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In this paper, we are concerned with the nonsteady Boussinesq system under mixed boundary conditions. The boundary
conditions for fluid may include Tresca slip, leak and one-sided leak conditions, velocity, static (or total) pressure, rotation, and
stress (or total stress) together, and the boundary conditions for temperature may include Dirichlet, Neumann, and Robin
conditions together. Relying on the relations among strain, rotation, normal derivative of velocity, and shape of the boundary
surface, we get variational formulation. The formulations consist of a variational inequality for velocity due to the boundary
conditions of friction type and a variational equation for temperature. For the case of boundary conditions including the static
pressure and stress, we prove that if the data of the problem are small enough and compatibility conditions at the initial instance
are satisfied, then there exists a unique solution on the given interval. For the case of boundary conditions including the total
pressure and total stress, we prove the existence of a solution without restriction on the data and parameters of the problem.

( Ov
. — -2V . =(1- ,

1. Introduction 5 2V WO+ (v-Vv+ Vp=(1-af)f
In this paper, we are concerned with the Boussinesq V.v=0,
equation for heat convection 4

ov 9 _y. VO - : = .

=" 2V (u(OEW) +(v-V)v+Vp = (1 _ a09)f, pn V- (x(OVO) +v-VO—o,u ()& (v): E(v) = a,0f -v+ g,

v.v=0, v(0) = v, 6(0) = 6,

ot

ae—V- (x(O)VO) +v-VO =g,

(2)

which is a mathematical model for nonsteady motion of
heat-conducting incompressible Newtonian fluid. Here, o,
is the parameter for dissipation of energy due to expansion,

L v(0) = vy, 0(0) = 6,
(1)

under mixed boundary conditions. Here, v, p, and 0 are, re-
spectively, velocity, pressure, and temperature, and « is the
parameter for buoyancy effect, f is the body force, g is the heat
source, y is the viscosity, and « is the thermal conductivity.
The strain tensor &(v) is the one with the components
g;(v) = (1/2) (0, v; + axjvi). System (1) is a special case of

@, is a positive real number, and for two matrices A = {a; }
and B={b;}, A: B=Y,a;b; and |A| = (3;a})". The
term u(0)& (v): &(v) represents the dissipation of energy
due to viscosity (the Joule effect). Owing to the dissipation of
energy due to viscosity u(0)& (v): &(v), study of (2) is
usually more difficult than the Boussinesq system.

For the papers concerned with (2), we refer to Introduction
of [1]. Here, we more mention [2-5] concerned with (2), where
a, = 0. In [2], the problem under nonhomogeneous Dirichlet
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boundary conditions for velocity and temperature in the time-
dependent domain was studied, and existence of a local-in-time
solution or existence of the solution on the given interval for
small data was proved. In [3], existence of a strong solution and
periodic solution for the 2D problem was studied under the
boundary conditions and domain as above. In [4], under ho-
mogeneous Dirichlet boundary conditions for velocity and
temperature, existence of a strong solution and periodic solution
were studied when data of the problem are small enough.
Lukaszewicz and Krzyzanowski [5] dealt with the initial
boundary value problem on a time-dependent domain with the
homogeneous Dirichlet boundary condition for velocity and
temperature, and they proved the existence and uniqueness of
local weak solutions and the existence of a global weak solution
for small initial data.

Several papers are concerned with (1). In [6, 7], the existence
and uniqueness (for 2D) of a solution to the problem were studied
under the homogeneous Dirichlet boundary condition for ve-
locity and mixture of nonhomogeneous Dirichlet and Neumann
boundary conditions for temperature. In [8], for the problem with
nonhomogeneous Dirichlet boundary conditions for velocity and
temperature, the existence of the time periodic solution was
proved (see [9]). In [10-13], problem (1) on the time-dependent
domain was studied under the nonhomogeneous Dirichlet
boundary condition for velocity and temperature. In [14, 15], the
problem on exterior domains with the homogeneous Dirichlet
boundary condition for velocity and nonhomogeneous Dirichlet
boundary condition for temperature was studied. In [16], problem
(1) was studied under the mixture of the nonhomogeneous
Dirichlet boundary condition and the stress boundary condition
for fluid and the mixture of nonhomogeneous Dirichlet, Neu-
mann, and Robin boundary conditions for temperature. They
proved the existence of a unique local-in-time solution under a
compatibility condition at the initial instance (see (27) and (31) of
[16]). In [17], problem (1) in the cylindrical pipe with inflow and
outflow was studied under slip boundary conditions for velocity
and the Neumann conditions for temperature. In that, it was
proved that there exists a solution on the given interval when
norms of derivatives in the direction along the cylinder of the
initial velocity, initial temperature, and the external force are small
enough. In [18], the existence of a solution to problem (1) on the
time-dependent domain was studied under the mixture of the
Dirichlet condition of velocity, total pressure, and rotation
boundary conditions for fluid and the mixture of Dirichlet,
Neumann, and Robin boundary conditions for temperature.

On the contrary, for movement of fluid (v, p), different
kinds of boundary conditions are used, and in practice, we deal
with the mixture of some kinds of boundary conditions. On
some portions of the boundary, we can use boundary conditions
with stress or rotation, whereas when there is flux through a
portion of the boundary, we can deal with the static pressure p
or the total pressure (Bernoulli's pressure) (1/2)|v|* + p
boundary conditions. There are many literature studies for the
Navier-Stokes problem with mixed boundary conditions (see
Introduction of [19, 20] and references therein). Recently,
Navier-Stokes system with mixed boundary conditions in-
cluding friction-type conditions was studied (cf. [20, 21]).

In [1], problem (2) is studied under mixed boundary
conditions, and the boundary conditions for fluid may include
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Tresca slip, leak and one-sided leak conditions, velocity, total
pressure, rotation, and total stress together, and the conditions
for temperature may include Dirichlet, Neumann, and Robin
conditions together. From the result of [1], we can get results
for (1) with the boundary conditions as in [1]; however, the
result demands that the parameter for buoyancy effect «, is
small enough in accordance with the data of the problem, and
the solution includes “defect measure” as in [22]. Also, for (2)
and (1), the problem with a mixed boundary condition in-
cluding the static pressure (not total pressure) and stress (not
total stress) together is not yet considered.

When one of static pressure, stress, or the outflow
boundary condition is given on a portion of the boundary,
for the initial boundary value problems of the Navier-Stokes
equations, the existence of a unique local-in-time solution
and a unique solution on a given interval for small data of the
problem are proved. From the mathematical point of view,
the main difficulty of such problems results from the fact that
in a priori estimation of solution, the term arising from the
nonlinear term (v - V)v is not canceled (cf. Preface in [23]).

In the present paper, we are first concerned with heat
convection equation (1) under mixed boundary conditions
including the static pressure and stress. The boundary
conditions for fluid may include conditions of friction type
(Tresca slip, threshold leak, and one-sided leak conditions),
velocity, static pressure, rotation, and stress together, and the
conditions for temperature may include Dirichlet, Neu-
mann, and Robin conditions together. Due to the boundary
conditions of friction type, it is difficult to follow the
methods in [16, 20]. The main difficulty of this problem is
from the estimate of approximate solutions, and due to
simultaneous velocity and temperature, the estimate is more
difficult than the case of the Navier-Stokes equations. Also,
in this paper, we prove the existence of a solution to (1) with
the boundary conditions as in [1] without restriction on the
parameter for buoyancy effect a.

This paper consists of 5 sections. In the last part of
Section 1, we give notations.

In Section 2, the problems to study and assumptions for
future are stated. According to the boundary conditions for
fluid, Problems I and II are distinguished. Problem I includes
the static pressure and the stress conditions, whereas
Problem II includes the total pressure and the total stress
boundary conditions. Assumption for Problem I is stronger
than the one for Problem II

In Section 3, we first get a variational formulation for
Problem I which consists of six formulae with six unknown
functions, that is, using velocity, tangent stress on slip surface,
normal stress on the leak surface, normal stresses on one-sided
leak surfaces, and temperature together as unknown functions
(Problem I-VE). Then, we get a new variational formulation for
Problem I consisting of one variational inequality for velocity
and a variational equation for temperature (Problem I-VI).

The variational formulation for Problem II is obtained in
the same way as in [1], and smoothness of the solution with
respect to t is weaker than the one in Problem I. In the end of
Section 3, the main results of this paper are stated (Theorems 1
and 2). The main result for Problem I asserts that if the data of
the problem are small enough and compatibility conditions at
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the initial time (conditions 4 and 6 of Theorem 1) hold, then
there exists a unique smooth solution. The main result for
Problem II asserts the existence of a solution without restriction
on the parameter for buoyancy unlike [1].

Section 4 is devoted to the proof of Theorem 1. To this
end, first in Section 4.1, we consider an approximate
problem, where the variational inequality for velocity is
replaced by an equation with the gradient of the Moreau
regularization of the functional due to the boundary con-
ditions of friction type. Developing the method for the proof
of Theorem 4.4 of [21], we get existence and estimations of
approximate solutions for small data under the compatibility
conditions at initial time. In Section 4.2, we complete the
proof of the existence and uniqueness of a solution.

Section 5 is devoted to the proof of Theorem 2. The
existence of solutions to an approximate problem and rel-
ative compactness of the set of solutions are studied. Then,
passing to limit, we get the conclusion.

