕ5, α: amatrix,

− pn −
1
2
|v|

2
n + 2μ(θ)εn(v) 

Γ6
� ϕ6,

vτ
Γ7

� 0, − p −
1
2
|v|

2
+ μ(θ)

zv

zn
· n 

Γ7

� ϕ7,

vn � 0, σt
τ(θ, v)


≤gτ , σ

t
τ(θ, v) · vτ + gτ vτ


 � 0 on Γ8,

vτ � 0, σt
n(θ, v, p)


≤gn, σt

n(θ, v, p)vn + gn vn


 � 0 on Γ9,

vτ � 0, vn ≥ 0, σt
n(θ, v, p) + g+n ≥ 0, σt

n(θ, v, p) + g+n vn � 0 on Γ10,

vτ � 0, vn ≤ 0, σt
n(θ, v, p) − g− n ≤ 0, σt

n(θ, v, p) − g− n vn � 0 on Γ11,

(6)

where εn(v) � E(v)n, εnn(v) � (E(v)n, n)Rl , εnτ(v) � E(v)

n − εnn(v)n, vτ � v − (v · n)n, vn � v · n, and hi, ϕi, αjk

(components of matrix α) are given functions or vectors of
functions of t, x on Σi � (0, T) × Γi. For convenience in what

follows, the problems with boundary conditions (5) and (6)
are called, respectively, the case of static pressure and the
case of total pressure.

Let

V � u ∈ H1
(Ω): div u � 0, u|Γ1 � 0, uτ

 Γ2∪Γ4∪Γ7∪Γ9∪Γ10∪Γ11( ) � 0, un

 Γ3∪Γ5∪Γ8( ) � 0 ,

H: completion in L2(Ω) of V,

K(Ω) � u ∈ V: un

Γ10 ≥ 0, un

Γ11 ≤ 0 ,

HK: closure inL2(Ω) of K(Ω),

K(Q) � u ∈ L
2
(0, T;V): u′ ∈ L

2 0, T;V∗( ; un

Γ10 ≥ 0, un

Γ11 ≤ 0 ,

W
1,2
ΓD (Ω) � y ∈W

1,2
(Ω): y|ΓD � 0 .

(7)

We assume that gτ ∈ L2(Γ8), gn ∈ L2(Γ9), g+n ∈ L2(Γ10),
and that g− n ∈ L2(Γ11), and gτ > 0, gn > 0, g+n > 0, and
g− n > 0 for a.e. x of the portions of boundary. Also, we use
the following assumption.

Assumption 1 (for the case of static pressure). We assume
the following:

(1) Γ1 ≠∅, ΓD ≠∅, and

ΓR ⊂ ∪i�1,3,5,8Γi . (8)

(2) If Γi, where i is 10 or 11, is nonempty, then at least
one of Γj: j ∈ 2, 4, 7, 9 − 11{ }\ i{ }{ }  is nonempty,
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and there exists diffeomorphism in C1 between Γi
and Γj.

(3) For the functions of (1),

f ∈W
1,∞ 0, T; L3(Ω) ,

g ∈W
1,2 0, T; W

1,2
ΓD (Ω)

∗
 ,

μ and κ are independent of θ.

(9)

(4) For the functions of (4) and (5),

gR ∈W
1,2 0, T; L

4/3 ΓR(  ,

β1 ≥ β(x)≥ 0, β1 − a constant, β(x) − measurable,

ϕi ∈W
1,∞ 0, T; H

− 1/2 Γi(  , i � 2, 4, 7,

ϕi ∈W
1,∞ 0, T;H− 1/2 Γi(  , i � 3, 5, 6,

αij ∈ L
∞ Γ5( .

(10)

Assumption 2 (for the case of total pressure). We assume (1)
and (2) of Assumption 1 and the following:

(3′) For the functions of (1),

f ∈ L
∞ 0, T; L3(Ω) ,

g ∈ L
2 0, T; W

1,2
ΓD (Ω)

∗
 ,

μ ∈ C(R), 0< μ0 ≤ μ(ξ)≤ μ1 <∞, ∀ξ ∈ R,

κ ∈ C(R), 0< κ0 ≤ κ(ξ)≤ κ1 <∞, ∀ξ ∈ R.

(11)

(4′) For the functions of (4) and (6),

gR ∈ L
2 0, T; L

4/3 ΓR(  ,

β1 ≥ β(x)≥ 0, β1 − a constant, β(x) − measurable,

ϕi ∈ L
2 0, T; H

− (1/2) Γi(  , i � 2, 4, 7,

ϕi ∈ L
2 0, T;H− (1/2) Γi(  , i � 3, 5, 6,

αij ∈ L
∞ Γ5( .

(12)

Remark 1. On Γ10(Γ11), only outflow (inflow) is possible,
and so (2) of Assumption 1 is used to guarantee div v � 0. In
*eorems 3.3 and 3.5 of [24], for the proof of equivalence of
variational formulations to variational inequalities, this
assumption was used via Lemma 3.2 of [24]. In this paper,
this assumption is also necessary to guarantee equivalence
between Problems I-VE and I-VI in Remark 4.

3. Variational Formulations and Main Results

Since Γ1 ≠∅ and ΓD ≠∅, by the Korn inequality and
Poincaré inequality, we use

(v, u)V � (E(v),E(u)), (y, z)W1,2
ΓD

(Ω) � (∇y,∇z). (13)

3.1. Variational Formulations: 1e Case of Static Pressure.
By *eorems 2.1 and 2.2 of [19], for v ∈ H2(Ω) ∩ V and
u ∈ V, we have

− 2(∇ · (μE(v)), u) � 2(μE(v),E(u)) − 2(μE(v)n, u)∪11
i�2Γi

� 2(μE(v),E(u)) + 2(μk(x)v, u)Γ2 − (μ rot v × n, u)Γ3 + 2(μSv, u)Γ3 − 2 μεnn(v), un( Γ4

� − 2 μεnτ(v), u( Γ5 − 2 μεn(v), u( Γ6 − μ
zv

zn
, u 
Γ7

+(μk(x)v, u)Γ7

− 2 μεnτ(v), u( Γ8 − 2 μεnn(v), un( Γ9 − 2 μεnn(v), un( Γ10 − 2 μεnn(v), un( Γ11,

(14)

where S is the shape operator of the boundary surface
(cf. (A.1) in [19]), v, u are expressions of v, u in a
local coordinate system on Γ3, and k(x)|Γi � 2×

mean curvature of Γi.
For p ∈ H1(Ω) and u ∈ V, we have

(∇p, u) � − (p, divu) + p, un( ∪11
i�2Γi

� p, un( Γ2∪Γ4∪Γ7∪Γ9∪Γ10∪Γ11 +(pn, u)Γ6,
(15)

where un|Γ3∪Γ5∪Γ8 � 0 was used. By (4), for θ ∈ H2(Ω) and
φ ∈W1,2

ΓD (Ω), we have
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(− ∇ · (κ∇θ), φ) � (κ∇θ,∇φ) − κ
zθ
zn

,φ 
ΓR

� (κ∇θ,∇φ) + βθ − gR,φ( ΓR.

(16)

Taking into account (8) and vn|Γ3∪Γ5∪Γ8 � 0, for v ∈ V,
θ ∈ H1(Ω), and φ ∈W1,2

ΓD (Ω), we have

(v · ∇θ,φ) � vnθ,φ( ΓR − (θv,∇φ) � − (θv,∇φ). (17)

By (14)–(17), we can see that smooth solutions (v, p, θ) of
problems (1), (4), and (5) satisfy

zv

zt
, u  + 2(μE(v),E(u)) + (v · ∇)v, u〈 〉 + 2(μk(x)v, u)Γ2 + 2(μSv, u)Γ3 + 2(α(x)v, u)Γ5

+(μk(x)v, u)Γ7 − 2 μεnτ(v), u( Γ8 + p − 2μεnn(v), un( Γ9∪Γ10∪Γ11

� 1 − α0θ( f, u  + 
i�2,4,7

ϕi, un Γi + 
i�3,5,6

ϕi, u Γi, ∀u ∈ V,

zθ
zt

,φ  +(κ∇θ,∇φ) − (θv,∇φ) +(βθ, φ)ΓR � gR,φ( ΓR + g,φ , ∀φ ∈W1,2
ΓD (Ω),

στ(θ, v)


≤gτ , στ(θ, v) · vτ + gτ vτ


 � 0, on Γ8,

σn(v, p)


≤gn, σn(v, p)vn + gn vn


 � 0, on Γ9,

σn(v, p) + g+n ≥ 0, σn(v, p) + g+n( vn � 0, on Γ10,

σn(v, p) − g− n ≤ 0, σn(v, p) − g− n( vn � 0, on Γ11,

θ|ΓD � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Define a01(·, ·), a11(·, ·, ·), and f1(t) ∈ V∗ by

a01(w,u) � 2(μE(w),E(u)) +2(μk(x)w,u)Γ2

+2(μSw, u)Γ3 +2(α(x)w,u)Γ5 +(μk(x)w,u)Γ7,

∀w,u ∈V,

a11(v,u,w) � (v ·∇)u,w〈 〉, ∀v,u,w ∈V,

f1(t),u  � 
i�2,4,7

ϕi(t),un Γi + 
i�3,5,6

ϕi(t),u Γi, ∀u ∈V.

(19)

Define b1(·, ·) and g1(t) ∈ (W1,2
ΓD (Ω))∗ by

b1(θ, φ) � (κ∇θ,∇φ) +(β(x)θ, φ)ΓR, ∀θ ∈W
1,2

(Ω),φ ∈W
1,2
ΓD (Ω),

g1(t),φ  � gR(t),φ( ΓR + g(t),φ , ∀φ ∈W
1,2
ΓD (Ω).

(20)

Remark 2. Under (4) of Assumption 1, the duality product
f1, u  of (19) has a meaning (cf. Remark 3.1 in [24]). By (9)
and (10),

f1 ∈W
1,∞ 0, T;V∗( ,

g1 ∈W
1,2 0, T; W

1,2
ΓD (Ω)

∗
 .

(21)

*en, taking into account

στ(θ, v) � 2μεnτ(v),

σn(θ, v, p) � − p + 2μεnn(v),
(22)

and (18), we introduce the following variational formulation
for problems (1), (4), and (5).

