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LaSalle wrote the following: “it is never possible to start the system exactly in its equilibrium state, and the system is always subject
to outside forces not taken into account by the differential equations. 'e system is disturbed and is displaced slightly from its
equilibrium state. What happens? Does it remain near the equilibrium state? 'is is stability. Does it remain near the equilibrium
state and in addition tend to return to the equilibrium? 'is is asymptotic stability.” Continuing with what LaSalle said, we
conjecture that real-life systems are always under the influence of impulses, delays, memory, nonlocal conditions, and noises,
which are intrinsic phenomena no taken into account by the mathematical model that is representing by a differential equation.
For many control systems in real life, delays, impulses, and noises are natural properties that do not change their behavior. So, we
conjecture that, under certain conditions, the abrupt changes, delays, and noises as perturbations of a system do not modify
certain properties such as controllability. In this regard, we prove the interior S∗-controllability of the semilinear stochastic heat
equation with impulses and delay on the state variable, and this is done by using new techniques avoiding fixed point theorems
employed by Bashirov et al.

1. Introduction

In this paper, we prove the interior approximate S∗-con-
trollability of the semilinear stochastic heat equation with
multiplicative noise, impulses, and delay on the state vari-
able. 'is is done by using the result from Leiva [1]; Acosta

Leiva [2]; and new techniques avoiding fixed point theorems
employed by Bashirov et al. [3–5]. In this regard, we will
prove the interior approximate S∗-controllability of the
semilinear stochastic heat equation with multiplicative
noise, impulses, and delay:

ztz(t, x) � Δz(t, x) + 1θu(t, x) + f(t, z(t − r, x), u(t, x))􏼂 􏼃+

g(t, z(t − r, x), u(t, x)) _m(t, x), in[0, τ] × Γ, t≠ tk,

z(s, x) � 0, on(0, τ) × zΓ ,

z(s, x) � ϕ(s, x), s ∈ [− r, 0], x ∈ Γ,

z t
+
k , x( 􏼁 � z t

−
k , x( 􏼁 + Ik tk, z tk, x( 􏼁, u tk, x( 􏼁( 􏼁, k � 1, 2, 3, . . . , p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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where Γ is a bounded domain in Rd (d � 1, 2, 3), zΓ denotes
its boundary, θ is an open nonempty subset of Γ, 1θ denotes
the characteristic function of the set θ, u is a control pro-
cesses R-valued, the noise _m is a colored noise R valued on
[0, τ] × Rd with spatial correlation q(ξ, η) given by

q(ξ, η) � (t∧s)
− 1E(m(t, ξ)m(s, η)), ξ, η ∈ Γ, t, s ∈ [0, τ],

(2)

and ϕ(·, x) is a R-valued Fm
0 -measurable random variable

with respect to filtration Fm
t , where

Fm
t � σ m(s, x): 0≤ s≤ τ, x ∈ Γ{ }. 'e nonlinear terms

f, g, Ik: [0, τ] × R × R⟶ R are smooth enough such that
system (1) admits unique mild solutions for each control u

and satisfies the following property:

|f(t, z, u)| +|g(t, z, u)|≤ a0|z| + b0,

z ∈ R, u ∈ R, 0≤ t≤ τ, a0, b0 ≥ 0.
(3)

'e term white-noise is denoted by _m � (zm/zt), where
m is a Gaussian process m � (t, A): t ∈ [0, τ], A ∈Bb(Rd)􏽮 􏽯

with zero mean and covariance given by (2). 'e noise m

behaves as a Brownian motion with respect to the time
variable, and it has a correlated spatial covariance.

'ere are many practical examples of impulsive control
systems which are modeled by impulsive differential
equations (for more information, see the monographs:
Samoilenko and Perestyuk [6]; Franco and Nieto [7]; Sun
and Zhang [8]; Lakshmikanthan, Bainov and Simeonov [9];
He and Yu [10]; Luo and Shen [11]). 'e controllability of
impulsive evolution equations has been studied recently for
several authors, but most them study the exact controlla-
bility only (to mention, Radhakrishnan and Balachandran
[12]; Chalishajar [13]; Selvi and Mallika [14]). To our
knowledge, there are a few works on approximate con-
trollability of impulsive semilinear evolution equations (to
mention, Chen and Li [15] and Sakthivel and Anandhi [16]).
Recently, in the study of Carrasco, Leiva, Sanchez, and Tineo
[17]; Leiva [1]; Leiva and Merentes [18], the approximate
controllability of semilinear evolution equations with im-
pulses has been studied applying Rothe’s fixed point theo-
rem. Contrained controllability of finite-dimensional
semilinear systems with delayed controls has been studied by
Klamka [19, 20] where the author gives sufficient conditions
for contrained local relative controllability applying a gen-
eralized open mapping theorem. Also, Klamka [21] gave
necessary and sufficient conditions for different kinds of
stochastic relative controllability in a given time interval
which are proved for stochastic finite-dimensional linear
systems with multiple delays in control.