Throughout this paper, we will use the following nota-
tion. Let Q be a connected bounded open subset of
R',1=2,3.00 € C",

IpNIR=0,T;nT; =S fori#j,and I[; = U;I};, where T;;
are connected open subsets of 0Q, and T}; € C21 for i=
2,3,7and I; € C' for others. When X is a Banach space,
X = X' and X* is a dual space of X. Let W*” (Q)) be Sobolev
spaces; H' (Q) = W?(Q), and so H' (Q) = {H! (Q)} An
inner product and norm in the spaces L? (Q)) and L? (Q) are
denoted, respectively, by (-,-) and || - ||, and {:,-) means the
duality pairing between a Sobolev space X and its dual
one. Also, (-, )r is an inner product in L?(T;) or L (T)),
and (:,+)r, means the duality pairing between H” 2(T,) and
~(2(T.) or between HY2(T;) and H- /2 (T)). The inner
product and norms in R, respectively, are denoted by (-, -)g!

Vlr, =0,

vl = 0.l =

¢s

v|. =0, rotv><n|r3 = ;,

alr,
0 B O, -
1/n|1"5 =0, 2(/45nr (v) + OWT)|F5 -

(=pr+ 2ug, (V)1 = b6

ov
Vr|r7:0’ Tptps . =

7

Vy = 0, |UT(V)l Sg'r’od'r(v) Vet gT|VT| =0

and |-|. Sometimes, the inner product between a and b in R!
is denoted by a - b.

Let n(x) and 7(x) be, respectively, outward normal and
tangent unit vectors at x in dQ. When f € H-V2(T)), if
(f>w)p 20(<0)Vw € CP (I;) with w>0, then we denote
by f> 0(<0) on I;. For convergence in spaces, — , —,
and — mean, respectively, strong, weak, and weak * con-
vergence. Derivative of f (t, x) with respect to ¢ is denoted by
f'. We also assume that 0< T < co.

2. Problems and Assumptions

For temperature, we are concerned with the boundary
conditions

Olr, =0,
00
(K(G)a+l3(X)9) N = gr (t,x),
B(x), gg (t, x) — given functionson Ty, (0,T) x T'g.
(4)
Stress tensor S is the one with components

s;j = —p0;; + 2ue;; (v), and stress vector on the boundary
surface is o (v, p) = S-n. The value of the normal stress
vector on the boundary surface is o, (v, p) = 0-n. And
o, (v,p) =0 (v, p) -0, (v, p)n. Total stress tensor §' is the
one with components sfj =—(p+ (1/2)|v|2)8ij+ 2‘u(6)sij (v),
and the total stress vector on the boundary surface is
a' (6,v, p) = §' - n. The value of the total normal stress vector
on the boundary surface is o’ (6,v,p)=0"-n. And
aL (6,v,p) =" (6,v, p) — 0%, (6,v, p)n.

For Problem I, we assume that ¢ and « are independent
of 0. Thus, Problem I is the one with the boundary
conditions

¢s5, a: a matrix,

(5)

onTy,

v, =0,]0, (v, P)| < G 0, (Vs PV, + Gplv,| =0 onT,

v, =0,v,20,0,(v,p) + 91,20, (0,,(, p) + g4,)V, =0 onTy,

v, =0,v,<0,0,(v,p) -9, <0, (0,(v,p) — g_

n)vn =0 on 1—‘11’
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and Problem II is the one with the boundary conditions

Vlrl = 0,

[
Vr|r2 = 0’_<P+§|V| > Lo 28
2

vl

3
r, = 0,rotv xnlp, = .ITQ)’

1
v, = 0.(=p = Sl + 2u(0)e,, ) L =

Vn|r5 =0,2(u(0)e,, (v) + "”’r)|r5 = ¢, : a matrix,

L o (6)
(—pn - 5|v| n+2u(B)e, (v))

= ¢
FG

B 1 ov B
VT|[‘7 - 0)( P E|V| +/’4(9)$ ‘ ?’l) N = ¢7;

v, =0, lai(@, V)| <g,a (0,v)-v, + ge|v:| =0 onT,,

v, =0,]d (6, )| <G, (0,v, p)v, + Gnlva| =0 onTy,
v, =0,v,20,0" (0, v, p) + g,, 20, (afl(@, v, p)+ gm)vn =0 onl,

v, =0,v,<0,0" (6,v,p) — g_, <0, (0;(9, v, p)— g_n)vn =0 onl,

where ¢, (v) = &(V)n, ¢,, (V) = (E(W)n,n)g, &,, (v) = E(v) follows, the problems with boundary conditions (5) and (6)
n—g,n, v,=v-(v-nn, v,=v-n, and h,¢,a; are called, respectively, the case of static pressure and the
(components of matrix «) are given functions or vectors of  case of total pressure.

functions of t, x on Z; = (0, T) x I';. For convenience in what Let

1 .
V= {” € H (Q): divu = 0,ulp =0, url (TUr,UT,UT,UT ULy, ) = 0, “n| (Tsursury) = 0}’

H: completion in L’ (Q)of V,

K(Q) ={u €V:iulr, 20,u,r, go},

(7)

Hy: closurein L*(Q) of K (Q),
K(Q ={u e L*(0,T;V): u' € L* (0, T; V"); 4, |, 20,14, <O},

W2 (Q) ={y e W (Q): yl;, =0}

We assume that g, € L*(Ty), g,, € L* (Ty), g, € L* (Ty), ()T,#9, ITp+3, and
and that g_, € L*(T};), and g¢,>0, g,>0, g,,>0, and
g_, >0 for a.e. x of the portions of boundary. Also, we use

the following assumption.

I c (Ui=1,3,5,8ri)' (8)

Assumption 1 (for the case of static pressure). We assume (2) If T;, where i is 10 or 11, is nonempty, then at least

the following:

one of {l“j: je{{2,4,7,9- 11}\{1’}}} is nonempty,
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and there exists diffeomorphism in C' between T;
and I';.

(3) For the functions of (1),

few(o,T;L° (),
gew"(0,T; W2 (Q)), (9)

pand x are independent of 6.

(4) For the functions of (4) and (5),

gr € WH(0,T; L (),

B1=p(x)>0,p, —aconstant, f(x) — measurable,

¢ e W(0,T;H V2 (L)), i=2,47, (10)
¢ e W0, T;H (), i=3,5,6,

a; € L7 (Ts).

Assumption 2 (for the case of total pressure). We assume (1)
and (2) of Assumption 1 and the following:
(3") For the functions of (1),

feL®(0,T;L3 (),

e L*(0, T; W (Q)*),
9 ( FD( )) (11)
peC(R),0<uy<u()<p <oo, VEeR,
k€ C(R),0<ky<x(§) <K, <00, VEeR.

5
(4") For the functions of (4) and (6),
gr € I*(0,T; L (Ty)),
B, 2B (x)=0,p, —aconstant, f(x) — measurable,
¢, € (0, T;H (1)), i=2,47, (12)

¢, e (0, T;H (1), =356,
;€ L (Ts).

Remark 1. On Ty (Ty,), only outflow (inflow) is possible,
and so (2) of Assumption 1 is used to guarantee divv = 0. In
Theorems 3.3 and 3.5 of [24], for the proof of equivalence of
variational formulations to variational inequalities, this
assumption was used via Lemma 3.2 of [24]. In this paper,
this assumption is also necessary to guarantee equivalence
between Problems I-VE and I-VI in Remark 4.

3. Variational Formulations and Main Results

Since I'1#Q and T+, by the Korn inequality and
Poincaré inequality, we use

(ru)y = (&(v), E(u), (y,Z)W;g(Qﬁ(Vy,VZ)- (13)

3.1. Variational Formulations: The Case of Static Pressure.
By Theorems 2.1 and 2.2 of [19], for v € H*(Q) N V and
u €V, we have

—2(V- (u&E W), u) =2(u&(v), & (1)) = 2(u& (V)n, u)u r,

=2(u& (v), & W) + 2 (uk (x)v, u)p, — (urotv x n,u)p + 2 (uSV, f)p, -2 (pe (), u,,)r4

)
= =2 (ue,, (v), ”)rs - 2(ue, (v), u)r6 - (u a—;, u) + (uk (x)v, )y,
7

(14)

-2 (/’l‘gm (), M)I‘8 -2 (‘usm ), un)l"g -2 (nusnn ), un)l"lo -2 (‘uem ), un)l“n’

where S is the shape operator of the boundary surface
(cf. (A1) in [19]), ¥,5i are expressions of v,u in a
local coordinate system on I, and k(X)|ri =2X
mean curvature of I';.

For p € H'(Q) and u € V, we have

(Vp,u) = =(p, dive) + (p, u, )i,
(15)
= (P> tn)r,ur,ur,ur,ur,gury, + (P75 W

where u,|p r.ur, = 0 was used. By (4), for 6 € H?(Q) and
¢ € Wr2(Q), we have



(=Y - (xV6), 9) = (xV6,p) —(ng,so)
Iy (16)

= (kV0,Ve) + (B0~ g, ¢)r,.