Problem (I-VE). Find v ∈ K(Q), θ ∈ L2(0, T; W1,2
ΓD (Ω)), and

(στ , σn, σ+n, σ− n) ∈ L2
τ(Γ8) × L2(Γ9) × H− (1/2)(Γ10) ×

H− (1/2)(Γ11) a.e. t ∈ (0, T) such that v(0) � v0, θ(0) � θ0, and
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zv

zt
, u  + a01(v, u) + a11(v, v, u) − στ , uτ( Γ8 − σn, un( Γ9

− σ+n, un Γ10 − σ− n, un Γ11 − f − α0θf, u  � f1, u , ∀u ∈ L2(0, T;V),

zθ
zt

,φ  + b1(θ,φ) − θv,∇φ  � g1,φ , ∀φ ∈ L2 0, T; W1,2
ΓD (Ω) ,

στ


≤gτ , στ · vτ + gτ vτ


 � 0, on Γ8,

σn


≤gn, σnvn + gn vn


 � 0, on Γ9,

σ+n + g+n ≥ 0, σ+n + g+n, vn Γ10 � 0 on Γ10,

σ − n − g− n ≤ 0, σ− n − g− n, vn Γ11 � 0, on Γ11,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where L2τ(Γ8) is the subspace of L2(Γ8) consisting of
functions such that (u, n)L2(Γ8) � 0.

Remark 3. Under Assumption 1, if a solution is smooth
enough, (v ∈ L2(0, T;H2(Ω)), v′ ∈ L2(0, T; L2(Ω)),
θ ∈ L2(0, T; W2,2(Ω)), θ′ ∈ L2(0, T; L2(Ω))), then Problem
I-VE is equivalent to problems (1), (4), and (5) in the fol-
lowing sense.

By*eorem 3.4 of [24], at a.e., there exists p(t) satisfying
the first equation of (1), and (v, p) satisfies boundary
condition (5). As given in Section 1, ch. 2 of [25], it is proved
that θ satisfies the third equation of (1) and boundary
condition (4).

We will find another variational formulation consisting
of a variational inequality and a variational equation, which
is equivalent to Problem I-VE if the solution is smooth
enough (cf. Remark 4).

For fixed θ, let us consider the problem

zv

zt
, u  + a01(v, u) + a11(v, v, u) − στ , uτ( Γ8 − σn, un( Γ9 − σ+n, un Γ10

− σ − n, un Γ11 − f − α0θf, u  � f1, u , ∀u ∈ L2(0, T;V),

στ


≤gτ, στ · vτ + gτ vτ


 � 0 on Γ8,

σn


≤gn, σnvn + gn vn


 � 0 on Γ9,

σ+n + g+n ≥ 0, σ+n + g+n, vn Γ10 � 0 on Γ10,

σ− n − g− n ≤ 0, σ− n − g− n, vn Γ11 � 0 on Γ11.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Subtracting the first formula of (21) with u � v from the
first formula of (21), we get

zv

zt
, u − v  + a01(v, u − v) + a11(v, v, u − v) − στ , uτ − vτ( Γ8 − σn, un − vn( Γ9,

− σ+n, un − vn Γ10 − σ − n, un − vn Γ11 − f − α0θf, u − v  � f1, u − v , ∀u ∈ V.

(25)

Define the functionals ϕτ ,ϕn,ϕ+, ϕ− , respectively, by

ϕτ(η) � 
Γ8

gτ|η|dx, ∀η ∈ L2τ Γ8( ,

ϕn(η) � 
Γ9

gn|η|dx, ∀η ∈ L
2 Γ9( ,

ϕ+(η) � 
Γ10

g+nηdx, ∀η ∈ L
2 Γ10( ,

ϕ− (η) � − 
Γ11

g− nηdx, ∀η ∈ L
2 Γ11( .

(26)

Since if u ∈ K(Ω), then u|Γ8 ∈ L
2
τ(Γ8), un|Γ9 ∈ L2(Γ9),

un|Γ10 ∈ L2(Γ10), and un|Γ11 ∈ L2(Γ11), in what follows, for
convenience, we use the notation

ϕτ(u) � ϕτ u|Γ8 ,

ϕn(u) � ϕn un

Γ9 ,

ϕ+(u) � ϕ+ un

Γ10 ,

ϕ− (u) � ϕ− un

Γ11 ,

∀u ∈ K(Ω).

(27)

Define a functional Φ: V⟶ R ≡ R∪ +∞{ } by
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Φ(u) �
ϕτ(u) + ϕn(u) + ϕ+(u) + ϕ− (u), ∀u ∈ K(Ω),

+∞, ∀u ∉ K(Ω).


(28)

Note thatΦ(u)≥ 0 since un|Γ10 ≥ 0, un|Γ11 ≤ 0, ∀u ∈ K(Ω).
*en, the functionalΦ ∈ (V⟶ R) is proper (cf. Definition
A.1 of [21]), convex, lower semicontinuous, and

Φ(u)≥ 0, ∀u ∈ V,Φ 0V(  � 0. (29)

Define a functional Ψ(u) by

Ψ(u) �


T

0
Φ(u(t))dt, if Φ(u(t)) ∈ L1(0, T),

+∞, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(30)

In the same way as Problem I in [24], from (25), we get

zv

zt
, u − v  + a01(v, u − v) + a11(v, v, u − v) +Φ(u) − Φ(v)

≥ 1 − α0θ( f, u − v  + f1, u − v .

(31)

Define operators A1 ∈ (V⟶ V∗), B1 ∈ (V × V⟶
V∗), and C1 ∈ (W1,2

ΓD (Ω)⟶ (W1,2
ΓD (Ω))∗), respectively, by

A1v, u  � a01(v, u), ∀v, u ∈ V,

B1(v, u), w  � a11(v, u, w), ∀v, u, w ∈ V,

C1θ,φ  � b01(θ,φ), ∀θ,φ ∈W
1,2
ΓD (Ω).

(32)

If v is a solution to (24), then we can see that the solution
satisfies (cf. (3 20) of [21])


T

0
v′(t) + A1v(t) + B1(v(t), v(t)) − 1 − α0( θ(t)f(t) − f1(t), u(t) − v(t) dt + Ψ(u) − Ψ(v)≥ 0, ∀u ∈ L

4
(0, T;V).

(33)

*erefore, we have the following variational formulation
for problems (1), (4), and (5).

Problem (I-VI). Find (v, θ) ∈ (L∞(0, T; H) ∩
L2(0, T;V)) × (L2(0, T; W1,2

ΓD )∩L∞(0, T; L2)) such that


T

0
v′ + A1v(t) + B1(v(t), v(t)) − 1 − α0θ( f − f1, u(t) − v(t) dt + Ψ(u) − Ψ(v)≥ 0, ∀u ∈ L

4
(0, T;V),


T

0

zθ
zt

,φ  + C1θ(t), φ  − θv,∇φ  − g1,φ  dt � 0, ∀φ ∈ L
2 0, T; W

1,2
ΓD ,

v(0) � v0,

θ(0) � θ0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Remark 4. If the solutions to Problem I-VI are smooth as
much as v ∈ L2(0, T;V) and v′ ∈ L2(0, T;V∗), then the first
one of (34) is equivalent to

v′(t) + A1v(t) + B1(v(t), v(t)) − 1 − α0θ( f − f1, u − v(t)  +Φ(t) − Φ(v(t)) ≥ 0, for a.e.t ∈ [0, T],∀u ∈ K(Ω), (35)

(Remark, pp. 114 in [26]). In (31), putting F1, u − v  �

− (zv/zt) − (1 − α0θ)f − f1, u − v , by*eorem 3.5 of [24],
we can see existence of (στ , σn, σ+n, σ − n) ∈ L2τ(Γ8) × L2(Γ9) ×

H− 1/2(Γ10) × H− 1/2(Γ11) for a.e. t ∈ (0, T) such that
(v, θ, στ , σn, σ+n, σ − n) is a solution to Problem I-VE.

3.2. Variational Formulations: 1e Case of Total Pressure.
Taking (v · ∇)v � rot v × v + (1/2)grad|v|2 into account, by
(14)–(17) with μ, κ depending on θ, we can see that smooth
solutions (v, p, θ) of problems (1), (4), and (6) satisfy the
following:
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zv

zt
, u  + 2(μ(θ)E(v),E(u)) + rot v × v, u〈 〉 + 2(μ(θ)k(x)v, u)Γ2 + 2(μ(θ)Sv, u)Γ3 + 2(α(x)v, u)Γ5

+(μ(θ)k(x)v, u)Γ7 − 2 μ(θ)εnτ(v), u( Γ8 + p + 1
2|v|2 − 2μ(θ)εnn(v), un Γ9∪Γ10∪Γ11

� 1 − α0θ( f, u  + 
i�2,4,7

ϕi, un Γi + 
i�3,5,6

ϕi, u Γi, ∀u ∈ V,

zθ
zt

,φ  +(κ(θ)∇θ,∇φ) − (θv,∇φ) +(βθ,φ)ΓR � gR,φ( ΓR + g,φ , ∀φ ∈W1,2
ΓD (Ω),

σt
τ(θ, v)


≤gτ , σt

τ(θ, v) · vτ + gτ vτ


 � 0 on Γ8,

σt
n(θ, v, p)


≤gn, σt

n(θ, v, p)vn + gn vn


 � 0 on Γ9,

σt
n(θ, v, p) + g+n ≥ 0, σt

n(θ, v, p) + g+n( vn � 0 on Γ10,

σt
n(θ, v, p) − g− n ≤ 0, σt

n(θ, v, p) − g− n( vn � 0 on Γ11,

θ|ΓD � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Define a02(
θ; ·, ·), a12(·, ·, ·), and f2 ∈ V∗ by

a02(
θ; w, u) � 2(μ(θ)E(w),E(u)) + 2(μ(θ)k(x)w, u)Γ2

+ 2(μ(θ)S w, u)Γ3 + 2(α(x)w, u)Γ5

+(μ(θ)k(x)w, u)Γ7,

∀w, u ∈ V, θ ∈W
1,2
ΓD (Ω),

a12(v, u, w) � rot v × u, w〈 〉, ∀v, u, w ∈ V,

f2, u  � 
i�2,4,7

ϕi, un Γi + 
i�3,5,6

ϕi, u Γi, ∀u ∈ V.

