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&e aim of the present study is to analyze and find a solution for the model of nonlinear ordinary differential equations (ODEs)
describing the so-called coronavirus (COVID-19), a deadly and most parlous virus. &e mathematical model based on four
nonlinear ODEs is presented, and the corresponding numerical results are studied by applying the variational iteration method
(VIM) and differential transformation method (DTM).

1. Introduction

&e whole world is experiencing hardship due to corona-
virus (COVID-19), which was first identified in Wuhan,
China, in the month of December 2019. It has been con-
sidered that COVID-19 originated from wild animals (bats
[1]) and transmitted to humans as numerous infected pa-
tients claimed that they had been to a local wet market in
Wuhan during the end of November [2]. Later, some in-
vestigators confirmed that the virus transmission occurs
from person to person [3].

Mathematical models can simulate the effects of a disease
at many levels, ranging from how the disease influences the
interaction between cells in a single patient (within-host
models) to how it spreads across several geographically
separated populations (metapopulation models). Models
simulating the disease spread within and among pop-
ulations, such as those used to forecast the COVID-19
outbreak [4], are typically based on the SEIR model.

&e SEIR model is based on the division of the pop-
ulation under study into four compartments: an individual
can either be susceptible (S), exposed to the disease but not
yet infectious (E), infectious (I), or recovered (R). &e SEIR
model can represent many human infectious diseases [5–9].
In this paper, we focus, analyze, and find a solution for the

model of nonlinear ordinary differential equations (ODEs)
describing the deadly and most parlous coronavirus
(COVID-19). A mathematical model based on the four
nonlinear ODEs is presented, and the corresponding nu-
merical results are studied by applying the variational it-
eration method (VIM) and differential transformation
method (DTM).

&e VIM was developed by He [10, 11]. In recent years, a
great deal of attention has been devoted to the study of this
method. &e reliability of the method and the reduction in
the size of the computational domain make this method
applicable to a wide range of model predictions.&is method
is based on the use of restricted variations and a correction
functional, and it was found to have wide applications in
finding a solution for the nonlinear ordinary and partial
differential equations [12–14]. &is method does not depend
on small parameters in the differential equation and pro-
vides a solution (or an approximation to it) as a sequence of
iterations. &e method does not require that the nonline-
arities be differentiable with respect to the dependent var-
iable and its derivatives [15, 16].

&e DTM is a numerical method for solving differential
equations. &e concept of the differential transformation
was first proposed by Zhou [17], and its main application
therein is solving both linear and nonlinear initial value
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problems in electric circuit analysis. &e DTM provides in a
fast manner exact values of the nth derivative of an analytical
function at a point in terms of known and unknown
boundary conditions. &is method constructs, for differ-
ential equations, an analytical solution in the form of a
polynomial.

2. The SEIR Model

&e SEIR model in epidemiology for the spread of an in-
fectious disease is described by the following system of
differential equations:

dS

dt
(t) � −βS(t)I(t),

dE

dt
(t) � βS(t)I(t) − αE(t),

dI

dt
(t) � αE(t) − cI(t),

dR

dt
(t) � cI(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Here, β, α, and c are positive parameters and S, E, I, and R

denote the fractions of the population that are susceptible,
exposed, infectious, and recovered, respectively.

A schematic diagram of the disease transmission among
the individuals is shown in Figure 1 using the SEIR model.

For more information about the model refer to [18].
&e SEIR model of the novel coronavirus (COVID-19)

can be represented as follows:

(1) &e rate of change in the number of susceptible
people � the susceptible portion of the population ×

the average number of people infected by an infec-
tious person over the average duration of infection ×

the number of people infected by infectious people −

the susceptible portion of the population × the rate of
infectious animal source + travelers entering −

percentage of population traveling out × the number
of susceptible people + natural birth rate × the total
number of population − the death rate of susceptible
people × the number of susceptible people:

dS
dt

(t) � −β
S(t)

N
I(t) −

Z

N
S(t) + ρI + ρE( 􏼁

−
ϱI
N

+
ϱE
N

􏼒 􏼓S(t) + ]N(t) − μS(t).

(2)

(2) &e rate of change in the number of exposed people
� the susceptible portion of the population × the
average number of people infected by an infectious
person over the average duration of infection × the
number of people infected by infectious people + the
susceptible portion of the population × the rate of
infectious animal source − the number of exposed
people over the average latency period − percentage
of population traveling out × the number of exposed
people − the death rate of the exposed people × the
number of exposed people − testing and therapy rate
× the number of exposed people:

dE

dt
(t) � β

S(t)

N
I(t) +

Z

N
S(t) − αE(t)

−
ϱI
N

+
ϱE
N

􏼒 􏼓E(t) − μE(t) − σE(t).