IUT(Q, V)| <9 01(9’ V) Vet gflvfl =0,

|O-n(v’ P)| Sgn’ Oy (V’ p)V" + g"IV"| =0,

0, (v, P)+ 9., =0, (0,(v, p) + g,,)v,, = 0,
Un(V, p) —9g-ns 0, (an (V> p) - g—n)vn =0,
), = 0.

Define ay, (+,-), a4, (-+-), and f,(t) € V* by

ag (w,u) =2 (p& (w), & (1)) + 2 (pk (x)w,u)r,
+2 (yStT),ﬁ)r3 +2(«a (x)w,u)r5 +(uk (x)w,u)r7,
Yw,ueV,

a;; (vu,w) ={(v-Vu,w), Yv,u,weV,

(Fruy= Y (GO + Y ($:Ou)y, VueV.

i=2,4,7 i=35,6
(19)

Define b, (-,-) and g, (¢) € (W%}f (Q)* by

b, (6,9) = (kV6, V9) + (B(x)6, o)y,
(911, 9) = (gr (1), 9)r, +(g (). 9),

Vo e W (Q), ¢ € w}ﬁ(n),
Vo € Wi (Q).
(20)
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Taking into account (8) and v,|r yr.ur, =0, for veV,
e H'(Q),and ¢ € WlZ(Q) we have

(v-V0,9) = (v,0,9)p, — (6v, Vo) =

By (14)-(17), we can see that smooth solutions (v, p, 8) of
problems (1), (4), and (5) satisfy

—(6v, Vo). (17)

(%, u) +2(uE V), & W) +{(v- V)v,uy + 2 (uk (x)v, u)r2 + 2 (uSV, ﬁ)r3 + 2 (a(x)v, u)r5

+([lk (x)vs u)l"7 -2 (Ausnr (), ”)rs + (P = 2uey, (v), un)l"gul"mul"u
=((1 = ay0) f,u) + A > <¢i’”n>r,. + > <¢i’”>ri> VueV,
i=2,4,7 i=3,5,6

20
(E"”) +(kV0, Vo) = (8%, V) + (B0, 9)r, = (g @), +(9:0)> Vo € W (),

(18)

only,

only,

onT},,

onl,,

Remark 2. Under (4) of Assumption 1, the duality product
(f1,u) of (19) has a meaning (cf. Remark 3.1 in [24]). By (9)
and (10),

flLeWwh®(0,T; V"),

(21)
g1 e W0, T; W2 (Q)").
Then, taking into account
a.(0,v) = 2ue,, (v),
- (0,v) = 2pe,, (v) (22)
0,(0,v,p) = —p + 2ue,, (v),

and (18), we introduce the following variational formulation
for problems (1), (4), and (5).

Problem (I-VE). Find v € K(Q), 8 € L?(0,T; WIZ(Q)) and
(0,,0,,0,,,0.) € L2(T) x 12 (Iy) x H-0 (T, fx

H’(”2 (Fll)ae t € (0,T) such that v(0) = VO,G(O) 6,, and
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|UT| $£Gp0- v t grlvrl =0,

|anl < I 0V + gnlvnl =0,

L 0 =9u<0 <a—n 9w Vn>l"11

where L2(Ty) is the subspace of L?(I) consisting of
functions such that (u,n)y(r,) = 0.

Remark 3. Under Assumption 1, if a solution is smooth
enough, (v € L?(0, T; H2 (QQ)), v e L2(0,T; L*(Q)),
0 e L?(0,T;W??(Q)),0" € L*(0,T;L*(Q))), then Problem
I-VE is equivalent to problems (1), (4), and (5) in the fol-
lowing sense.

By Theorem 3.4 of [24], at a.e., there exists p(t) satistying
the first equation of (1), and (v, p) satisfies boundary
condition (5). As given in Section 1, ch. 2 of [25], it is proved
that 0 satisfies the third equation of (1) and boundary
condition (4).

We will find another variational formulation consisting
of a variational inequality and a variational equation, which
is equivalent to Problem I-VE if the solution is smooth
enough (cf. Remark 4).

For fixed 0, let us consider the problem

v
or

- <0+n’ U, — Vn>1"10

- <O~fn’ u, - Vn)l"u

Define the functionals ¢,, ,, ¢, ¢_, respectively, by
¢ () = L gelnldx, v e L (Ty),

8,00 = | gulnidx. Ve (1),
' (26)
¢, (1) = L Guundx, ¥y e L*(Ty),

¢_(n) = _Jr g- Vi € r (Tyy).

11

A1dx,

_<0+n’ “n>rw _<0—n> un>l"“ - <f - “oef’ u) = <f1’ Ll),

onTy,

only,

=0,

U= v> +ag (vu=v)+tay v,u=v)=(0,u, = v)p, = (0, thy = V)r,s

~(f-abfou=v) =(fru-v)

[ /ov
<E’ u> +ag (vu) +ay (v, v, u) = (05 u)r, = (0, 1),

00
<§,(p> +b,(6,9) —(0v,V9) ={g,,9), Voe LZ(O, T; w}ﬁ(o)),

Oint Gin 20, <0+n + Gin> Vn>l"w =0 on l—‘10’

7
Yu e L2(0,T; V),
(23)
onl,,
ov
E’” +ag (vu) +ay (v,v,u) = (0, "‘r)r8 - (Uw"‘n)rg _<U+n>“n>r,(,
~0_ptt)r, —{f —abf,u) =(fu), Vuel’(0,T;V),
) |07| <Gy, 0,V + gr|vr| =0 only,
|Gn| Sgn’anvn + gn|vn| =0 on r9’
On+ Gin20,{(00 + G Va)r, =0 onTyy,
0, =900, <0—n - g—n"’n)l“” =0 only,.
(24)

Subtracting the first formula of (21) with u = v from the
first formula of (21), we get

(25)
YueV.

Since if u € K(Q), then uIr € L3 (Ty), u alr, € L*(Ty),
u |r € L*(T), and u ulr,, € L? (T 1), in what follows, for
convenlence, we use the notation

¢, () = ¢ (ulr, ),
() = ¢, (1]1,);
¢, (u) = (u |Fm)’
¢ (1) =¢_(u,r, )

Yu € K(Q).

(27)

Define a functional ®: V — R = R U {+co} by



8
{ ¢, W)+, () + ¢, (u) +¢_(u), YueK(Q),
O (u) =
+00, Yu ¢ K(Q).
(28)

Note that @ (u) > 0 since u,,|r >0, u,|r <0, Vu € K(Q).
Then, the functional ® € (V — R) is proper (cf. Definition
A.l of [21]), convex, lower semicontinuous, and

O (u)20, VueV,0(0,)=0. (29)

Define a functional ¥ (1) by

JT O u)dt, if O w(t) € L' (0,T),
0

¥ (u) = (30)

+00, otherwise.

In the same way as Problem I in [24], from (25), we get
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<g:,u—v> +ag(vu-v)+a;(vv,u—v)+0(u)-0(v)

> (1= o) fru=v) +(frou—1).
(31)

Define operators A; € (V— V"), B, € (VxV —
V*),and C, € (W%’j Q) — (W}ﬁ (Q))"), respectively, by
(A, u) =ay (v,u), YvueV,
(B, (v,u),w) =a;, (v,u,w), VYv,u,weV, (32)
(C\6,9) = by, (6,9), V6,9 € W2 (Q).
If v is a solution to (24), then we can see that the solution
satisfies (cf. (3 20) of [21])

JT@' () + Ay () + By (v(6), v(1) = (1 = a)0 () F (£) = £, (£)yu(t) = v())dt + ¥ (1) =¥ (v) 20, Vu e L*(0,T; V).
0

Therefore, we have the following variational formulation
for problems (1), (4), and (5).

(33)

Problem (I-VI). Find (v,0) € (L*(0,T;H) N
L2(0,T;V))x (L*(0,T; W;j) NL*®(0,T;L?)) such that

| IZW + A6+ By (v(0),v(1) = (1= @) f = frou(t) - v(D)dt + ¥ () - ¥ (v) 20, Vu e L'(0,T;V),
| JT[<§,¢> +HC0(0),9) ~(V9) (g1 9) |dt =0, Vo e L’(0.T; W), (34
0
v(0) = vy,
L 0(0) = 6,.