(37)

Define b2(
θ; ·, ·) and g2 ∈ (W1,2

ΓD (Ω))∗ by

b2(
θ; θ,φ) � (κ(θ)∇θ,∇φ) +(β(x)θ, φ)ΓR,

∀θ, θ ∈W
1,2
ΓD (Ω),φ ∈W

1,2
ΓD (Ω),

g2,φ  � gR,φ( ΓR + g,φ , ∀φ ∈W
1,2
ΓD (Ω).

(38)

By (11) and (12),

f2 ∈ L
2 0, T;V∗( ,

g2 ∈ L
2 0, T; W

1,2
ΓD 
∗

 .
(39)

*en, taking into account

σt
τ(θ, v) � 2μ(θ)εnτ(v),

σt
n(θ, v, p) � − p +

1
2
|v|

2
  + 2μ(θ)εnn(v),

(40)

and (36), we introduce the following variational formulation
for problems (1), (4), and (6).

Problem (II-VE). Find v ∈ K(Q), θ ∈ L∞(0, T; L2(Ω))∩
L2(0, T; W1,2

ΓD (Ω)), and (σt
τ , σ

t
n, σt

+n, σt
− n) ∈ L2τ(Γ8)×

L2(Γ9) × H− (1/2)(Γ10) × H− (1/2)(Γ11), in a.e., t ∈ (0, T), such
that v(0) � v0, θ(0) � θ0, and

zv

zt
, u  + a02(θ; v, u) + a12(v, v, u) − σt

τ , uτ( Γ8 − σt
n, un( Γ9

− σt
+n, un Γ10 − σt

− n, un Γ11 − f − α0θf, u  � f2, u , ∀u ∈ V,

zθ
zt

,φ  + b2(θ; θ, φ) − θv,∇φ  � g2,φ , ∀φ ∈W1,2
ΓD (Ω),

σt
τ


≤gτ , σt

τ · vτ + gτ vτ


 � 0 on Γ8,

σt
n


≤ gn, σt

nvn + gn vn


 � 0 on Γ9,

σt
+n + g+n ≥ 0, σt

+n + g+n, vn Γ10 � 0 on Γ10,

σt
− n − g− n ≤ 0, σt

− n − g− n, vn Γ11 � 0 on Γ11,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

where L2τ(Γ8) is the subspace of L2(Γ8) consisting of
functions such that (u, n)L2(Γ8) � 0.

Define operators A2(θ) ∈ (V⟶ V∗) and
B2 ∈ (V × V⟶ V∗), respectively, by
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A2(
θ)v, u  � a02(

θ; v, u), ∀v, u ∈ V, θ ∈W
1,2
ΓD (Ω),

B2(v, u), w  � a12(v, u, v), ∀v, u, w ∈ V.

(42)

Let functional Ψ be defined by (25)–(28). *en, in the
same way as Problem I-VI of [21], we find a variational
inequality for velocity. *en, we get another variational

formulation consisting of a variational inequality for velocity
and a variational equation for temperature, which is
equivalent to Problem II-VE if the solution is smooth
enough.

Problem (II-VI). Find (v,θ) ∈ (L∞(0,T;H)∩L2(0,T;V))×

(L∞(0,T;L2(Ω))∩L2(0,T;W1,2
ΓD (Ω))) such that


T

0
u′ + A2(θ)v(t) + B2(v(t), v(t)) − 1 − α0θ( f − f2, u(t) − v(t) dt + Ψ(u) − Ψ(v)

≥ −
1
2

v0 − u(0)
����

����
2
, ∀u ∈ L

4
(0, T;V)with u′ ∈ L

2 0, T;V∗( ,


T

0
− θ,

zφ
zt

  + b2(θ; θ,φ) − θv,∇φ  − g2,φ  dt

� θ0(x),φ(x, 0) , ∀φ ∈ C1 [0, T]; W1,2
ΓD (Ω) withφ(·, T) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

3.3. Main Results. *e main results of this paper are as
follows.

Theorem 1 (the case of static pressure). Let Assumption 1 be
satisfied. Suppose that

(1) 1e norms of f, ϕi, i � 2 − 6, g, gR in the spaces they
belong to are small enough

(2) v0 ∈ V and Φ(v0) � 0
(3) θ0 ∈W1,2

ΓD
(Ω)

(4) (A1v0 + B1(v0, v0) − f1(0)) ∈ H (compatibility con-
dition at initial time for velocity)

(5) ‖v0‖V and ‖A1v0 + B1(v0, v0) − (1 − α0θ0)f(0)−

f1(0)‖ are small enough
(6) (C1θ0 + v0 · ∇θ0 − g1(0)) ∈ L2(Ω) (compatibility

condition at initial time for temperature)
(7) ‖θ0‖W1,2

ΓD
(Ω) and ‖C1θ0 + v0 · ∇θ0 − g1(0)‖L2(Ω) are

small enough

1en, there exists a solution (v, θ) to (34) such that

v ∈ C([0, T];V),

v′ ∈ L
2
(0, T;V) ∩ L

∞
(0, T; H),

θ ∈ C [0, T]; W
1,2
ΓD (Ω) ,

θ′ ∈ L
2 0, T; W

1,2
ΓD (Ω)  ∩ L

∞ 0, T; L
2
(Ω) .

(44)

*e solution satisfying ‖v‖V ≤ c and ‖θ‖W1,2
ΓD
≤ c for a

constant c> 0 small enough is unique.

Theorem 2 (the case of total pressure). Let Assumption 2 be
satisfied; v0 ∈ HK and θ0 ∈ L2(Ω). 1en, there exists a

solution (v, θ) ∈ (L∞(0, T; H)∩ L2(0, T;V)) × (L∞(0, T;

L2(Ω))∩L2(0, T; W1,2
ΓD

(Ω))) to (43).

4. Proof of Theorem 1

4.1. Existence and Estimation of Solutions to an Approximate
Problem. We first consider a problem approximating (34).

For every 0< ε< 1, define a functional Φε by

Φε(y) � inf
‖y − u‖2V

2ε
+Φ(u); u ∈ V , y ∈ V, (45)

which is called the Moreau regularization of Φ. When
zΦ: V⟶ 2V is the subdifferential ofΦ in the Hilbert space
V, let Jε � (I + εzΦ)− 1 and (zΦ)ε: � ε− 1(I − Jε)(the Yosida
approximation of zϕ ) for all ε> 0. *en, the functional Φε is
convex, continuous, Fréchet differentiable, and
∇Φε � (zΦ)ε ≡ ε− 1(I − Jε) for all 1> ε> 0. Moreover,

Φε(y) �
y − Jεy

����
����
2
V

2ε
+Φ Jεy( , ∀y ∈ V, (46)

lim
ε⟶0
Φε(y) � Φ(y), Φ Jεy( ≤Φε(y)≤Φ(y), ∀y ∈ V,

(47)

(cf. *eorem 2.9 in [27]). *e operator ∇Φε is Lipschitz
continuous with the constant 2ε− 1(cf. Proposition 2.3 in
[27]) and monotone (cf. Lemma 4.10 of ch. III in [25]).

By the fact that Γ2j, Γ3j, and Γ7j are in C2.1(Γij) and 4 of
Assumption 1, there exists a constant M such that

‖S(x)‖∞, ‖k(x)‖∞, ‖α‖L∞ Γ5( )≤M. (48)

*us, there exists c∗ such that
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2 μ(k(x)z, z)Γ2 + 2μ(Sz, z)Γ3 +(α(x)z, z)Γ5 + μ(k(x)z, z)Γ7





≤
μ
4
‖z‖

2
V + c∗‖z‖

2
, ∀z ∈ V,

(49)

(cf. .5.1.10 of [28]). *us,

A1u, u ≥
7μ
4

‖u‖
2
V − c∗‖u‖

2
, ∀u ∈ V,

A1u, v 


≤ c1‖u‖V‖v‖V, ∃c1 > 0,∀u, v ∈ V,

(50)

B1(v, u), w 


≤ c2‖v‖V‖u‖V‖w‖V, ∀u, v ∈ V,

(51)

where the operators A1, B1 are the ones in (32).
Let uj, j � 1, 2, . . .  and φj, j � 1, 2, . . .  be, respec-

tively, bases of the space V and W1,2
ΓD (Ω). Without loss of

generality, we assume that u1 � v0 and φ1 � θ0 as in [26]. We
find a solution vm � 

m
j�1 gjm(t)uj and θm � 

m
j�1 rjm(t)φj

to the problem

zvm

zt
, uj  + 2 μE vm( ,E uj   + vm · ∇( vm, uj  + 2 μk(x)vm, uj Γ2

+ 2 μSvm, uj Γ3

+2 α(x)vm, uj Γ5
+ μk(x)vm, uj Γ7

+ ∇Φε vm(t)( , uj  � 1 − α0θm( f, uj  + f1, uj ,

zθm

zt
,φj  + κ∇θm,∇φj  + β(x)θm,φj ΓR

− vmθm,∇φj  � g1,φj ,

vm(0) � v0,

θm(0) � θ0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)

which gives us a system for gjm(t) and rjm(t), j � 1 − m.*e
solutions to (52) depend on ε, but for convenience of no-
tation, here and in what follows, we use subindex m instead
of subindex mε. For tm, there exist absolute continuous
functions gjm(t) and rjm(t) on [0, tm). Since f ∈
W1,∞(0, T; L3(Ω)), f1 ∈W1,∞(0, T;V∗), g1 ∈W1,2 (0, T;

W1,2
ΓD (Ω)∗), and ∇Φε is Lipschitz continuous, gjm

′ (t) and
rjm
′ (t) are in fact absolute continuous. If ‖vm(t)‖ and ‖θm(t)‖

are bounded and vm(t), θm(t) are integrable, then gjm(t)

and rjm(t) are prolonged over tm. Under smallness of the
data of the problem and the compatibility condition of the
data at the initial instant, we will find estimates for ‖vm(t)‖

and ‖θm(t)‖ in the following, by which we obtain (111) and
see that tm � T.