(3)

(3) &e rate of change in the number of infected people �

the number of exposed people over the average la-
tency period − the number of infected people over
the average duration of infection − percentage of
population traveling out × the number of infected
people − the death rate of the infected people × the
number of infected people:

dI

dt
(t) � αE(t) − cI(t) −

ϱI
N

+
ϱE
N

􏼒 􏼓I(t) − μI(t). (4)

(4) &e rate of change in the number of recovered
people� the number of infected people over the
average duration of infection− the death rate of the
recovered people× the number of recovered peo-
ple+ testing and therapy rate× the number of ex-
posed people Figure 2:

dR

dt
(t) � cI(t) − μR(t) + σE(t). (5)

&e transitions between model classes can now be
expressed by the following system of first-order differential
equations (Table 1):

S E I R
β α γ

Figure 1: SEIR compartmental model.
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dS

dt
(t) � −β

S(t)

N
I(t) −

Z

N
S(t) + ρI + ρE( 􏼁 −

ϱI
N

+
ϱE
N

􏼒 􏼓S(t) + ]N(t) − μS(t),

dE

dt
(t) � β

S(t)

N
I(t) +

Z

N
S(t) − αE(t) −

ϱI
N

+
ϱE
N

􏼒 􏼓E(t) − μE(t) − σE(t),

dI

dt
(t) � αE(t) − cI(t) −

ϱI
N

+
ϱE
N

􏼒 􏼓I(t) − μI(t),

dR

dt
(t) � cI(t) − μR(t) + σE(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

with the initial conditions

S(0) � S0,

E(0) � E0,

I(0) � I0,

R(0) � R0.

(7)

3. The Variational Iteration Method

To illustrate the basic concepts of the VIM, we consider the
following general nonlinear differential equation:

LU(t) + NU(t) � F(t), (8)

where L is a linear operator,N is a nonlinear operator, andF(t)

is a known analytical function. We can construct a correction
functional according to the variational method as follows:

Un+1(t) � Un(t) + 􏽚
t

0
λ LUn(s) + N 􏽥Un(s) − F(s)􏼈 􏼉ds,

(9)

where λ is the general Lagrange multiplier [19], which can be
identified optimally via the variational theory, Un is the nth

approximate solution, and 􏽥Un denotes a restricted variation,
which means δN 􏽥Un � 0. Successive approximations, Un+1,
will be obtained by applying the obtained Lagrange multi-
plier and a properly chosen initial approximation U0.
Consequently, the solution is given by U � limn⟶∞Un. For

Table 1: Parameters and initial conditions of the SEIR model.

Parameter Definition
β Average number of people infected by an infectious person over the average duration of infection
α Number of exposed people over the average latency period
c Number of infected people over the average duration of infection
μ &e death rate of people
] &e birth rate parameter of people
σ &e cure rate of people
Z Force of infection in the baseline scenario
ρI Average daily number of international inbound air passengers
ρE Average daily number of domestic inbound air passengers
ϱI Average daily number of international outbound air passengers
ϱE Average daily number of domestic outbound travellers
S0 Number of susceptible people at time t � 0
E0 Number of asymptomatic and noninfectious people at time t � 0
I0 Number of asymptomatic but infectious people at time t � 0
R0 Number of recovered people at time t � 0
N Total number of population, N(t) � S(t) + E(t) + I(t) + R(t)

S

ϱI , ϱE ϱI , ϱE ϱI , ϱE 

E I R
ν β

ρI, ρE

μμμμ

α γ

σ

Figure 2: &e SEIR compartmental model of the novel coronavirus (COVID-19).
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solving equation (6) by means of the VIM, we construct the
correctional functional as follows:

Sn+1(t) � Sn(t) + 􏽚
t

0
λ1(τ)

dSn(τ)

dτ
+ β

􏽥Sn(τ)

N
􏽥In(τ) +

Z

N
􏽥Sn(τ) − ρI + ρE( 􏼁 +

ϱI
N

+
ϱE
N

􏼒 􏼓􏽥Sn(τ) − ] 􏽥Nn(τ) + μ􏽥Sn(τ)􏼨 􏼩dτ,

En+1(t) � En(t) + 􏽚
t

0
λ2(τ)

dEn(τ)

dτ
− β

􏽥Sn(τ)