Remark 4. 1If the solutions to Problem I-VI are smooth as
much as v € L?(0,T; V) and v' € L?(0,T; V*), then the first
one of (34) is equivalent to

V(@) +AVE) + B (v(E),v(1) — (1 —ap0) f — frou—v()) + () - D(v(2) >0,

(Remark, pp. 114 in [26]). In (31), putting (F,u—v) =
(= (oviot) = (1 = ay0) f — f,,u—v), by Theorem 3.5 of [24],
we can see existence of (0, 0,,0,,,0_,) € L2(Tg) x L*(Ty) x
H™Y2(T,,) x HV2(T},) for ae. te (0,T) such that
»6,0,,0,0,,0_,) is a solution to Problem I-VE.

foraet € [0,T],Yu € K(Q), (35)

3.2. Variational Formulations: The Case of Total Pressure.
Taking (v-V)v=rotvxv+ (1/2)grad|v|2 into account, by
(14)-(17) with y, ¥ depending on 0, we can see that smooth
solutions (v, p,0) of problems (1), (4), and (6) satisfy the
following:



International Journal of Differential Equations 9

. (?;t/, u) +2(u(0)&(v), & (u)) +{rotvx v,uy + 2 (u(k (x)v, u)r2 +2(u(6)Sy, ﬁ)r3 + 2 (a(x)v, ”)rs

+p (O (x)v, ), =2 (u(0)e,, (v), u)y, +(p +4vP? - 2u(0)e,,, (v), u")rgurlourn

=((1 - a0) f,u) + '=22;17 (bpt)r,+ 2 ($pu)r, VYueV,

i=3,5,6

00
(at’ (p) +(k(0)V, V) - (6v, Vo) + (B0, 9)r, = (9> 9)r, +(9> ) Vo € W2 (Q),

) (36)
ot (6,v)| < g, 0% (6,v) - v, + g|v,| =0 onTy,
|o%, (6, v, p)| < g,, 0%, (6, v, p)v,, + g,|v,| =0 onT,,
! (0,v,p) + g.n 20, (6", (6,v, p) + g,)V, =0 onT,
04(0,%,p) ~ 94 <0, (0!, (6,v,p) g, )v, =0 onTy,
L elrn = 0.
Define ay, (6;-,-),a,, (), and f, € V* by and (36), we introduce the following variational formulation
a0, (B w,u) = 2 (u(D)F (W), & W) + 2@k (w,u);, ~ Lor problems (1), (4), and (6).
+2(u(6)SW, W)y, + 2 (a(x)w, )y, Problem (ILVE). Find v e K(Q), 6 L°°(0 T;12(Q))N
+ (u(Ok (x)w, u)p., L*(0,T;Wi2(Q)),  and (ot 0l 0',,0",) € L2(Ty)x
N L L2(r)><H 2 (1)) x H- (12 (ru) inae, te(O T), such
Vw,u e V,0 € Wi (Q), that v(0) = v,, 9(0) = 6,, and
ap (i w) = (roty X, w),  Wuw eV, <%u> +ag (6;v,u) + ay, (v, v,u) = (04, ur)r, = (03, )y,
(fpu) = ' Z <¢i>un>l"i t Z (¢5 ”)rg VueV.
G| Ao, (e, - - aBf ) =(fru), Vue,
Define b, (6;-,-) and g, € (WF*(Q))* b 00
fine b, : 2 T, <a_"”> +b,(6;6,9) (6, Vo) =(g,,9), Vo e W2 (Q),
b, (6; 6, 9) = (x(0)V0, Vo) + (B(x)0, ¢)r,» t
% 12 12 )
V0,6 € Wi (Q), 9 € Wi (Q), (38) 10| € gun0t - v, + gulvi| =0 onTs,
(929) = (gr- @)1, +(9-9), Vo e WL (Q).
|U;| <G 0oiv, + gn|vn| =0 onT,,
By (11) and (12),
f2 € L2 (0’ T7 V*)’ ai—n + Gin = 0’ <0~5-n + Gin> Vn>1“10 =0 on 1_‘10’
. (39)
L*(o, T; w3)M).
9> € ( ( FD) ) a,-g.,<0, <o~t_n—gin,vn>r“ =0 onl},
Then, taking into account (41)
t
0. (6,7) = 20 (0)z,,. (v), where L2(Tg) is the subspace of L*(I) consisting of

(40) functions such that (u, ”)Lz(rg) =0.

o (0,v,p) = {p + %Mz) +2u(0)e,, (v), Define operators A (B) e (V— V) and

B, € (VxV — V*), respectively, by
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<A2 (@)v,u> =ag, (é; vu), VYvueV,0e¢ W%j (Q),
(B, (v,u),w) =ap, (v,u,v), Vv,u,weV.
(42)

Let functional ¥ be defined by (25)-(28). Then, in the
same way as Problem I-VI of [21], we find a variational
inequality for velocity. Then, we get another variational

0

3.3. Main Results. The main results of this paper are as
follows.

Theorem 1 (the case of static pressure). Let Assumption 1 be
satisfied. Suppose that

(1) The norms of f, ¢;,i =2 -6, g, gg in the spaces they
belong to are small enough

(2) v e Vand ©(v,) =0

(3) 6y € W (Q)

(4) (A;vy+ B, (vy,vy) — f1(0)) € H (compatibility con-
dition at initial time for velocity)

(5) lIvolly and  lA;vy + By (v, vg) — (1 — ay0,) f (0)—
f10)|| are small enough

(6) (C,0y+vy-V6O,—g,(0) € L*2(Q)  (compatibility
condition at initial time for temperature)

(7) IIHOIIW},z @ and [C6y+vy -V, — g, (0)l2(q) are
small énough
Then, there exists a solution (v, 0) to (34) such that
veC([0,T]; V),
v e L*(0,T; V) n L™ (0,T; H),
2 (44)
6 € C([0,T]; W2 (Q)),

6' € L*(0,T; Wy () n L¥(0,T; L* ().

The solution satisfying |lv|y <c and ||6||W]r’z <c for a
constant ¢ >0 small enough is unique. °

Theorem 2 (the case of total pressure). Let Assumption 2 be
satisfied; vy € Hy and 0, € L*(Q). Then, there exists a
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formulation consisting of a variational inequality for velocity
and a variational equation for temperature, which is
equivalent to Problem II-VE if the solution is smooth
enough.

Problem (II-VI). Find (v,0) € (L (0,T;H)NL?(0,T;V))x
(L®(0,T; L2 (Q))N L2 (0, T; Wr?2 ())) such that

(T
Jo U+ A, (0)v(t) + By(v(1), v(£) = (1 — apb) f — fru(t) —v(t))dt + ¥ (u) — ¥ (v)

> - %"1’0 - u(0)||2> Yu € L*(0,T; V) withu' € L* (0, T;V"),

(43)

T o¢
J an +b,(0;0,9) —(0v, Vo) —(g,, ¢) |dt

| =(6,(x),9(x,0)), Vo € C([0,T]; W? (Q)) with (-, T) = 0.

solution  (v,0) € (L (0,T; H)NnL*(0,T;V)) x (L*(0,T;
L2 (Q)NL*(0,T; W}’; (Q))) to (43).

4. Proof of Theorem 1

4.1. Existence and Estimation of Solutions to an Approximate
Problem. We first consider a problem approximating (34).
For every 0 <& <1, define a functional ®, by

O () =i Iy - ully .
. (y) = inf e +®@w)ueVy, yeV, (45)

which is called the Moreau regularization of ®. When
0®: V — 2V is the subdifferential of ® in the Hilbert space
V,letJ, = (I +e0®) 'and (0®),: =& ' (I - J,)(the Yosida
approximation of 0¢) for all & > 0. Then, the functional @, is
convex, continuous, Fréchet differentiable, and
V@, = (0D), = ¢1 (I -J,) for all 1>&>0. Moreover,

2
@, (y) = w +0(Jy), Vyev, (46)

lim @, (y) = @(y), @(J.y)<P.()<P(y), VyeV,
(47)

(cf. Theorem 2.9 in [27]). The operator V®, is Lipschitz
continuous with the constant 2¢™!(cf. Proposition 2.3 in
[27]) and monotone (cf. Lemma 4.10 of ch. III in [25]).
By the fact that I, T, and T;; are in C*! (T};) and 4 of
Assumption 1, there exists a constant M such that

IS Celoos e C)loos Nl (r,) < M- (48)

Thus, there exists ¢, such that



International Journal of Differential Equations

2u(k(x)z, 2)r, + 20 (SZ, 2)p, + (@(x)z, 2)r, + p(k(x)z,2); |

<Ll +c.llel’, vz e,

(49)

(cf. .5.1.10 of [28]). Thus,

7
(At u) zfuuné —c ul’, VueV,
(50)
|(Au )| < llullylivly, e, >0,Vu,v eV,

(B, (v,w), w)| <, Ivlvllullylwly, Vu,veV,

(51)

(oc(x)vm,u )

Vm (0) = V())

L 6m 0) = 60

which gives us a system for g, (t) and r,, (£), j = 1 — m. The
solutions to (52) depend on ¢, but for convenience of no-
tation, here and in what follows, we use subindex # instead
of subindex me. For t,,, there exist absolute continuous
functions g,,,(t) and Tim() on [0,t,). Since fe
Wbhe (0, T;L* (Q)), f, € Wh®(0,T;V*), g, € W (0, T;
WlZ(Q) ), and VO, is Lipschitz continuous, g; L. () and

(t) are in fact absolute continuous. If |v,, (1)|| and 16, I
are bounded and v, (t),0,,(t) are integrable, then Gjm (1)

Vm (0) = V();

L 6,,(0) =6,

() 2 () (0 ¥

(‘uk(x)vm,u)r +<V(D Vv, (1), uJ> <(1 o0,,

1 /96,
(G0, ) + (678090, + (B0, ~ (b V01) =100,

+2 (“ (X)Vm, Vm)rs + (‘uk (X)Vm, Vm)l"7 + <VCD£ (Vm (t))’ Vm> = <(1

| (e 650050+ 00 0, 80 0,02,

11

where the operators A;, B; are the ones in (32).