Multiplying the first and the second equation of (52),
respectively, by gjm(t) and φjm(t) and adding for
i � 1, . . . , m, we get

zvm

zt
, vm  + 2 μE vm( ,E vm(   + vm · ∇( vm, vm  + 2 μk(x)vm, vm( Γ2 + 2 μSvm, vm( Γ3

+2 α(x)vm, vm( Γ5 + μk(x)vm, vm( Γ7 + ∇Φε vm(t)( , vm  � 1 − α0θm( f, vm  + f1, vm ,

zθm

zt
, θm  + κ∇θm,∇θm(  + β(x)θm, θm( ΓR − vmθm,∇θm  � g1, θm ,

vm(0) � v0,

θm(0) � θ0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(53)
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We will find a priori estimates for

I(t) :� vm(t)
����

����
2

+ vm
′ (t)

����
����
2

+ θm(t)
����

����
2

+ θm
′ (t)

����
����
2
. (54)

Since Φε is convex, continuous, and Fréchet differen-
tiable, we have

Φε(u) − Φε vm(t)( ≥ ∇Φε vm(t)( , u − vm(t) , ∀u ∈ V,

(55)

and so by Φε(0V) � 0,

0≤Φε vm(t)( ≤ ∇Φε vm(t)( , vm(t) . (56)

Also,

2 − α0θm(t)f, vm(t) 


≤ c α0


 θm(t)
����

����
2
W1,2
ΓD

‖f‖
2
L3 +

μ
4

vm(t)
����

����
2
V.

(57)

By virtue of (50), (51), (56), and (57), we have from the
first equation of (53)

d
dt

vm(t)
����

����
2

+
7μ
2

vm(t)
����

����
2
V − 2c2 vm(t)

����
����
3
V + 2Φε vm(t)( 

≤ c α0


 θm(t)
����

����
2
W1,2
ΓD

‖f‖
2
L3 + c‖f‖

2
L3 + c f1

����
����
2
V∗ +

μ
2

vm(t)
����

����
2
V + 2c∗ vm(t)

����
����
2
,

(58)

where c∗ and c2 are, respectively, the ones in (49) and (51),
and so
d
dt

vm(t)
����

����
2

+ 3μ − 2c2 vm(t)
����

����V
  vm(t)

����
����
2
V

+2Φε vm(t)( 

≤c α0


 θm(t)
����

����
2
W1,2
ΓD

‖f‖
2
L3 + c‖f‖

2
L3 + c f1

����
����
2
V∗

+2c∗ vm(t)
����

����
2
.

(59)

Here and in what follows are the constants independent
of the data of problem which are denoted by c with the
exceptions of c∗ and c2.

Setting t � 0 in the first equation of (52) and multiplying
the resulting equation by gjm

′ (0) and adding for
j � 1, . . . , m, we get

vm
′ (0)

����
����
2

+ A1vm(0), vm
′ (0)  + B1 vm(0), vm(0)( , vm

′ (0) 

+ ∇Φε v0( , vm
′ (0) 

� 1 − α0θ0( f(0), vm
′ (0)  + f1(0), vm

′ (0) .

(60)

By condition (2) of *eorem 1, for any u ∈ V, we have
Φ(u)≥Φ(v0) � 0, which by (47), it implies that Φε(v0) � 0
and ∇Φε(v0) � 0. *en, from (60), we have

vm
′ (0)

����
����≤ A1v0 + B1 v0, v0(  − 1 − α0θ0( f(0) − f1(0)

����
����,

(61)

which is valid by the compatibility condition at the initial
time for velocity (condition (4)) and the conditions for θ0, f.
On the contrary, taking into account (50), (51), and (56), we
have from the first equation of (53)
7μ
2

vm(t)
����

����
2
V ≤ 2c2 vm

����
����
3
V + 2 1 − α0θm(t)( f(t), vm(t) 

+ 2 f1(t), vm(t)  + 2c∗ vm

����
����
2

− 2 vm(t), vm
′ (t)( ,

(62)

and so

3μ vm(t)
����

����V≤ 2c2 vm(t)
����

����
2
V + c‖f(t)‖L3 + c α0


 θm(t)
����

����‖f(t)‖L3

+ c f1(t)
����

����V∗ + 2δ vm
′ (t)

����
���� + 2c∗δ vm(t)

����
���� ,

(63)

where δ is such that ‖·‖≤ δ‖·‖V. Since vmθm,∇θm  � 0 by
(17), we get from the second equation of (53)
d
dt

θm(t)
����

����
2

+ 2κ θm(t)
����

����
2
W1,2
ΓD

+ 2 β(x)θm, θm( ΓR � 2 g1, θm(t) .

(64)

From (64), we have
d
dt

θm(t)
����

����
2

+ κ θm(t)
����

����
2
W1,2
ΓD

+ β(x)θm, θm( ΓR ≤
1
κ

g1
����

����
2

W1,2
ΓD

 
∗ ,

(65)

θm(t)
����

����
2

+ 
t

0

Ω
κ ∇θm(s)



2dx ds≤ θ0

����
����
2

+
1
κ


t

0
g1(s)

����
����
2

W1,2
ΓD

 
∗ds.

(66)

Setting t � 0 in the second equation of (52) and mul-
tiplying the resulting equation by rjm

′ (0) and adding for
j � 1, . . . , m, we get

θm
′ (0)

����
����
2

+ b1 θ0, θm
′ (0)(  + v0 · ∇θ0, θm

′ (0)(  � g(0), θm
′ (0) ,

(67)

where − (v0θ0,∇θm
′ (0)) � (v0 · ∇θ0, θm

′ (0)) was used. From
(67), we have

θm
′ (0)

����
����≤ C1θ0 + v0 · ∇θ0 − g1(0)

����
����, (68)

which is valid by the compatibility condition at the initial
time for temperature (condition (6)).

On the contrary, taking into account vmθm,∇θm  � 0,
from the second equation of (53), we have

κ θm(t)
����

����
2
W1,2
ΓD
≤ g1

����
����

W1,2
ΓD

 
∗ θm(t)
����

����W1,2
ΓD

+δ1 θm(t)
����

����W1,2
ΓD

θm
′ (t)

����
����,

(69)
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where δ1 is such that ‖·‖≤ δ1‖·‖W1,2
ΓD
, and so

θm(t)
����

����W1,2
ΓD
≤
1
κ

g1
����

����
W1,2
ΓD

 
∗ + δ1 θm

′ (t)
����

���� . (70)

Taking into account (66), we have from (63)

3μ vm(t)
����

����V≤ c2 vm(t)
����

����
2
V + c‖f‖L∞ 0,T;L3( )

+ c α0


 θ0
����

����
2

+
1
κ


T

0
g1

����
����
2

W1,2
ΓD

 
∗ds 

1/2

‖f‖L∞ 0,T;L3( )

+ f1
����

����L∞ 0,T;V∗( )
+ max 2δ, 2c∗δ  vm

′ (t)
����

���� + vm(t)
����

���� .

(71)

Differentiating the first equality of (52) with respect to t,
we have that

vm
″ (t), vj  + A1vm

′ (t), vj  + B1 vm(t), vm(t)( ′, vj 

+ ∇Φε vm( ′( , vj 

� − α0θm
′ (t)f, vj  − 1 − α0θm(t)( f′, vj  + f1′, vj .

(72)

Multiplying (72) by gjm
′ (t) and adding for j, we have

vm
″(t), vm
′(t)  + A1vm

′(t), vm
′(t)  + B1vm(t), vm(t)( ′, vm

′(t)  + ∇Φε vm( ( ′, vm
′(t) 

� − α0θm
′(t)f, vm

′(t)  − 1 − α0θm(t)( f′, vm
′(t)  + f1′, vm

′(t) .
(73)

Calculating (B(vm(t), vm(t)))′, we have
B1vm(t), vm(t)( ′, vm

′ (t) 


 � B1 vm
′ , vm( , vm

′ 


+ B1 vm, vm
′( , vm
′ 

≤ 2c2 vm

����
����V vm
′

����
����
2
V,

(74)

where c2 is the one in (51). Also, by the Hölder inequality
and the Young inequality, we have

2 α0θm
′ (t)f, vm

′ (t) 


≤ c α0


 θm
′ (t)

����
����
2
W1,2
ΓD

‖f‖
2
L3 +

μ
8

vm
′ (t)

����
����
2
V

,

2 α0θm(t)f′, vm
′ (t) 


≤ c α0


 θm(t)
����

����
2
W1,2
ΓD

f′
����

����
2
L3 +

μ
8

vm
′ (t)

����
����
2
V

,

2 f′(t), vm
′ (t) 


≤ c‖f′(t)‖

2
L3 +

μ
8

vm
′ (t)

����
����
2
V,

2 f1′(t), vm
′ (t) 


≤ c f1′(t)

����
����
2
V∗ +

μ
8

vm
′ (t)

����
����
2
V.

(75)

Taking into account (50), (74), and (75) and the fact that
(∇Φε(vm))′, vm

′ ≥ 0, which is owing to monotonicity of r
from ∇Φε (cf. [26], pp. 116), from (73), we have

d
dt

vm
′ (t)

����
����
2

+ 3μ − 4c2 vm(t)
����

����V  vm
′ (t)

����
����
2
V +

μ
2

vm
′ (t)

����
����
2
V

≤ cα0 θm
′(t)

����
����
2
W1,2
ΓD

‖f‖
2
L3 + c α0


 θm(t)
����

����
2
W1,2
ΓD

f′
����

����
2
L3 + c f′

����
����
2
L3 + c f1′

����
����
2
V∗ + 2c∗ vm

′ (t)
����

����
2

+
μ
2

vm
′ (t)

����
����
2
V,

(76)

that is,
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d
dt

vm
′ (t)

����
����
2

+ 3μ − 4c2 vm(t)
����

����V  vm
′ (t)

����
����
2
V

≤ c α0


 θm
′(t)

����
����
2
W1,2
ΓD

‖f‖
2
L3 + c α0


 θm(t)
����

����
2
W1,2
ΓD

f′
����

����
2
L3 + c f′

����
����
2
L3 + c f1′

����
����
2
V∗ + 2c∗ vm

′ (t)
����

����
2
.

(77)

Differentiating the second equality of (52) with respect to
t, we have that

θm
″(t), φj  + C1θm

′(t), φj  − vm
′ θ,∇φj  − vmθ′,∇φj 

� g1′,φj .

(78)

Multiplying (78) by rjm
′(t) and adding for j, we have that

θm
″(t), θm
′(t)  + C1θm

′(t), θm
′(t)  − vm

′ θm,∇θm
′(t) 

− vmθ′,∇θm
′(t)  � g1′, θm

′(t) .