N
􏽥In(τ) −

Z

N
􏽥Sn(τ) + α +

ϱI
N

+
ϱE
N

􏼒 􏼓 + μ + σ􏼒 􏼓􏽥En(τ)􏼨 􏼩dτ,

In+1(t) � In(t) + 􏽚
t

0
λ3(τ)

dIn(τ)

dτ
− α􏽥En(τ) + c +

ϱI
N

+
ϱE
N

+ μ􏼒 􏼓􏽥In(τ)􏼨 􏼩dτ,

Rn+1(t) � Rn(t) + 􏽚
t

0
λ4(τ)

dRn(τ)

dτ
− c􏽥In(τ) + μ􏽥Rn(τ) − σ􏽥En(τ)􏼨 􏼩dτ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Here, λ1, λ2, λ3, and λ4 are general Lagrange multipliers.
Making the above correction functional stationary with

respect to Sn(t), En(t), In(t), andRn(t), noticing that
δ􏽥Sn(τ) � δ􏽥En(τ) � δ􏽥In(τ) � δ􏽥Rn(τ) � 0, yields

δSn+1(t) � δSn(t) + δ􏽚
t

0
λ1(τ)

dSn(τ)

dτ
+ β

􏽥Sn(τ)

N
􏽥In(τ) +

Z

N
􏽥Sn(τ) − ρI + ρE( 􏼁 +

ϱI
N

+
ϱE
N

􏼒 􏼓􏽥Sn(τ) − ] 􏽥Nn(τ) + μ􏽥Sn(τ)􏼨 􏼩dτ � 0,

δEn+1(t) � δEn(t) + δ􏽚
t

0
λ2(τ)

dEn(τ)

dτ
− β

􏽥Sn(τ)

N
􏽥In(τ) −

Z

N
􏽥Sn(τ) + α +

ϱI
N

+
ϱE
N

􏼒 􏼓 + μ + σ􏼒 􏼓􏽥En(τ)􏼨 􏼩dτ � 0,

δIn+1(t) � δIn(t) + δ􏽚
t

0
λ3(τ)

dIn(τ)

dτ
− α􏽥En(τ) + c +

ϱI
N

+
ϱE
N

+ μ􏼒 􏼓􏽥In(τ)􏼨 􏼩dτ � 0,

δRn+1(t) � δRn(t) + δ􏽚
t

0
λ4(τ)

dRn(τ)

dτ
− c􏽥In(τ) + μ􏽥Rn(τ) − σ􏽥En(τ)􏼨 􏼩dτ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

&erefore, the Lagrange multiplier can readily be
identified:

λ1(τ) � −1, λ2(τ) � −1, λ3(τ) � −1, and λ4(τ) � −1. Con-
sequently, the iteration formula can be obtained as follows:

Sn+1(t) � Sn(t) − 􏽚
t

0

dSn(τ)

dτ
+ β

􏽥Sn(τ)

N
􏽥In(τ) +

Z

N
􏽥Sn(τ) − ρI + ρE( 􏼁 +

ϱI
N

+
ϱE
N

􏼒 􏼓􏽥Sn(τ) − ] 􏽥Nn(τ) + μ􏽥Sn(τ)􏼨 􏼩dτ,

En+1(t) � En(t) − 􏽚
t

0

dEn(τ)

dτ
− β

􏽥Sn(τ)

N
􏽥In(τ) −

Z

N
􏽥Sn(τ) + α +

ϱI
N

+
ϱE
N

􏼒 􏼓 + μ + σ􏼒 􏼓􏽥En(τ)􏼨 􏼩dτ,

In+1(t) � In(t) − 􏽚
t

0

dIn(τ)

dτ
− α􏽥En(τ) + c +

ϱI
N

+
ϱE
N

+ μ􏼒 􏼓􏽥In(τ)􏼨 􏼩dτ,

Rn+1(t) � Rn(t) − 􏽚
t

0

dRn(τ)

dτ
− c􏽥In(τ) + μ􏽥Rn(τ) − σ􏽥En(τ)􏼨 􏼩dτ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

With initial approximations S(0) � 2500, E(0) � 1,

I(0) � 1, R(0) � 0, and N � 2502, which in turn gives
successive approximations, and considering the following
values for parameters (see [20]) β � 0.8, α � 0.75,
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σ � 0.1, c � 0.05, ] � 0.009/N, μ � 0.01,
Z � 0.001, ρI � 0.15, ρE � 0.15, ϱI � 0.01, and ϱI � 0.03, we
obtain