Let {u j=1L2,. } and {(p j=12,...1 be, respec-
tively, bases of the space V and le (Q). W1th0ut loss of
generality, we assume that u; = v, and ¢, = 0, asin [26]. We

find a solution v, = 3", g, (Hu; and 6,, = Y7, 1, (t)g;
to the problem
Vs uj> + Z(yk(x)vm, ”j)r2 + Z(ySVm, ﬁj)g
)foug) + (),
(52)

and r,, (t) are prolonged over f,,. Under smallness of the
data of the problem and the compatibility condition of the
data at the initial instant, we will find estimates for ||v,, ()|
and [0, ()| in the following, by which we obtain (111) and
see that f,, = T.

Multiplying the first and the second equation of (52),
respectively, by g, (f) and ¢, (f) and adding for
i=1,...,m, we get

h <aaV;n’ vm> +2(UE (V) & (V) +{ (Vo - V)V Vi) + 2 (0 (%) V,00 V)1, + 2 (4SV,00 Vi),

- “Oem)f’ Vm> +<f1’vm>>

(53)
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We will find a priori estimates for
1(t) = v, O+ @ +]6 O [0 O (59

Since @, is convex, continuous, and Fréchet differen-
tiable, we have
O, (u) - O, (v, (1)) =(VD, (v, ), — v, (1)), VueV,

(55)
and so by @, (0y) =0,
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0< D, (v, (1) <(VD,(v,, (1), v,, (1)). (56)
Also,
2]t (1) v () < el |00 D12 1115 + Gl O
(57)

By virtue of (50), (51), (56), and (57), we have from the
first equation of (53)

d
S OF + 2 O = 26 OF, +20.05,0)

<clat|[6, (t)||fw IFIZ + cll fIE + | fo o + %"vm O +2¢.
D

where ¢, and c, are, respectively, the ones in (49) and (51),
and so

d
4l O +(3u=26a]v, Ol v DI, +20, (v, 1))

v O

(59)

<clay[6, (t)”i\,;g L2+l fI2 4| £ +2¢.

Here and in what follows are the constants independent
of the data of problem which are denoted by ¢ with the
exceptions of ¢, andc,.

Setting t = 0 in the first equation of (52) and multiplying
the resulting equation by g5,(0) and adding for
j=1,...,m, we get

V10 O + (417, (0), 71, (0)) + (B, (v, (0), v,,,(0)), v, (0))
+{(VO, (v,), v, (0))
= (1= agBy) £ (0), v}, (0)) + (£, (0), v, (0)).
(60)
By condition (2) of Theorem 1, for any u € V, we have

® (1) > D (v,) = 0, which by (47), it implies that @, (vy) =0
and VO, (v,) = 0. Then, from (60), we have

Vi (O] < || A1vo + By (vos v) = (1 = 98p) £ (0) = £, (0)]»
(61)
which is valid by the compatibility condition at the initial
time for velocity (condition (4)) and the conditions for 6, f.

On the contrary, taking into account (50), (51), and (56), we
have from the first equation of (53)

L O <263l + 2001 - 08, (0)F 0, v, 00)

Vol = 2 (v (8, v, (),
(62)

+2(f1 (1), v, (1)) + 2c,

and so

(58)
v O

3l Oy <265V Oy + €l f @)l + a6, OIF ©)lrs
+c|| £y +(28||v£n(t)|| +2¢,6]|v,, (t) l),

(63)
where 8 is such that ||| <d||-|ly. Since (v,,0,,,V0,,) =0 by
(17), we get from the second equation of (53)

d
il OF + 260, O +2(B ()6, 6,)r, = 2(91, 0, (1))-
(64)

From (64), we have

d 1
il O + 8 Ol + BCO8 ), = Jile Y
(65)

t 1 t
[ + [ [ Ve, faxds<fe + | o Ol

wy?
(66)
Setting t = 0 in the second equation of (52) and mul-

tiplying the resulting equation by r}m(O) and adding for
j=1,...,m, we get

16, )| + b, (60, 8., (0)) + (v, - V84, 6,,(0)) = (g (0), 6, (0)),
(67)
where — (vy0,, V., (0)) = (v, - VO, 6.,(0)) was used. From
(67), we have
165, ()] < [C160 + vo - VO, — g1 (0)], (68)
which is valid by the compatibility condition at the initial
time for temperature (condition (6)).

On the contrary, taking into account (v,,0,,,,
from the second equation of (53), we have

o Olhyz <l 2y 1o Ol + 0110 Ol [ O

(69)

v6,,) =0,
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where §, is such that ||| < 61||-||W;,2, and so
D

1 )
1w O <3 (Il 8001 0

Taking into account (66), we have from (63)

36l Olly < v O[]y + €l o (0100

R ) 12
cetml( 1+ [ Iy ) 1 ora

+l|f1||L°°(0,T:V*) + max{2J, 25*6}("";1(1‘)“ v (t)")'

(71)

13

Differentiating the first equality of (52) with respect to t,
we have that

<v,';, ), vj> + <A1v;n ), v]-> + <(B1 (v, )5, (1)), vj>
+ <(V(Ds (Vm),)’ Vj>

=(=ayb,, (O f,v;) =((1 = 40, (D) v,y +{f1,v;).
(72)

Multiplying (72) by g}m (t) and adding for j, we have

(Vo (0> 7 (8)) +( A1V, (6, v, () + ((By vy (£), v, (D)9, () +( (VO (V) v ()

= (=000, ()£ 1,0 (0) (1 = B, O) 14,00 ) +(Fl v (1)

Calculating (B(v,,(t),v,,(t)))’, we have
[C(B1vim (0 v ()", V3 ()| = |(By (Voo Vi) V)

+(By (Vo Vo) Viud | 26, [V [Vl

(74)

where c, is the one in (51). Also, by the Holder inequality
and the Young inequality, we have

2y (6, v, () < lao] [0, (O 2 L1 + Gl O

2agb (1), v ) < clag 18 Oz 1[5 + Sl O

(75)

2(f' O, v ()] self Ol + E O]

S HORAONEE THO! P PRI

Taking into account (50), (74), and (75) and the fact that
((VO,(v,))', v,,) >0, which is owing to monotonicity of r

from VO, (cf. [26], pp. 116), from (73), we have

d ! ! !
Sl O + (3 = acaun O O, + Sl Ol

(76)

< o0 (2 L + elall B Ofsa L 15 + €l + el £l + 26l O + S OIR,

that is,
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d,, /
v OF + (3= desllv, O )l O

(77)
< o6 Oz 171 + clag 0 (O L7 + L' + €l F1IR- + 26 [ O
Differentiating the second equality of (52) with respect to Taking into account <vm91, Vo, (t)> =0 (see (17) and
t, we have that (80)), we have from (79)
n ! ! d
(6 (0, 9;) +(C10,1(8), ;) =(Vinb: Vo;) - <vm9', V<pj> 1o O + 2«6, (t)”‘z/v#; < £||v,’n||zv||9||§vll_,; + 6, (t)||§V%?)

=(91,9;)- , .

(78) + C“gluzw;é)* + i“em (t)"‘z/v};
Multiplying (78) by r j,,'l (t) and adding for j, we have that (81)
(6, (£),0,,(1)) +(C16,,(1),6,, (1)) —{v,,0,,» VO, (1)) We have from (81)

! ! ! d ! 3 ! ! !
~(1,01.90,1(0)) = (91,6, (0). O O +710n Ol < ety +clailf,,,.)-

(79) (82)
On the contrary, we get Adding (59), (77), (65), and (82), we have
2,090, O) | < v 16 + |6 Ol (80)

d ! !
10+ (2=t O (o O + ) + (= J0ulive: IOl
3 /
(= lalI 1 = laolI A5 ) 8 lhye +(5— clonlL 15 )10
(83)

SC(||f||i3 +||f||i3) + C<"f1 “if +||f1,”il> + C<||gl||z(w};)* +”91’"%W;;))

w2, ([ + O )

Integrating (83), we have

t
10+ [ (2= 1l 1) (I O +10 O ) + (1= D0l W O + (= claoll 1 = laoll £ )16liee

+<3{ - a1 )10l ]

<10+ F@ 426, | (I OF +P O s
(84)
where By (61) and (68), we have
F(t) := ct<|| Flies oy + 11 lree (0,T;V*)> 1(0) <||vo* +[| 4170 + By (ver vo) = (1 = ag80) £ (0) = £, (O]
9 +"90"2 +[C16 +vo - VO, - g4 (0)||2~

2
+ el (an(wiz) Y (86)
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By the condition of theorem, let || flly1c0(or12) be so
small that

k= clao|lLf (DI = clag|lf' (DIF> 20, atae.t € [0,T],

% —clag|lflzs =0, atae.te [0,T].
(87)
If
v Ol =[voly < 2% (88)
3

10 Ollrz2 =[]l < ”7 (89)

are valid, then there exists t,, such that

2u - 4c2||vm (t)”V >0,
(90)

C
i =0 Ol =0,

on [0,t,]. Therefore, taking into account (86), by the
Gronwall inequality, we have

1(t)s<||v0;|2 Ao + By (v, v0) — (1= o8y) £ (0)— £, (O
60> +]C1 60 + v, - V6, - 9, (O)| + F(T) ) 2t

(91)

on all intervals of t satisfying (90).