(79)

On the contrary, we get

2 vm
′ θ,∇θm
′(t) 


≤

c

κ
vm
′

����
����
2
V‖θ‖

2
W1,2
ΓD

+ κ θm
′(t)

����
����
2
W1,2
ΓD

. (80)

Taking into account vmθ′,∇θm
′(t)  � 0 (see (17) and

(80)), we have from (79)
d
dt

θm
′(t)

����
����
2

+ 2κ θm
′(t)

����
����
2
W1,2
ΓD
≤

c

κ
vm
′

����
����
2
V

‖θ‖
2
W1,2
ΓD

+ κ θm
′(t)

����
����
2
W1,2
ΓD

+ c g1′
����

����
2

W1,2
ΓD

 
∗ +

κ
4
θm
′(t)

����
����
2
W1,2
ΓD

.

(81)

We have from (81)
d
dt

θm
′(t)

����
����
2

+
3κ
4

θm
′(t)

����
����
2
W1,2
ΓD
≤

c

κ
vm
′

����
����
2
V‖θ‖

2
W1,2
ΓD

+ c g1′
����

����
2

W1,2
ΓD

 
∗ .

(82)

Adding (59), (77), (65), and (82), we have

d
dt

I(t) + 2μ − 4c2 vm(t)
����

����V  vm(t)
����

����
2
V + vm
′ (t)

����
����
2
V  + μ −

c

κ
θm

����
����
2
W1,2
ΓD

  vm
′ (t)

����
����
2
V

+ κ − c α0


‖f‖
2
L3 − c α0


‖f′‖2L3  θm

����
����
2
W1,2
ΓD

+
3κ
4

− c α0


‖f‖
2
L3  θm
′

����
����
2
W1,2
ΓD

≤ c ‖f‖
2
L3 +‖f′‖2L3  + c f1

����
����
2
V∗ + f1′

����
����
2
V∗  + c g1

����
����
2

W1,2
ΓD

 
∗ + g1′

����
����
2

W1,2
ΓD

 
∗ 

+ 2c∗ vm(t)
����

����
2

+ vm
′ (t)

����
����
2

 .

(83)

Integrating (83), we have

I(t) + 
t

0
2μ − 4c2 vm(s)

����
����V  vm(t)

����
����
2
V + vm
′ (s)

����
����
2
V  + μ −

c

κ
θm

����
����
2
W1,2
ΓD

  vm
′ (s)

����
����
2
V + κ − c α0


‖f‖

2
L3 − c α0


 f′
����

����
2
L3  θm

����
����
2
W1,2
ΓD



+
3κ
4

− c α0


‖f‖
2
L3  θm
′

����
����
2
W1,2
ΓD
ds

≤ I(0) + F(t) + 2c∗ 
t

0
vm(s)

����
����
2

+ vm
′ (s)

����
����
2

 ds,

(84)

where

F(t) :� ct ‖f‖
2
W1,∞ 0,T;L3( ) + f1

����
����
2
W1,∞ 0,T;V∗( )

 

+ c g1
����

����
2

W1,2 0,t; W1,2
ΓD

 
∗

 
.

(85)

By (61) and (68), we have

I(0)≤ v0
����

����
2

+ A1v0 + B1 v0, v0(  − 1 − α0θ0( f(0) − f1(0)
����

����
2

+ θ0
����

����
2

+ C1θ0 + v0 · ∇θ0 − g1(0)
����

����
2
.

(86)
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By the condition of theorem, let ‖f‖W1,∞(0,T;L3) be so
small that

κ − c α0


‖f(t)‖
2
L3 − c α0


‖f′(t)‖

2
L3 ≥ 0, at a.e. t ∈ [0, T],

3κ
4

− c α0


‖f‖
2
L3 ≥ 0, at a.e. t ∈ [0, T].

(87)

If

vm(0)
����

����V � v0
����

����V<
μ
2c2

, (88)

θm(0)
����

����W1,2
ΓD

� θ0
����

����W1,2
ΓD
<
μκ
c

, (89)

are valid, then there exists tm such that

2μ − 4c2 vm(t)
����

����V≥ 0,

μ −
c

κ
θm(t)

����
����W1,2
ΓD
≥ 0,

(90)

on [0, tm]. *erefore, taking into account (86), by the
Gronwall inequality, we have

I(t)≤ v0
����

����
2

+ A1v0 + B1 v0,v0(  − 1 − α0θ0( f(0) − f1(0)
����

����
2



+ θ0
����

����
2

+ C1θ0 + v0 ·∇θ0 − g1(0)
����

����
2

+ F(T)e
2c∗t,

(91)

on all intervals of t satisfying (90).
Using the estimate, we will obtain a quadratic inequality

satisfied by ‖vm(t)‖V.
Put

β :� v0
����

����
2

+ A1v0 + B1 v0, v0(  − 1 − α0θ0( f(0) − f1(0)
����

����
2



+ θ0
����

����
2

+ C1θ0 + v0 · ∇θ0 − g1(0)
����

����
2

+ F(T)e
2c∗T.

(92)

Note that β depends only on the data of the problem.
*en, when f satisfies (87), we can see from (91) that

vm(t)
����

���� + vm
′ (t)

����
���� ≤

�
2

√
vm(t)

����
����
2

+ vm
′ (t)

����
����
2

 
1/2
≤

��

2β


,

θm
′(t)

����
����≤

��

β


,

(93)

on [0, tm], where (90) holds. Let the data of the problem be
so small that

c

κ2
g1

����
����

W1,2 0,T; W1,2
ΓD

 
∗

 
+ δ1

��

β


 ≤
μ
2
. (94)

By (70) and (93), for the small data of the problem, we
have

c

κ
θm(t)

����
����W1,2
ΓD
≤

c

κ2
g1

����
����

W1,2 0,T; W1,2
ΓD

  
∗ + δ1

��

β


 ≤
μ
2
,

(95)

on [0, tm], which implies

μ −
c

κ
θm(t)

����
����W1,2
ΓD
≥
μ
2
, ∀t ∈ 0, tm . (96)

*erefore, for such small data of the problem that (94) is
valid, if

2μ − 4c2 vm(t)
����

����V≥ 0, ∀t ∈ 0, tm + c , c> 0, tm + c≤T,

(97)

then owing to (96), step by step, we have

μ −
c

κ
θm(t)

����
����W1,2
ΓD
≥
μ
2
, ∀t ∈ 0, tm + c . (98)

From the above, we see that, for the small data of the
problem satisfying (87)–(89) and (94),

μ −
c

κ
θm(t)

����
����W1,2
ΓD
≥
μ
2

, (99)

is valid on the interval where the first inequality of (90) is
valid.

Put

c :� ‖f(t)‖L∞ 0,T;L3( )

+ c α0


 θ0
����

����
2

+
1
κ


T

0
g1

����
����
2

W1,2
ΓD

 
∗ds 

1/2

‖f(t)‖L∞ 0,T;L3( )

+ f1(t)
����

����L∞ 0,T;V∗( )
+ max 2δ, 2c∗δ 

��

2β


.

(100)

By (66), (93), and (63), for the small data satisfying
(87)–(89) and (94), we have a quadratic inequality for
‖vm(t)‖V, which is the one we want,

0≤ c − 3μ vm(t)
����

����V + 2c2 vm(t)
����

����
2
V, (101)

on the intervals where the first inequality of (90) is satisfied.
By the conditions of the theorem, we can assume that the

data of the problem are so small that (87)–(89) and (94) are
valid, and c satisfies the following inequality:

9μ2 − 8c2c> 4μ
2
. (102)

Now, let us prove that if

v0
����

����V≤
3μ −

���������
9μ2 − 8c2c



4c2
<

μ
4c2

 , (103)

then for any m,

2μ − 4c2 vm(t)
����

����V≥ μ, ∀t ∈ [0, T]. (104)

Since 2μ − 4c2‖v0‖V> μ, on an interval [0, tm],

2μ − 4c2 vm(t)
����

����V≥ μ. (105)

Let us first prove that if the first inequality of (90) is valid
on an interval [0, tm], then more stronger

International Journal of Differential Equations 15



2μ − 4c2 vm(t)
����

����V≥ μ, ∀t ∈ 0, tm , (106)

is valid. Putting y � ‖vm(t)‖V in (101) (which is valid on the
interval where the first inequality of (90) holds when
(87)–(89) and (94) are valid), we get

0≤ c − 3μy + 2c2y
2 on 0, tm . (107)

By virtue of (102), there exist two real roots of
z � c − 3μy + c2y

2:

y1 �
3μ −

���������
9μ2 − 8c2c



4c2
,

y2 �
3μ +

���������
9μ2 − 8c2c



4c2
,

(108)

and on the intervals [0, y1] and [y2, +∞), (107) holds. *us,
by continuity of ‖vm(t)‖V with respect to t from
‖v(0)‖V ∈ [0, y1], we have that ‖vm(t)‖V ∈ [0, y1]∀t ∈
[0, tm], that is,

vm(t)
����

����V≤
3μ −

���������
9μ2 − 8c2c



4c2
<

μ
4c2

, ∀t ∈ 0, tm . (109)

*us,

2μ − 4c2 vm(t)
����

����V> μ, ∀t ∈ 0, tm , (110)

which shows (106). *us, by step by step, we see that the fist
inequality of (90) is valid on [0, T], and (104) is valid.

If (103) is valid, then so is (88). *erefore, for the small
data satisfying (87), (89), (94), (102), and (103), we also have
(99) on [0, T]. By (104) and (99), we have

vm(t)
����

����V≤
μ
4c2

, ∀t ∈ [0, T],∀m,∀ε> 0;

c

κ
θm(t)

����
����W1,2
ΓD
≤
μ
2
, ∀t ∈ [0, T],∀m,∀ε> 0.

(111)

*en, by (91) and (83), we have

vm
′ (t)

����
����≤ const, ∀t ∈ [0, T],∀m,∀ε> 0;

vm
′

����
����L2(0,T;V)

≤ const, ∀m,∀ε> 0;

θm
′(t)

����
����≤ const, ∀t ∈ [0, T],∀m,∀ε> 0;

θm
′

����
����

L2 0,T;W1,2
ΓD

 
≤ const ∀m,∀ε> 0.