S1(t) � 2500 − 25.53132774t,

E1(t) � 1 − 0.059656274t,

I1(t) � 1 + 0.689984012t,

R1(t) � 0.15t.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Similarly, we get the following system after two terms:
S2(t) � 2500 − 25.53132774t − 0.143869926t2 + 1.87756013310−3t3,

E2(t) � 1 − 0.059656274t + 0.29733881t2 − 1.87756013310−3t3,

I2(t) � 1 + 0.689984012t − 0.043076138t2,

R2(t) � 0.15t + 0.013516786t2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

For the solution after three terms, we can write

S3(t) � 2500 − 25.53132774t − 0.143869926t2 + 0.013851166t3 − 8.48550280810− 5t4

−4.79158897410−7t5 + 4.31004739710−9t6,

E3(t) � 1 − 0.059656274t + 0.29733881t2 − 0.09860941t3 + 4.8381106310−4t4

−4.79158897410−7t5 + 4.31004739710−9t6,

I3(t) � 1 + 0.689984012t − 0.043076138t2 + 0.074410709t3 − 3.52042524910−4t4,

R3(t) � 0.15t + 0.013516786t2 + 9.1483020810−3t3 − 4.69390033310−5t4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

4. The Differential Transformation Method

&e basic definition and the fundamental theorems of the
DTM and its applicability to various kinds of differential

equations are given in [17, 21]. According to the operations
of differential transformation given in Table 1 in [21], we
have the following recurrence relation:

S(k + 1) �
1

k + 1
−
β
N

􏽘

k

m�0
S(m)I(k − m) −

Z

N
S(k) + ρI + ρE( 􏼁δ(k) + ]N(k) −

ϱI
N

+
ϱE
N

􏼒 􏼓 + μ􏼔 􏼕S(k)⎡⎣ ⎤⎦,

E(k + 1) �
1

k + 1
β
N

􏽘

k

m�0
S(m)I(k − m) +

Z

N
S(k) − α +

ϱI
N

+
ϱE
N

􏼒 􏼓 + μ + σ􏼔 􏼕E(k)⎡⎣ ⎤⎦,

I(k + 1) �
1

k + 1
αE(k) − c +

ϱI
N

+
ϱE
N

􏼒 􏼓 + μ􏼔 􏼕I(k)􏼔 􏼕,

R(k + 1) �
1

k + 1
[cI(k) − μR(k) + σE(k)].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

&e inverse differential transformation of S(k) is defined
as follows: when t0 is taken as zero, the given function S(t) is
declared by a finite series, and the above equation can be
written in the form

S(t) � 􏽘
∞

k�0
S(k)t

k
. (17)

By solving the above equations for
S(k + 1), E(k + 1), I(k + 1), and R(k + 1) up to order 3, we
obtain the functions of S(k), E(k), I(k), and R(k),
respectively:

S(t) � 􏽘
3

k�0
S(k)t

k
,

E(t) � 􏽘
3

k�0
E(k)t

k
,

I(t) � 􏽘
3

k�0
I(k)t

k
,

R(t) � 􏽘
3

k�0
R(k)t

k
.

(18)
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With initial approximations, S(0) � 2500, E(0) � 1,

I(0) � 1, R(0) � 0, and N � 2502 and parameters
β � 0.8, α � 0.75, σ � 0.1, c � 0.05, ] � 0.009/N, μ � 0.01,
Z � 0.001, ρI � 0.15, ρE � 0.15, ϱI � 0.01, and ϱI � 0.03,
and applying the conditions in equations (16) and (18), we
obtain the approximate solution after three terms as follows:

S(t) � 2500 − 25.53132774t − 0.143869688t2 + 0.013851335t3,

E(t) � 1 − 0.059656274t + 0.297292652t2 − 0.099439782t3,

I(t) � 1 + 0.689984012t − 0.043076138t2 + 0.075184915t3,

R(t) � 0.15t + 0.013516786t2 + 9.1467634810−3t3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

5. Conclusions

In this paper, we have developed the SEIR model of the
COVID-19 epidemic in China that incorporates key features
of this pandemic. For solving this model, we used the
variational iteration method (VIM) and differential trans-
formationmethod (DTM). It is found that these methods are
effective in providing analytic form solutions for such
problems. &e comparison of the results obtained by these
two methods is in excellent agreement.

For further research, we propose the study of the frac-
tional-order model using the Caputo–Fabrizio derivative
[22, 23]. In addition, we propose to extend the results of the
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Figure 3: Comparison of solutions of the proposed model (6) for
compartment S using VIM and DTM.
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present paper and combine them with the results in [6]
(Figures 3–6).
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