Using the estimate, we will obtain a quadratic inequality
satisfied by ||v,,, (1)lly-

Put

p:= (”"0“2 +"A1V0 + By (v, v9) = (1 = a900) £ (0) - £, (0)"2

el +1C160 + vo - V6, - g, O + F() ).
(92)

Note that S depends only on the data of the problem.
Then, when f satisfies (87), we can see from (91) that

1/2
(I O + [ ) = V2 OF + 15 ) <28,

6.6 < B

n [0,¢,,], where (90) holds. Let the data of the problem be
so small that

%(IIQIHWLZ(OT wa) )+ \B ><— (94)

By (70) and (93), for the small data of the problem, we
have

(93)

15
o Ol < 5 (||g1||W]2(OT(WIZ) 48, \[)<
(95)
on [0,t,,], which implies
e O] PRS- T (7 A C)

Therefore, for such small data of the problem that (94) is
valid, if

2u=4c v, (O] 20, Wt € [0.8, 4],y >0, +y<T,
(97)
then owing to (96), step by step, we have
c
- ;||(9m Oz 2%, V€ [0t +y]. (98)

From the above, we see that, for the small data of the
problem satisfying (87)-(89) and (94),

- UG (t)"W”— (99)

is valid on the interval where the first inequality of (90) is
valid.
Put

Y 3:||f(t)||L°°(o,T;L3)
1/2
+c|ao|(lleoll +- J IIglll(Wu)ds) If Dl (o7

1 O o o, + max{26, 26,8126,
(100)

By (66), (93), and (63), for the small data satisfying
(87)-(89) and (94), we have a quadratic inequality for
v, (H)lly, which is the one we want,

0£y—3y||vm (t)||v+2c2||vm(t)||i,, (101)

on the intervals where the first inequality of (90) is satisfied.

By the conditions of the theorem, we can assume that the
data of the problem are so small that (87)-(89) and (94) are
valid, and vy satisfies the following inequality:

9u’ — 8,y > 4’ (102)
Now, let us prove that if
“VOHVSW< <4L62>’ (103)
then for any m,
2u—4c,|v,, (O)||y 2@Vt € [0,T]. (104)
Since 2u — 4¢, ||vylly > ¢, on an interval [0,t,,],
2u - 4c2va(t)||V2y. (105)

Let us first prove that if the first inequality of (90) is valid
on an interval [0,%,,], then more stronger
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2u =4, ||v,, D)y 2Vt € [0,,], (106)

is valid. Putting y = [lv,,, (t)|ly in (101) (which is valid on the
interval where the first inequality of (90) holds when
(87)-(89) and (94) are valid), we get

0<y-3uy+2c,y> on[0,,]. (107)

By virtue of (102), there exist two real roots of
z=y-3uy+oyt

3u— 9’ — 8cyy

Y11= —4C2 > o)
_ 3u+ /9% - 8c,y
Y2 = —4c2 >

and on the intervals [0, y,] and [y,, +00), (107) holds. Thus,
by continuity of |v,, (t)lly with respect to ¢ from

lv(O)lly € [0, y;], we have that |lv, (t)lly € [0, y,]Vt €
[0,,,], that is,
— 92 _
v, (O], < 2H-PEZ89Y By 1071 (109)
4c, 4c,
Thus,
2u =4, ||v,, ||y >Vt € [0,F,], (110)

which shows (106). Thus, by step by step, we see that the fist
inequality of (90) is valid on [0,T], and (104) is valid.

If (103) is valid, then so is (88). Therefore, for the small
data satisfying (87), (89), (94), (102), and (103), we also have
(99) on [0,T]. By (104) and (99), we have

v Ol < Ve € 10.T], Vi, Ve > 0;
2

(111)
¢ 4
;n@m (t)"Wll.[z) SE, Vt € [0, T],Vm, Ve>0.

Then, by (91) and (83), we have
||v,'n(t)|| <const, Vte€ [0,T],Vm,Ve>0;

”V <const, Vm,Ve>O0;

!
m”LZ (0,T;V)

||0n;(t)||Sc0nst, Vt € [0,T], Ym, Ve > 0; (112)

“0"/‘”L2(0 T‘W“) <const Vm,Ve>0.
W

By (111),

T
J @, (v,,(t))dt <const, Vm,Ve>0, (113)
0

and so by (46) and (47),

JT ”Vm(t) —Je (Vm(t))"édtSCS, Vm, Ve > 0. (114)
0

4.2. Existence and Uniqueness of a Solution. Let us prove the
existence of a solution. Owing to (111) and (112), we can
extract subsequences, which are denoted with the subindex
as before, such that
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inC([0,T]; V),
v, —v' inL*(0,T;V),

Vy —V

inL®(0,T; H),
6,, — 6 inC([0,T;W?),

v
" (115)
12 12

6,,—0" inL (O,T; WFD),

6,,—6' inL®(0,T;L* (),
when m — o0 and ¢ — 0.

Putting u = Zj\fl k;(t)u;, where k; (t) € C'[0,T] and M

is the positive integer, multiply the first equation of (52) by
k;(t) and add for j=1,..., M. Then, multiply the first

equation of (52) by gjm(t) and add for j=1,...,m.
Substituting the resulting equations, we have

Vo (£) + Ay, (£) + By (v,,, (), v, (1))
+ VO, (v,,),u) = v, (1)) ={(1 = 0p0) f + fr,u(t) = v, (1)).
(116)

Since @, is convex, continuous, and Fréchet differen-
tiable, we have

O, (u(t) = O, (v, (1)) = (VD (v, (1)), = v, (£)).  (117)

Taking into account (117), we have from (116)

JOT@;,, (&) + Ayv,, (8) + B, (v, (0 v, () = (1 = aB,,) f
— fru(t)—v,,(t)dt
. JOT (@, (u(£)) - ®, (v, (£)))dt > 0.
(118)
Since ® (1) > ®, (1) and O (J.w,, (£)) <D, (w,, (1))(see
(47)), we have from (118)
J:@;n(t) + Ay, (8) + By (v, (0w, (0) = (1 - ay0,,) f
= fru(t) = v, (t)dt)
+ (udt) - J: ®(J,v,, (£))dt > 0.

(119)

By (114), J.v,, — v in L*(0,T;V) as m — oo and
&€ — 0, and by lower semicontinuity of ®,

T T
lim J ®(]£vm(t))dtzj o(v()dr.  (120)
0 0

m—00,e—0

In the routine way, we can prove that

T T
JO (By (W, (£), v, (1), v (1))t — JO (B (v(£), (1)), v(t))dt,
(121)

asm — oo and ¢ — 0.
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Since  lim,, oo 0l AV, (1), v, (1)) = (Av (D),
v(t)), by (120) and (121), we have from (119)

jo (&) + A v (D) + B, (v(8), v(8)
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By (115), we can get from the second equation of (52)
that

T /o6
[ o (698, 90) (B, =G Vo

—(1=ay0) f = frou(t)—v(t))dt + ¥ (u) — ¥ (v)>0. .
(122) =ngwwt 9 € (0, T;Wp2).
Since v,,, (0) = v,, by (115), it is obvious that v(0) = v,. (123)
B, (v(t) v(t)) € L (0, T; V™), and the set )
= Sk (Dujik (1) € 1[0, T], M: positive intiger] s Easily, we see that
dense 1n L4 (o, T V) and so (122) is wvalid for all (kV0,,, Vo) — (kVO,Vg), forae.te [0,T]. (124)
ueL*(0,T;V).
Also,
T
J |<vm0m’ V§D> _<V0’ V(p>|dt
0
T T
< [ o= el BulTplhsde + [ (6, - 6).vg)at (125)
T
<[vin - V"L"O(O,T;V)HHMHLZ (O;T;L3)”¢"Lz(o,T;W;}§) + JO |(v(6,, - 0), Vo)|dt.
T 00 T
, Since VV(P c LZ (O,T, L6/5 (Q)), by (115), J <<at > +(xkV0, V(P) +(ﬁ (20, (P)FR (V@ Vq))) J’O <gl’(l’>dt'
[ {¥(8,, - 6), Vo) ldt —> 0. Thus, (128)
T
J (,6,, Vo)dt — J (v6, Vo) dt. (126) Since 6, (0) = 6,, by (115), it is obvious that 0(0) = 6,
0 Therefore, we proved the existence of a solution.
It is easy to prove that Let us prove uniqueness of a solution. Let
T T (vy,0,)and (v,, 0,) be the two solutions to Problem I-VI
J (B(x)8,,, 9)r. dt — j (B(x)6, 9) dt. (127) satisfying inequality (111) instead of approximate solutions.
0 R 0 K

Therefore, from (123), we have

(v (&) + Ayvy (&) + By (v (), v, (1)) —
(v3 (1) + Ay, (£) + By (v, (1), v, (1)) -

which imply

(v (t) =

By virtue of (50) and (51), we have

vy (1), vy (1) = v, () +{A, (v, (£) -
< |0c0||(61 -6, f,v (1) -, (t)| +|(B1 (vy (), v, (1)) = By (v, (1), v, (1)), v, (1) — v, (t))l.