(112)

By (111),


T

0
Φε vm(t)( dt≤ const, ∀m,∀ε> 0, (113)

and so by (46) and (47),


T

0
vm(t) − Jε vm(t)( 

����
����
2
Vdt≤ cε, ∀m,∀ε> 0. (114)

4.2. Existence and Uniqueness of a Solution. Let us prove the
existence of a solution. Owing to (111) and (112), we can
extract subsequences, which are denoted with the subindex
as before, such that

vm⟶ v inC([0, T];V),

vm
′ ⇀v′ in L

2
(0, T;V),

vm
′ ⇀∗ v′ inL

∞
(0, T; H),

θm⟶ θ inC [0, T]; W
1,2
ΓD ,

θm
′ ⇀θ′ in L

2 0, T; W
1,2
ΓD ,

θm
′ ⇀∗ θ′ in L

∞ 0, T; L
2
(Ω) ,

(115)

when m⟶∞ and ε⟶ 0.
Putting u � 

M
j�1 kj(t)uj, where kj(t) ∈ C1[0, T] and M

is the positive integer, multiply the first equation of (52) by
kj(t) and add for j � 1, . . . , M. *en, multiply the first
equation of (52) by gjm(t) and add for j � 1, . . . , m.
Substituting the resulting equations, we have

vm
′ (t) + A1vm(t) + B1 vm(t), vm(t)( 

+ ∇Φε vm( , u(t) − vm(t) � 1 − α0θ( f + f1, u(t) − vm(t) .

(116)

Since Φε is convex, continuous, and Fréchet differen-
tiable, we have

Φε(u(t)) − Φε vm(t)( ≥ ∇Φε vm(t)( , u − vm(t) . (117)

Taking into account (117), we have from (116)


T

0
vm
′ (t) + A1vm(t) + B1 vm(t), vm(t)(  − 1 − α0θm( f

− f1, u(t) − vm(t)dt

+ 
T

0
Φε(u(t)) − Φε vm(t)( ( dt≥ 0.

(118)

Since Φ(u)≥Φε(u) and Φ(Jεwm(t))≤Φε(wm(t))(see
(47)), we have from (118)


T

0
vm
′ (t) + A1vm(t) + B1 vm(t), vm(t)(  − 1 − α0θm( f

− f1, u(t) − vm(t)dt

+ Ψ(udt) − 
T

0
Φ Jεvm(t)( dt≥ 0.

(119)

By (114), Jεvm⟶ v in L2(0, T;V) as m⟶∞ and
ε⟶ 0, and by lower semicontinuity of Φ,

lim
m⟶∞,ε⟶0


T

0
Φ Jεvm(t)( dt≥ 

T

0
Φ(v(t))dt. (120)

In the routine way, we can prove that


T

0
B1 vm(t), vm(t)( , v(t) dt⟶ 

T

0
B1(v(t), v(t)), v(t) dt,

(121)

as m⟶∞ and ε⟶ 0.
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Since limmk⟶∞,ε⟶ 0 A1vm(t), vm(t)〉 � A1v(t),

v(t)〉, by (120) and (121), we have from (119)


T

0
v′(t) + A1v(t) + B1(v(t), v(t))

− 1 − α0θ( f − f1, u(t) − v(t)dt + Ψ(u) − Ψ(v)≥ 0.

(122)

Since vm(0) � v0, by (115), it is obvious that v(0) � v0.
B1(v(t), v(t)) ∈ L∞(0, T;V∗), and the set

u � 
M
j�1 kj(t)uj; kj(t) ∈ C1[0, T], M: positive intiger  is

dense in L4(0, T;V), and so (122) is valid for all
u ∈ L4(0, T;V).

By (115), we can get from the second equation of (52)
that


T

0

zθm

zt
,φ + κ∇θm,∇φ(  + β(x)θm,φ( ΓR − vmθm,∇φ dt 

� 
T

0
g1,φ dt, φ ∈ L

2 0, T; W
1,2
ΓD .

(123)

Easily, we see that

κ∇θm,∇φ( ⟶ (κ∇θ,∇φ), for a.e. t ∈ [0, T]. (124)

Also,


T

0
vmθm,∇φ  − vθ,∇φ 


dt

≤ 
T

0
vm − v

����
����L6 θm

����
����L3‖∇φ‖L2dt + 

T

0
v θm − θ( ,∇φ dt

≤ vm − v
����

����L∞(0,T;V)
θm

����
����L2 0;T;L3( )

‖φ‖
L2 0,T;W1,2

ΓD
 

+ 
T

0
v θm − θ( ,∇φ 


dt.

(125)

Since v∇φ ∈ L2(0, T; L6/5(Ω)), by (115),


T

0 | v(θm − θ),∇φ |dt⟶ 0. *us,


T

0
vmθm,∇φ dt⟶ 

T

0
vθ,∇φ dt. (126)

It is easy to prove that


T

0
β(x)θm,φ( ΓRdt⟶ 

T

0
(β(x)θ,φ)ΓRdt. (127)

*erefore, from (123), we have


T

0

zθ
zt

,φ  +(κ∇θ,∇φ) +(β(x)θ, φ)ΓR − vθ,∇φ  dt � 
T

0
g1,φ dt.

(128)

Since θm(0) � θ0, by (115), it is obvious that θ(0) � θ0.
*erefore, we proved the existence of a solution.

Let us prove uniqueness of a solution. Let
(v1, θ1) and (v2, θ2) be the two solutions to Problem I-VI
satisfying inequality (111) instead of approximate solutions.
*en, taking into account (44) (Remark 4), from (35), we
have

v1′(t) + A1v1(t) + B1 v1(t), v1(t)(  − 1 − α0θ1( f − f1, v2(t) − v1(t)  +Φ v2(t)(  − Φ v1(t)( ≥ 0,

v2′(t) + A1v2(t) + B1 v2(t), v2(t)(  − 1 − α0θ2( f − f1, v1(t) − v2(t)  +Φ v1(t)(  − Φ v2(t)( ≥ 0,
(129)

which imply

v1′(t) − v2′(t), v1(t) − v2(t)  + A1 v1(t) − v2(t)( , v1(t) − v2(t) 

≤ α0


 θ1 − θ2( f, v1(t) − v2(t)


 + B1 v1(t), v1(t)(  − B1 v2(t), v2(t)( , v1(t) − v2(t) 


.
(130)

By virtue of (50) and (51), we have
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d
dt

v1(t) − v2(t)
����

����
2

  +
7μ
2

v1(t) − v2(t)
����

����
2
V

≤ 2c∗ v1(t) − v2(t)
����

����
2

+
μ
2

v1(t) − v2(t)
����

����
2
V + c‖f‖

2
L3 θ1 − θ2

����
����
2

+ 2 B v1(t) − v2(t), v1(t)( , v1(t) − v2(t) 


 + 2 B v2(t), v1(t) − v2(t)( , v1(t) − v2(t) 




≤ 2c∗ v1(t) − v2(t)
����

����
2

+
μ
2

v1(t) − v2(t)
����

����
2
V + c‖f‖

2
L3 θ1 − θ2

����
����
2

+ 2c2 v1(t)
����

����V + v2(t)
����

����V  v1(t) − v2(t)
����

����
2
V,

(131)

where c2 is the one in (51). By (111),

2c2 v1(t)
����

����V + v2(t)
����

����V ≤ μ, (132)

and so we have

d v1(t) − v2(t)
����

����
2

dt
+ 2μ v1(t) − v2(t)

����
����
2
V

≤ 2c∗ v1(t) − v2(t)
����

����
2

+ c‖f‖
2
L3 θ1 − θ2

����
����
2
.

(133)

Also, from
zθ1
zt

, φ  + κ∇θ1,∇φ(  + β(x)θ1,φ( ΓR − v1θ1,∇φ1  � g1, φ ,

zθ2
zt

,φ  + κ∇θ2,∇φ(  + β(x)θ2,φ( ΓR − v2θ2,∇φ  � g1, φ ,

(134)

we have

zθ1 − θ2
zt

, θ1 − θ2  + κ ∇θ1 − ∇θ2,∇θ1 − ∇θ2(  + β(x) θ1 − θ2( , θ1 − θ2( ΓR

− v1 θ1 − θ2( ,∇ θ1 − θ2(   − v1 − v2( θ2,∇ θ1 − θ2(   � 0.

(135)

Taking into account v1(θ1 − θ2),∇(θ1 − θ2)  � 0(see
(17)), by (80), we have

d
dt

θ1 − θ2
����

����
2

+ 2κ ∇θ1 − ∇θ2
����

����
2

≤
c

κ
v1(t) − v2(t)

����
����
2
V θ2(t)

����
����
2
W1,2
ΓD

+ κ ∇θ1 − ∇θ2
����

����
2
,

(136)

and so

d
dt

θ1(t) − θ2(t)
����

����
2

 ≤
c

κ
v1(t) − v2(t)

����
����
2
V θ2(t)

����
����
2
W1,2
ΓD

.

(137)

By (111),

c

κ
θ2(t)

����
����
2
W1,2
ΓD
≤
μ
2
. (138)

*erefore, adding (133) and (137), we get

d
dt

v1(t) − v2(t)
����

����
2

+ θ1(t) − θ2(t)
����

����
2

 

≤ 2c∗ + c‖f‖
2
L3  v1(t) − v2(t)

����
����
2

+ θ1(t) − θ2(t)
����

����
2

 .

(139)

We have from (139)

v1(t) − v2(t)
����

����
2

+ θ1(t) − θ2(t)
����

����
2

≤
t

0
2c∗ +2c‖f‖

2
L3  v1(s) − v2(s)

����
����
2

+ θ1(s) − θ2(s)
����

����
2

 ds,

(140)

which implies v1(t) � v2(t) and θ1(t) � θ2(t) for all
t ∈ [0, T].

5. Proof of Theorem 2

5.1. Existence and Estimation of a Solution to an Approximate
Problem. We first consider a problem approximating (43).
For every 0< ε< 1, let a functional Φε be defined by (45).
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Let uj, j � 1, 2, . . .  and φj, j � 1, 2, . . .  be, respec-
tively, bases of the space V and W1,2

ΓD (Ω). Without loss of
generality, we assume that u1 � v0 and φ1 � θ0 as in [26]. We

find a solution vm � 
m
j�1 gjm(t)uj and θm � 

m
j�1 rjm(t)φj

to the problem

zvm

zt
, uj  + 2 μ θm( E vm( ,E uj   + rot vm × vm, uj  + 2 μ θm( k(x)vm, uj Γ2

+2 μ θm( Svm, uj Γ3
+ 2 α(x)vm, uj Γ5

+ μ θm( k(x)vm, uj Γ7
+ ∇Φε vm(t)( , uj 

� 1 − α0θm( f, uj  + f2, uj ,

zθm

zt
,φj  + κ θm( ∇θm,∇φj  + β(x)θm,φj ΓR

− vmθm,∇φj  � g2,φj ,

vm(0) � v0,

θm(0) � θ0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(141)

which gives us a system for gjm(t) and rjm(t), j � 1 − m.*e
solutions to (141) depend on ε, but for convenience of
notation, here and in what follows, we use subindex m. For
tm, there exist absolute continuous functions gjm(t) and
rjm(t) on [0, tm). If ‖vm(t)‖ and ‖θm(t)‖ are bounded and
vm(t) and θm(t) are integrable, then gjm(t) and rjm(t) are

prolonged over tm. We will find estimates (157) in the
following, by which we see that tm � T.

Multiplying the first and the second equation of (141),
respectively, by gjm(t) and φjm(t) and adding for
i � 1, . . . , m, we get

zvm

zt
, vm  + 2 μ θm( E vm( ,E vm(   + rot vm × vm, vm  + 2 μ θm( k(x)vm, vm( Γ2

+ 2 μ θm( Svm, vm( Γ3 + 2 α(x, t)vm, vm( Γ5 + μ θm( k(x)vm, vm( Γ7

+ ∇Φε vm(t)( , vm  + α0θmf, vm  � f, vm  + f2, vm ,

zθm

zt
, θm  + κ θm( ∇θm,∇θm(  + β(x)θm, θm( ΓR − vmθm,∇θm  � g2, θm ,

vm(0) � v0,

θm(0) � θ0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(142)

Let us estimate terms on the left-hand side above. It is
easy to see

2 μ θm( E vm( ,E vm(  dt≥ 2μ0 vm

����
����
2
V. (143)

By the fact that Γ2j, Γ3j, Γ7j are in C2.1(Γij) and As-
sumption 2, there exists a constant M such that

‖S(x)‖∞, ‖k(x)‖∞, ‖α‖L∞ Γ5( )≤M. (144)

*us,

2 μ θm( k(x)v, v( Γ2 + 2 μ θm( Svm, vm( Γ3 + 2 α(x)vm, vm( Γ5


+ μ θm( k(x)vm, vm( Γ7


≤
μ0
2

vm

����
����
2
V + k11 vm

����
����
2
,

(145)

(cf. *eorem 1.5.1.10 of [28]). Obviously,

rot vm × vm, vm  � 0. (146)
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Since Φε is convex, continuous and Fréchet differen-
tiable, we have

Φε(y) − Φε(x)≥ ∇Φε(x), y − x , ∀x, y ∈ V. (147)

*us,
∇Φε vm(t)( , 0V − vm(t) ≤Φε 0V(  − Φε vm(t)( ≤ − Φε vm(t)( ,

(148)

∇Φε vm(t)( , vm(t) ≥Φε vm(t)( . (149)

Also, by the Hölder inequality, we have

α0θmf, vm dt


≤ k12 vm(t)
����

����
2

+
κ0
4

θm(t)
����

����
2
W1,2
ΓD

, (150)

where k12 � c|α0|‖f‖2L∞(0,T;L3).

f, wm  + f2, wm 


≤
μ0
2

wm

����
����
2
V + c ‖f‖

2
L3 + f2

����
����
2
v∗ .

(151)

Also, we have

κ θm( ∇θm,∇θm ≥ κ0 θm

����
����
2
W1,2
ΓD

, β(x)θm, θm( ΓR ≥ 0.

(152)

By (17), we have

wmθm,∇θm  � 0. (153)

g2, θm 


≤
κ0
4

θm(t)
����

����
2
W1,2
ΓD

+ c g2
����

����
2

W1,2
ΓD

 
∗ . (154)

Taking

k1 � k11 + k12, (155)

by (143)–(154), we have from (142)
d
dt

vm(t)
����

����
2

+
d
dt

θm(t)
����

����
2

+2μ0 vm

����
����
2
V +κ0 θm

����
����
2
W1,2
ΓD

+Φε vm(t)( 

≤c ‖f(t)‖
2
L3 + f2(t)

����
����
2
v∗ + g2(t)

����
����
2

W1,2
ΓD

 
∗  +2k1 vm(t)

����
����
2
.

(156)

Applying the Gronwall inequality, we have from (156)

vm(t)
����

����
2

+ θm(t)
����

����
2 ≤ v0

����
����
2

+ θ0
����

����
2

+ 
t

0
‖f(s)‖

2
L3 + f2(s)

����
����
2
v∗ + g2(s)

����
����
2

W1,2
ΓD

 
∗ ds e

2k1t
,

vm

����
����
2
L2(0,T;V)

+ θm

����
����
2
L2 0,t;W1,2

ΓD
 

≤ c v0
����

����
2

+ θ0
����

����
2

+ 
T

0
‖f(t)‖

2
L3 + f2(t)

����
����
2
v∗ + g2(t)

����
����
2

W1,2
ΓD

 
∗  dt,


T

0
Φε vm(t)( dt≤ c v0

����
����
2

+ θ0
����

����
2

+ 
T

0
‖f(t)‖

2
L3 + f2(t)

����
����
2
v∗ + g2(t)

����
����
2

W1,2
ΓD

 
∗ dt .

(157)

Note that c in (157) depends on T and (via k12) f but
independent of m and ε.

By (46) and (29) and the third inequality of (157), we
have


T

0
vm(t) − Jε vm(t)( 

����
����
2
Vdt≤ cε, (158)

with c independent of ε. Multiplying the first equation of
(141) by gjm(t) − gjm(s), summing for j, and taking into
account (147), we have

1
2
d vm(t) − vm(s)

����
����
2

dt
+ A2 θm( vm(t) + B2 vm(t), vm(t)(  + α0θm(t)f(t) − f(t) − f2(t), vm(t) − vm(s) 

� ∇Φε vm(t)( , vm(s) − vm(t) ≤Φε vm(s)(  − Φε vm(s)( ≤Φε vm(s)( ,

(159)

where the operators A2(θm), B2 are the ones in (42). By (145)
and (144), we have

A2 θm( vm(t), vm(t) ≥
3μ0
2

vm(t)
����

����
2
V − k11 vm(t)

����
����
2
,

A2 θm( vm(t), vm(s) 


≤ c vm(t)
����

����V vm(s)
����

����V,

(160)
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where k11 is the one in (145). Taking into account (160) and
the fact that B2(vm(t), vm(t)), vm(t)  � 0, we have from
(159)

1
2
d vm(t) − vm(s)

����
����
2

dt
≤Φε vm(s)(  + A2 θm( vm(t), vm(s)  + B2 vm(t), vm(t)( , vm(s) 

+ − α0θm(t)f(t) + f(t) + f2(t), vm(t) − vm(s)  + k11 vm(t)
����

����
2
.

(161)

Let us integrate every term of (161) first with respect to t

from s to s + h and then with respect to s from 0 to T, where
vm(t) � 0 when t ∈ (T, T + h).


T

0


s+h

s

d vm(t) − vm(s)


����
����
2

dt
dtds � 

T

0
vm(s + h) − vm(s)

����
����
2ds.

(162)

By the third inequality of (157),


T

0


s+h

s
Φε vm(s)( dtds≤ h 

T

0
Φε vm(s)( ds≤ c1h. (163)

By (157) and (161), we have


T

0


s+h

s
A2 θm( vm(t), vm(s) dtds





≤ c 
T

0
vm(s)

����
����V 

s+h

s
vm(t)

����
����Vdtds

≤ c 
T

0
vm(s)

����
����V

��
h

√
vm

����
����L2(0,T;V)

 ds≤ c2

��
h

√
.

(164)

Since ‖w‖L3 ≤K‖w | ‖1/2L2 ‖w‖1/2L6 ,

B2(v, w), z 


 � | rot v × w, z〈 〉|

≤K‖rot v | ‖L2‖w‖L3‖z‖L6

≤K‖v‖V‖w‖
1/2

‖w‖
1/2
V ‖z‖V,

(165)

and so by (157), we have


T

0


s+h

s
B2 vm(t), vm(t)( vm(s) 




dtds

≤K 
T

0


s+h

s
vm(t)

����
����
3/2
V vm(t)

����
����
1/2

vm(s)
����

����Vdtds

≤K 
T

0
vm(s)

����
����V 

s+h

s
vm(t)

����
����
2
Vdt 

3/4


s+h

s
vm(t)

����
����
2dt 

1/4

ds≤ c3h
1/4

.

(166)

Also, by (157), we have


T

0


s+h

s
f + f2( (t), vm(t) dtds




≤ 

T

0
f + f2( (t), vm(t) 


 

t

t− h
ds dt≤ c4h,


T

0


s+h

s
f + f2( (t), − vm(s) dtds




≤K 

T

0
vm(s)

����
����V 

s+h

s
f + f2( (t)‖

����
����V∗dtds≤ c5

��
h

√
.

(167)

In the same way, we get


T

0


s+h

s
α0θmf, vm(t) − vm(s) dtds




≤ c6h + c7

��
h

√
,


T

0


s+h

s
k11 vm(t)

����
����
2dtds




≤ c8h.

(168)

Note that constants ci, i � 1 − 8, are independent of m, ε.
By virtue of (162)–(168), uniformly with respect to m, ε,


T

0
vm(s + h) − vm(s)

����
����
2ds≤O h

1/4
 , (169)

and the set vm  is relatively compact in
L2(0, T;W9/10,2(Ω))(see *eorem 5 of [29]). Also, we
have

κ θm( ∇θm,∇φ( 


≤ κ1 ∇θm

����
����L2‖φ‖W1,2

ΓD
(Ω),

β(x)θm,φ( ΓR



≤ c θm

����
����W1,2
ΓD

(Ω)
‖φ‖W1,2

ΓD
(Ω),

vmθm,∇φ 


≤ c vm

����
����V θm

����
����L3‖φ‖W1,2

ΓD
(Ω).