Then, taking into account (44) (Remark 4), from (35), we
have

(1= ay0,)f = fr1v2(8) = v, () + @ (v, (1) = D (v, (1)) 20, (129
(1= ag0y)f = fr,v (1) = v, (1)) + @ (v, (1) = @ (v, (1)) 20,
Vs (t))> 141 (t) - Vs (t)> (130)
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d 7
(I O-noF)+Emo-nol,

<2c,

+2|(B(vy (1) = vy (1), v (), v () = v, (D)

<2c,

+26,([[v O}y +[v2 )1 O = v, O,

where c, is the one in (51). By (111),
26, Oy +v> D) <
and so we have

dllv, (&) = v, )|
dt

(132)

+2uflv, (1) = v, (D)5 )

<2, v, (®) = v, O + el 156, - 6,

<

36, — 6,
ot

,0, - 62> +x(V0, —V6,,V0, - V6,) + (B(x)(6, - 6,),6, — Qz)rR
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v () v, ()| + %ilvl () = vy, O+l fIE]6, - 6,

+ 2/(B(v, (), v, (1) = v, (1)), v, () = v, (D)) (131)

v (8) = v, ()] + gllvl () - v, O +cll FIE]6, - 6]

Also, from

00
<a_tl’ ‘P> +(kV0,, Vo) + (B(x)6; ‘P)FR = (101, V1) =(g1>9),

20
atz"”> +(kV0,, Vo) + (B (x)6y, 9)r, —(v202, Vo) =(g1, ),
(134)
we have
(135)

= (v (0, = 6,),V (6, = 6,)) —{(v; = 7,)6,,V (6, - 6,)) = 0.

Taking into account (v, (6, —6,),V (6, —6,)) = O(see
(17)), by (80), we have

d
36— &[] +26]6, - V6,

< v 0 = O 0 Oz + 6V, - VO,
(136)

and so

d
Sl =0, ) < v 0 - v 06 O
(137)

By (111),
%nez Ol sg. (138)

Therefore, adding (133) and (137), we get

%("Vl (t) - v, (t)”2 +]6, (t) - 6, (t)”2>

< (2. +ellfI)(In @ - va OFF +]0, () - 0,0 ).
(139)
We have from (139)
[ ®=v, O +]6, ) -6, D)

< [ e+ 26 1) (I - O +6, -6, O )as,

(140)

which implies v, (t) =v,(t) and 6,(¢t) =0,(¢t) for all
t € [0,T].

5. Proof of Theorem 2

5.1. Existence and Estimation of a Solution to an Approximate
Problem. We first consider a problem approximating (43).
For every 0 <e<1, let a functional @, be defined by (45).
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Let {uj,j =1,2,.. } and {(pj,j =12,.. } be, respec-
tively, bases of the space V and W (Q). Without loss of
generality, we assume that u; = v, and ¢, = 0y asin [26]. We

= <(1 - ay0,,)f> uj> +<f2’”j>’

Vm (0) = V())

L em (0) = 60)

which gives us a system for g, (t) and 7, (£), j = 1 — m. The
solutions to (141) depend on ¢, but for convenience of
notation, here and in what follows, we use subindex m. For
t,,» there exist absolute continuous functions g, (t) and
7 im () on [0,£,,). If ||v,, ()|l and [|6,, (¢)|| are bounded and
v, (t)and 6, (t) are integrable, then Gim (t) and Tim (t) are

20,

Vm (0) = V())

9,,(0) = 6,.

Let us estimate terms on the left-hand side above. It is
easy to see

204 (0,)E (Vyn)» & (v,,) )t = 2019 |, -

By the fact that T,;T;;,T;; are in C*'(I;;) and As-
sumption 2, there exists a constant M such that

1S G0 loos I ()l Nt 1 < M.

(143)

(144)

Thus,
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find a solution v,, = 3", g;, (Hu; and 6,, = Y7, 1, (t)g;
to the problem

’ <aaV;n)uj> +2(u(0,)8 (v,,), (u;)) +(rotv,, x v,,u;) + 2(V(9m)k(x)"m»uj)r2

+2([4 (0,,)SV,> ﬁj)g + Z(a(x)vm, uj)rs +(y (0,)k (x)V,y,» ”j)r7 + <VCD£ (Ve (1)), uj>

(141)

R

00
(%0, ) (50890, 59) (B Br0,)y, ~ (a8 59) =920

prolonged over t,. We will find estimates (157) in the
following, by which we see that ¢,, = T.

Multiplying the first and the second equation of (141),
respectively, by g, (f) and ¢, (f) and adding for
i=1,...,m, we get

(s ) 4 208005 0,8 () 0 %5003 2 B ),

+2 ([,l (em)svm’vm)l“3 +2 (“ (x’ t)vrrw Vm)l“5 + ([’l (Gm)k (X)Vm, Vm)l“7

+<V(Ds (Vm (t))’ Vm) +<(X06mf’ Vm> = <f’ Vm> +<f2’ Vm>’

(142)

?’ m> + (K(em)vem’vem) + (ﬁ ('x)em’ em)l"R _<Vm9m’vem> = <92’ 6m>’

K2 (AM (em)k(x)v’ V)FZ + 2(#(6m)svm’vm)r3 + 2(“ (x)vm’ 1/m)l“s

+ (.” (em)k(x)vm’ Vm)l"7)'

Bl + ksl
(145)
(cf. Theorem 1.5.1.10 of [28]). Obviously,
(rotv,, X v,,, v,,) = 0. (146)
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Since @, is convex, continuous and Fréchet differen-
tiable, we have

D, () - O (x) > (VD (x),y —x), Vx,yeV. (147)
Thus,

(Y0, (1, (0), Oy 1 (0) <, (00) - @, (1, (D) £ ~ @, (3, (1),

(148)

(VO, (v,, (1)), v, (1)) 2D, (v, (1)). (149)

Also, by the Holder inequality, we have

(o8 f V) t| < e |[v O + 26 Oz (150)
4 I'p

where ky, = clotoll| flI7eo (o 100
[ frwn) + (Lo <Efwnll + (115 + LAl )
(151)
Also, we have
(K(00)V6,, V6, = ko Oyul[i12,  (B(x)6,0,,)r, > 0.
! (152)
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By (17), we have

(w,,6,,,V6,,) = 0. (153)
K
(926 <160 Oz + cloallyyey- (150
Taking
ky =k + ko (155)

by (143)-(154), we have from (142)

d d
il OF + 10 O + 260 vl + 500 i + @ (3, (1))

<e( 1 8 1O 4o Of ) #2410 OF-
(156)

Applying the Gronwall inequality, we have from (156)

b O 100 O < ol 18 + [ (17 O #12OF. #las Oy |

T
0

N A A gc("%”z oo+ | (uf(t)n; 12O o Oy ))dt,

(157)

T
0

[, @@ Il ol + [ (1701 4108 o0l Jor )

Note that ¢ in (157) depends on T and (via k;,) f but

independent of m and e.

By (46) and (29) and the third inequality of (157), we

have

T
JO [V (8) = T, (v (0|t < ce, (158)

1| PORSMO)
2 dt

with ¢ independent of &. Multiplying the first equation of
(141) by g, (t) = g, (5), summing for j, and taking into
account (147), we have

(A2 (0,0) Vi () + By (v, (£, v, (1) + B, () f () = £ (1) = £2(£), ¥, (£) = 9, (5))

(159)

= (VD (v, (1)), ¥, (8) = ¥, (1)) S D (v, (5)) = @, (v, (5)) S P, (v, (),

where the operators A, (8,,), B, are the ones in (42). By (145)
and (144), we have

(Ay(8,)9,, (), v,, (1)) z%uvm Oy = ki vm O

|<A2 (0)Vy (), ¥, (5)>| = C"Vm (t)"V""m (S)"V’
(160)
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where k,; is the one in (145). Taking into account (160) and
the fact that (B, (v,, (t),v,,(t)),v,, (t)) = 0, we have from
(159)
1.d|v,, () —v,,(s)
— " " <O, (v,,(8) +{A; (0,) (1), v, (8)) + (B, (v, (1), vy, (1)), ¥, (5))
2 dt (161)
+(0,0,, ) fF () + f () + fL (), v, (1) = v, (5)) + kH"vm(t)"z.
Let us integrate every term of (161) first with respect to ¢ Since |lwll;s < Klw| ||1/2||w||if;2,
from s to s + h and then with respect to s from 0 to T, where
> B b b = t b
v (t)=0 when t € (T, T + h). (B> (v, w), 2)| =Irotv xw, 2)]
<Kllrotv | llzllwlyz11zllgs (165)

T sl (£)—v,,(s)|| T
JO J ” - 1 dtds= [ [ (51 =v,, (9 ds.

(162)
By the third inequality of (157),

T rsth T
j J (De(vm(s))dtdsshj ®, (v, (s))ds<c,h. (163)
0 0

N

By (157) and (161), we have

T rs+h
Joj (A, (6,)v,, (D), v,, (s))deds

<c[ Pl [ o ©lras (164

e[ (s Jas e VB

IN

T rs+h
J L ((f + f5) (@), v, (1))dtds| <

0

J T J jh«f + £2) (0, v, () deds

0

In the same way, we get

T (s+h
Jo J (090, f >V (£) = v, (s))dtds
T (s+h
UOJ Ky [ () dds

<cgh+c,Vh,

<cgh.