(170)

By (170), from the second equation of (141), we have
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zθm

zt
,φ 




≤ c θm

����
����W1,2
ΓD

(Ω)
+ vm

����
����
2
V + θm

����
����
2
W1,2
ΓD

(Ω)
+ g2

����
����

W1,2
ΓD

 
∗ ‖φ‖W1,2

ΓD
, ∀φ ∈W

1,2
ΓD (Ω). (171)

Hence, by (157), we know that

θm
′ ∈ L1 0, T; W1,τ

ΓD 
∗

 , θm
′

����
����

L1 0,T; W1,τ
ΓD

 
∗

 
≤ c, (172)

where c is independent of m, ε. *us, the set θε  is relatively
compact in L2(0, T; W9/10,2(Ω))(see Corollary 5 of [29]).

5.2. Existence of a Solution. We can extract subsequences,
which are denoted as before, such that

vm⇀v in L
2
(0, T;V),

vm⇀
∗

v in L
∞

(0, T; H),

vm⟶ v inL
2 0, T;W9/10,2

(Ω) ,

θm⇀θ in L
2 0, T; W

1,2
D (Ω) ,

θm⇀
∗
θ in L

∞ 0, T; L
2
(Ω) ,

θm⟶ θ inL
2 0, T; W

9/10,2
(Ω) ,

(173)

as m⟶∞ and ε⟶ 0.
On the contrary, putting u � 

M
j�1 kj(t)uj, where

kj(t) ∈ C1[0, T] and is a positive integer, multiply the first
equation of (141) by kj(t) and add for j � 1, . . . , M. *en,
multiply the first equation of (141) by gjm(t) and add for
j � 1, . . . , m. Substituting the resulting equations, we have


T

0

zvm

zt
+ A2 θm( vm(t) + B2 vm(t), vm(t)(  + ∇Φε vm(t)( , u(t) − vm(t) dt

� 
T

0
− α0θmf + f + f2, u(t) − vm(t) dt.

(174)

Since


T

0
vm
′ (t), u(t) − vm(t) dt � 

T

0
u′(t), u(t) − vm(t) dt

−
1
2

vm(T) − u(T)
����

����
2

+
1
2

vm(0) − u(0)
����

����
2
,

(175)

taking into account (147), we have from (174)


T

0
u′(t) + A2 θm( vm(t) + B2 vm(t), vm(t)( ,u(t) − vm(t) dt

− 
T

0
− α0θmf + f + f2,u(t) − vm(t) dt

+ 
T

0
Φε(u(t)) − Φε vm(t)( ( dt≥ −

1
2

vm(0) − u(0)
����

����
2
.

(176)

Since Φε(u)≤Φ(u) and Φ(Jεvm(t))≤Φε(vm(t))(cf.
(47)), we have from (176)


T

0
u′(t) + A2 θm( vm(t) + B2 vm(t), vm(t)( , u(t) − vm(t) dt

− 
T

0
− α0θmf + f + f2, u(t) − vm(t) dt + Ψ(u)

− 
T

0
Φ Jεvm(t)( dt≥ −

1
2

vm(0) − u(0)
����

����
2
.

(177)

By (173) and Corollary Appendix B.2 of [1], taking a
subsequence if necessary, we have


T

0
A2 θm( vm(t), u(t) dt ≡ 

T

0
a02 θm(t); vm(t), u(t)( dt

⟶ 
T

0
A2(θ)v(t), u(t) dt.

(178)

Owing to (173),

vm⟶ v inL
2 0, T; L2(zΩ) . (179)

*us, taking a subsequence if necessary, we have (see
Lemma Appendix B.1 of [1])
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2 μ θm( k(x)vm, vm( Γ2 + 2 μ θm( Svm, vm( Γ3

+ 2 α(x)vm, vm( Γ5 + μ θm( k(x)vm, vm( Γ7⟶

· 2(μ(θ)k(x)v, v)Γ2 + 2(μ(θ)Sv, v)Γ3 + 2(α(x)v, v)Γ5

+(μ(θ)k(x)v, v)Γ7.

(180)

*erefore, taking into account

lim inf2 μ θm( E vm( ,E vm( ( ≥ 2(μ(θ)E(v),E(v))

(181)

(see Corollary Appendix B.3 of [1]), we have

lim inf A2 θm( vm(t), vm(t) ≥ A2(θ)v(t), v(t) . (182)

By (178) and (182), we have

lim inf
m⟶∞
ε⟶ 0


T

0
A2 θm( vm(t), u(t) − vm(t) dt≤ 

T

0
A2(θ)v(t), u(t) − v(t) dt. (183)

By (158) and (173), Jε(vm)⇀v in L2(0, T;V) as m⟶∞
and ε⟶ 0. Since the functional Φ: V⟶ R is lower weak
semicontinuous, we have

lim inf
m⟶∞
ε⟶ 0


T

0
Φ Jεvm(t)( dt≥ 

T

0
Φ(v(t))dt ≡ Ψ(v). (184)

In a rather routine way, we can prove that


T

0
B2 vm(t), vm(t)( , u(t) dt⟶ 

T

0
B2(v(t), v(t)), u(t) dt

(185)

as m⟶∞, ε⟶ 0. For convenience of readers, we give a
proof in the following:


T

0
B2 vm(t), vm(t)( , u(t)  − B2(v(t), v(t)), u(t) ( dt

� 
T

0
B2 vm(t), vm(t) − v(t)( , u(t) dt + 

T

0
B2 vm(t) − v(t), v(t)( , u(t) dt ≡ I1 + I2.

(186)

By (165), the Hölder inequality with exponents 2, 4, 4,
and (173), we have

I1


≤K supt∈[0,T]‖u(t)‖H1 
T

0
vm(t)

����
����H1 vm(t) − v(t)

����
����
1/2
H1 vm(t) − v(t)

����
����
1/2dt

≤K supt∈[0,T]‖u(t)‖H1 vm

����
����L2 0,T;H1( ) vm − v

����
����
1/2
L2 0,T;H1( ) vm − v

����
����
1/2
L2 0,T;L2( )⟶ 0.

(187)

By (165),


T

0
B2(z(t), v(t)), u(t) dt





≤K supt∈[0,T]‖u(t)‖H1‖z(t)‖L2 0,T;H1( )‖v‖
1/2
L2 0,T;H1( )‖v‖

1/2
L2 0,T;L2( )

≤K1‖z(t)‖L2 0,T;H1( ),

(188)

which means that the mapping

z(t) ∈ L
2
(0, T;V)⟶ 

T

0
B2(z(t), v(t)), u(t) dt,

(189)

is continuous and linear on L2(0, T;V), that is, there exists
f ∈ L2(0, T;V)∗ such that


T

0
B2(z(t), v(t)), u(t) dt � 

T

0
z(t), f(t) dt. (190)

*us, by (173),

I2


⟶ 0, asm⟶∞, ε⟶ 0. (191)

By (186)–(191), we get (185).
Let us prove that
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T

0
α0θmf, u(t) − vm(t) dt⟶ 

T

0
α0θf, u(t) − v(t) 

dt⟶ 0, asm⟶∞, ε⟶ 0.

(192)

By (173), we have


T

0
α0θm − α0θ( f, u(t) dt⟶ 0, (193)


T

0
α0θmf, vm(t)  − α0θf, v(t) ( dt

� 
T

0
α0 θm − θ( f, vm(t) dt

+ 
T

0
α0θf, vm(t) − v(t) dt⟶ 0.

(194)

By (193) and (194), we get (192).
*erefore, by (183)–(185) and (192), from (177), we have


T

0
u′(t) + A2(θ)v(t) + B2(v(t), v(t)) − 1 − α0θ( f

− f2, u(t) − v(t)dt + Ψ(u) − Ψ(v)

≥ −
1
2

v0 − u(0)
����

����
2
.

(195)

Since ‖B2(v(t), v(t))‖V∗ ≤K‖v(t)‖3/2V ‖v(t)‖1/2(cf. (165))
and v ∈ L∞(0, T; L2), B2(v, v) ∈ L4/3(0, T;V∗). *erefore, by
density of the set u � 

M
j�1 kj(t)uj, kj(t) ∈ C1[0, T], M �

1, 2, . . .} in L4(0, T;V): u′ ∈ L2(0, T;V∗)}, (195) is valid for
all u ∈ L4(0, T;V): u′ ∈ L2(0, T;V∗) .

*us, the first formula of (43) is valid.
Putting φ(t) � 

M
j�1 kj(t)φj, where kj(t) ∈ C1[0, T],

kj(T) � 0, multiply the second equation of (141) by kj(t)

and add for j � 1, . . . , M. *us, we have

θm(t), φ(t)  − 
t

0
θm,

zφ
zt

 ds + 
t

0
κ θm∇θm,∇φ( ds

+ 
t

0
β(x)θm,φ( ΓRds − 

t

0
vmθm,∇φ ds

� θm(0),φ(0)  + 
t

0
g2,φ ds, ∀t ∈ [0, T].

(196)

By Corollary Appendix B.2 of [1], we have


t

0
κ θm( ∇θm,∇φ( ds⟶ 

t

0
(κ(θ)∇θ,∇φ)ds, as

m⟶∞, ε⟶ 0.

(197)

Since W9/10,2(Ω) ⊂ L4(Ω), we have

vm⟶ v inL
2 0, T; L4(Ω) ,

θm⟶ θ inL
2 0, T; L

4
(Ω) .

(198)

By (198), we have


t

0
vmθm,∇φ  − vθ,∇φ 


ds≤ 

t

0
vm − v( θm,∇φ 


ds + 

t

0
v θm − θ( ,∇φ 


ds

≤ vm − v
����

����L2 0,T;L4( ) θm

����
����L2 0,T;L4( )

+‖v‖L2 0,T;L4( ) θm − θ
����

����L2 0,T;L4( )
 ‖∇φ‖L∞ 0,T;L2( )⟶ 0,

(199)

which implies


t

0
vmθm,∇φ ds⟶ 

t

0
vθ,∇φ ds, asm⟶∞, ε⟶ 0.

(200)

*erefore, taking into account (197) and (200), from
(196), we have

− 
T

0
θ,

zφ
zt

 dt + 
T

0
(κ(θ)∇θ,∇φ)dt + 

T

0
(β(x)θ, φ)ΓRdt

− 
T

0
vθ,∇φ dt

� θ(0), φ(0)  + 
t

0
g2,φ ds.

(201)

Since the set φ(t) � 
M
j�1 kj(t)φj: kj(t) ∈ C1[0,

T], kj(T) � 0, M � 1, 2, . . .} is dense in
φ ∈ C1([0, T]; W1,2

ΓD ): φ(T) � 0 , from (201), we have
the second equation of (43). □
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