(168)

Note that constants ¢;,i = 1 — 8, are independent of m, €.
By virtue of (162)-(168), uniformly with respect to m, ¢,

JT [Vin (5 + 1) = v, ()| *ds < O(H"™), (169)
0

JT|<(f + f2) (), (t))l(ﬁ_ ds)dt3c4h,

172 172

< Kvivlwl™ lwlly

Izlly
and so by (157), we have

T (st+h
IO J (By (v (1), v,y (1)1, (5) )| dtds

IN

T 3/2 1/2
K[ o @R O 9t

34 oen 1/4
[ ||vm(s>||v<js ||vm(t)||zvdt> (j ||vm(t)||2dt> dsz ™

(166)
Also, by (157), we have

(167)

SKJ v s)“VJ I(f + £2) ©)l]-deds < c VR

and the set {v,} 1is relatively compact in
L2 (0, T; W92 (Q))(see Theorem 5 of [29]). Also, we
have

| (6,) VO, V)| < 11 |VE, ][ 2l 022

| B ), | < lOlliz @llohwrz @r  (170)

|V VO < el 6l Nz oy

By (170), from the second equation of (141), we have
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06,
(Gee)
Hence, by (157), we know that
6, < L'(0.7:(Wr))") ||94||L1(O,T:(W#f)*)ﬁc> (172)

where ¢ is independent of m, e. Thus, the set {6, } is relatively
compact in L2 (0, T; W12 (Q))(see Corollary 5 of [29]).

5.2. Existence of a Solution. We can extract subsequences,
which are denoted as before, such that

v,—v  inL*(0,T;V),
v,,—v  inL®(0,T;H),
v, — Vv in LZ(O, T; w102 (Q)),
, " (173)
0,—0  inL*(0,T; W (),

*

0,—0  inL®(0,T;L* (),
0,, — 0 inL*(0,T; W' (),

<c( Iz o+l # 0l 0 oy Yo, Vo € W)
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(171)

asm —> oo and ¢ — 0.

On the contrary, putting u = Z] 1 kj(Huj, where
k (t) € C'[0,T] and is a positive integer, multiply the first
equatlon of (141) by k;(t) and add for j=1,..., M. Then,
multiply the first equation of (141) by g;,, (t) and add for
j=1,...,m. Substituting the resulting equations, we have

< =+ A, (6,)v,, (1) + B, (v, (1), v, (1)) + VO, (v,, (1)), u(t) — v, (t)>dt

(174)

T
= JO (=0, f + f + frult) —v, (1))dt.

Since

J B u) - v, (t))dt—J (u (.0 =7, () )ds

_ %“vm (T) - u(T)||2 + %"vm (0) - u(0)||2,

(175)
taking into account (147), we have from (174)

T
jo (W' (£)+ Ay (0,,) v, (£) + By (v, (£), v, (1)), 14 (1) = v, (£) )t
T
- JO (=00, f + f+ fru()—v,, (5))dt

T 1 2
+ .[o (D, (u(t)— D, (v, (2)))dt> —E”vm (0) —u(O)" )
(176)

Since @, (u)<®(u) and O (J,v,, (1)) <D, (v,, (t))(cf.

(47)), we have from (176)

T
JO (' (6) + Ay (6,,)V, (8) + By (v, (£), v, (1)), e (8) = v,,, (1)) dlt
T
- JO (ol f + [+ fru(t)—v, (#)dt + ¥ ()

T 1 2

- JO O (T, (D)dt> =], () - (O
(177)
By (173) and Corollary Appendix B.2 of [1], taking a

subsequence if necessary, we have

T T
J {45 () (1), u(D))dt = JO Ay (O (1); v, (0,0 (£))dt

J (A, (O)v (1), u(t))dt.
(178)
Owing to (173),
v,, — vin L*(0,T;L* (00)). (179)

Thus, taking a subsequence if necessary, we have (see

Lemma Appendix B.1 of [1])
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2(p(8,)k (X Vi )1, + 2 (8 (8,0) Vs Vo)1, liminf2 (4 (6,,)& (v,,), & (v,,)) 22 (u ()& (v), E(v))
+ 2 ( (X)W Vi )1, + (1 (0 )k )V, Vi )p, — (181)
2(u(Ok (x)v, V)r, + 2 (u(O)SV, D)y, + 2 (a(x)v, V), (see Corollary Appendix B.3 of [1]), we have
+ (O, (X)W, V). liminf (A, (6,,)v,, (£),v,, (1)) > (A, (O)v (1), v(t)). (182)
(180) By (178) and (182), we have

Therefore, taking into account

T T
’l%rﬂ%g Jo (A, (6,,)v,, (), u(t) = v, (t))dt < Jo (A, (O)v(t), u(t) —v(t))dt. (183)

e—0

By (158) and (173), J, (v,,)—vin L? (0, T; V) asm — 0o T T
and ¢ —> 0. Since the functional ®: V — R is lower weak JO (B, (Vi (1), v, (), (1)) dt — JO (By (v(1), v(1)), u(t))dt
semicontinuous, we have (185)

T T
}%Hgl})g j O (J,v,, (1)dt > J O(v(t)dt =¥ (v). (184) as m —> 00,& — 0. For convenience of readers, we give a
—0 °° 0 proof in the following:

In a rather routine way, we can prove that

T
JO ((By (v (£), v,y () 1 (£)) = (B, (v (1), v (1)), i (£)) )it
(186)
T T
- jo (B, (v, (1), v, (£) = (D)), u (D))t + jo (B, (v, (1) = v(),v()), u(D))dt = T, + I,
By (165), the Holder inequality with exponents 2,4, 4,
and (173), we have
T 1/2 1/2
|Il| < K supyciomllu (Ol ||vm (t)"Hl ||vm (t) - v(t)”Hl ||vm (t) - v(t)“ dt
0
(187)
12 12
< K supyego,r I ()l v, - (o,T;Hl)”Vm =7z (0>T;H1)"Vm =7z (orazy — 0
By (165), is continuous and linear on L2 (0, T; V), that is, there exists
T f € L*(0,T; V)" such that
[ oo
T T
< K supye oyl (Dl 12 (Ol 2 (orze0y V1 0y IV (0.702) J (B, (z (), v(1)), u(t))dt = J (z(t), f(1))dt.  (190)
0 0
<K 2 )
< 1||Z(t)||L (oT:H') Thus, by 173),
(188)
which means that the mapping |I,] — 0, asm — oco,e — 0. (191)
T
z(t) € L*(0,T; V) — J (B, (z(£), v(£)), u(t))dt, By (186)-(191), we get (185).
0 Let us prove that

(189)
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T T
JO (@b, fru(t) - v,, (D) dt — JO (@ u(t) - v(D)

dt — 0, asm — 00,e — 0.
(192)
By (173), we have
JT«%em Cab) fou())dt — 0, (193)
0
T
[ (v 0) a0, vio))at
- J 0 (6, - 0)f,v, (1)t (194)
0

T
[ (@0f. 0, 0 - vi0)at — o
0

By (193) and (194), we get (192).
Therefore, by (183)-(185) and (192), from (177), we have

T
J-o ' (1) + A, (O)v(t) + B, (v(£), (1)) — (1 — ap0) f
— fru(t)—v(t))dt + ¥ (u) - ¥(v)

1
> - E”VO - u(O)"Z.
(195)
Since 1B, (v(t), v(t)lly- < KlIv (DI Iv ()1 (cf. (165))

and v € L® (0, T;L1?), B, (v,v) € L**(0, T; V*). Therefore, by

density of the set {u = zj?il k;(t)uj,k;(t) € C'[0,T],M =

J;Kvmem, Vo) —(v0, Vo)|ds < J;K(vm -v)6,,, Vo) |ds + ,[;KV(H’” - 0),Ve)|ds
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1,2,...}in {L*(0, T; V): u' € L2(0,T; V*)}, (195) is valid for
all u € {L*(0,T;V): u' € L*(0,T; V*)}.

Thus, the first formula of (43) is valid.

Putting ¢(t) = Y1, k; (t)p;, where k() € C'[0,T],
kj(T) = 0, multiply the second equation of (141) by k]- (1)
and add for j = 1,..., M. Thus, we have

t a t
(0,, (), (1)) — JO<9m,a—g:>ds + .[o x(0,,V0,,, Vo)ds
+ | (B8, 0)ds [ (1,6, Vg)ds
0 0

=(0,,(0),9(0)) + J;(g2,<p>ds, vVt € [0,T].
(196)
By Corollary Appendix B.2 of [1], we have
j; (x(6,,)V6,, Vo)ds — J; (k(O)V, Vo)ds, as

m — 00,¢ — 0.

(197)
Since W?192(Q)) c L*(Q), we have
v,, — vin L*(0,T;L* (), (198)
6,, — 0in L*(0,T; L* ().
By (198), we have
(199)

< (1 =l oyl ey #1905 a2y |00 = Bl iy )10 iy — O

which implies

t t
J (V0,0 Vo)ds — J (v0,Vo)ds, asm — 0o, — 0.
0 0
(200)

Therefore, taking into account (197) and (200), from
(196), we have

T a(P T T
- JO <6,at>dt N jo (k(O)V6, Vo)dt + JO (B0, g)r,dt
T
- J (v0, Vo)dt
0

= (6(0), 9 (0)) + j0<gz, 0)ds.
(201)

Since the set {p(t)= Y ki(thp;: k;() e C'[o,

TLk.(T)=0,M=1,2,...} is dense in
{p € C'([0,T; W) 9(T) =0}, from (201), we have
the second equation of (43). |
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