'e existence of solutions for impulsive evolution
equations with delays has been studied by Hernandez,
Sakthivel, and Tamaka [22]; Abada, Benchohra, and Ham-
mouche [23]; Shikharchan and Baburao [24] and Chang
[25, 26]. Besides, impulsive and stochastic effects appear in
real-life systems. Moreover, a lot of dynamical systems have
structure variables subject to stochastic abrupt changes,
which may result from sudden phenomena such as sto-
chastic failures and repair of components, quick

environmental changes, and changes in the interconnections
of subsystems (see Mao [27]). In the stochastic context, we
can mention some papers related to impulsive and delay
stochastic systems: Lijuan, Junping, and Jitao [28]; Sakthivel
[16]; Sukavanam and Kumar [29]; Parthasarathy and Sathya
[30].

'e exact and approximate controllability is known for
determinist systems; but the exact controllability was in-
troduced as a concept for linear finite-dimensional systems
by Kalman in the 50s. Nevertheless, the extension of this
concept to infinite dimensional systems is too strong.
'erefore, the approximate controllability was introduced as
a weakened version of the exact controllability. However, the
exact and approximate controllability cannot be a property
of stochastic systems, and this needs to be a weaker concept
than the approximate controllability concepts in order to
extend them to the stochastic systems. 'en, the concept of
the S-controllability is introduced. A control system is
S-controllable, if given an arbitrary ϵ> 0, it is possible to
steer from the point z0 to within a distance

�
ε

√
from all

points in the state space Z at time τ with probability close to
one. 'e approximate controllability and S-controllability
concepts are equivalent for the linear system but are different
for nonlinear stochastic systems. 'is concept and gener-
alization are defined in Bashirov et al. [5, 31]. In this context,
we used the S∗-controllability which is a weaker version of
S-controllability.

'e main objective of this article is to prove the interior
S∗-controllability of the semilinear stochastic heat equation
with impulses, delay, and multiplicative noises (1) simul-
taneously, under appropriate conditions presented above.
For this, we apply the new technique presented in Bashirov
et al. [3, 4, 31, 32]. In the literature, S-controllability for such
systems, only a few works such as Bashirov and an article by
Sukavanam and Kumar [29], has been reported.

2. Preliminaries

In this section, we introduce notations, definitions, and
preliminaries which are used to write (1) as an abstract
differential equation.

Let Z, U, and K be separable Hilbert spaces and
(Ω,F, P) be a complete probability space with a probability
measure P on Ω. Let m(t), t ∈ [0, τ]{ } be a Wiener processes
with values in K and covariance nonnegative operator
Q ∈ L(K) (L(K) is the space of bounded linear operators on
K). If the control system is stochastic, we denote by Fm

t the
smallest σ-field generated by m(s): 0≤ s≤ τ{ }. We assume
that there exists a complete orthonormal set
ξn, n � 1, 2, . . . ,􏼈 􏼉 in K and a bounded sequence of non-
negative real numbers ρn such that Qξn � ρnξn with
Tr(Q) � 􏽐

∞
n�1 ρn <∞. Let βn(t), n � 1, 2, . . . , be a sequence

of real-valued one-dimensional standard Brownian motions
mutually independent over (Ω,F, P) such that
m(t) � 􏽐

∞
n�1

��ρn

√ βn(t)ξn, t≥ 0.
Denoted by L0

2 � L2(Q(1/2)K, Z), the space of all
Q-Hilbert-Schmidt operators from Q(1/2)K to Z with norm
defined by
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‖ϕ‖
2
L0
2

� Tr ϕQϕ∗( 􏼁 � 􏽘
∞

n�1

��
ρn

√
ϕξn

����
����
2
. (4)

E ·{ } denotes the expectation of a random variable and
E(x|·) denotes the conditional expectation of x. Let
L2(Ω,Fm

τ , Z) denote the Hilbert space of all Fm
τ -measur-

able square-integrable random variables with values in Z.
Moreover, let LF

2 ([0, τ], Z) denote the Hilbert space of all
square-integrable andFm

t -measurable processes with values
in Z with topology given by the norm:

‖z‖
2

� sup
t∈[0,τ]

E‖z(t)‖
2
Z. (5)

'e control u ∈ LF
2 ([0, τ], U), where LF

2 ([0, τ], U) is the
familyU-valuedmeasurable andFm

t -adapted processes with
norm topology given by

‖u‖
2

� sup
t∈[0,τ]

E‖u(t)‖
2
U. (6)

We consider the function zt(x): [− r, 0]⟶ R defined
by zt(x)(s) � z(t + s, x), − r≤ s≤ 0 with r> 0 being the de-
lay. 'erefore, the initial condition ϕ(s, x) can be written as
z0 � z0(x)(s) � ϕ(s, x), s ∈ [− r, 0], x ∈ Γ.

We shall denote by C the set consisting of all
Fm

0 -measurable bounded random processes ϕ with value in
Z:

C � ϕ: [− r, 0]⟶ Z, ϕ bounded andFm
0 − measurable􏼈 􏼉,

(7)

satisfying

sup
− r≤s≤0

E‖ϕ(s)‖
2
Z <∞, withϕ(s)(x) � ϕ(s, x), x ∈ Γ.

(8)

When the control system is stochastic and completely
observable, then Fm

t􏼈 􏼉 is a natural filtration of
zu(t) � z(t, 0,ϕ, u). In this case, E(zu(t)|Fm

t ) � zu(t) (see
Bashirov et al. [5]). So, we shall consider the following
notation:

S
ϕ
τ � ∩

ε> 0,0≤p< 1
S
ϕ
τ,ε,p, (9)

where

S
ϕ
τ,ε,p � z

1 ∈ Z: ∃u ∈ L
F
2 ([0, τ], U) such that z0 � ϕ ∈ C andP z

u
(τ) − z

1����
����
2
> ε􏼒 􏼓≤ 1 − p􏼚 􏼛. (10)

Definition 1. A stochastic control system is said to be
S-controllable if

S
ϕ
τ � ∩

ε> 0,0≤p< 1
S
ϕ
τ,ε,p � S

ϕ
τ � Z. (11)

Definition 2 (see [5]). 'e stochastic semilinear control
system (1) is S∗-controllable if and only if, for every initial
state ϕ ∈ C, z1 ∈ Z � U � L2(Γ) and 0< σ < τ, there is a
sequence un in LF

2 ([0, τ], U) such that

E z
un

(τ) − z
1
|F

m
τ− σ􏽨 􏽩

�����

�����⟶ 0, in probability, n⟶∞.

(12)

3. Abstract Formulation of the Problem

'is section is devoted to set system (1) as an abstract control
system in a suitable Hilbert space. To this end, we recall that
the operator A � − Δ with Dirichlet boundary condition in
Z � L2(Γ) has the following spectral decomposition
0< λ1 < λ2 < · · · < λj⟶∞, where λj denotes the eigen-
values of A, each one with finite multiplicity cj equal to the
dimension of the corresponding eigenspace. 'erefore, the
following properties for A hold:

(i) For all z ∈ D(A), we have

Az � 􏽘
∞

j�1
λj 􏽘

cj

k�1
< z,

ϕj,k >ϕj,k � 􏽘

∞

j�1
λjEjz,

(13)

where 〈·, ·〉 is the inner product in Z, ϕj,k􏽮 􏽯 is a
complete orthonormal set of eigenvectors of A, and

Enz � 􏽘

cj

k�1
< z,

ϕj,k > ϕj,k.

(14)

So, Ej􏽮 􏽯 is a family of complete orthogonal pro-
jections in Z and z � 􏽐

∞
j�1 Ejz, z ∈ Z.

(ii) − A generates an analytic semigroup T(t){ } given by

T(t)z � 􏽘
∞

j�1
e

− λjt
Ejz,

‖T(t)‖≤ e
− λ1t

, t≥ 0.

(15)

'erefore, system (1) can be written as abstract func-
tional differential equations with impulses and noses
(see Acosta-Leiva [33].
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dz(t) � − Az(t) + Bθu(t) + f
e

t, zt(− r), u(t)( 􏼁􏼈 􏼉dt + g
e

t, zt(− r), u(t)( 􏼁dm(t), z ∈ Z, t≥ 0,

z(s) � ϕ(s), s ∈ [− r, 0],

z t
+
k( 􏼁 � z t

−
k( 􏼁 + I

e
k tk, z tk( 􏼁, u tk( 􏼁( 􏼁, k � 1, 2, 3, . . . , p,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

where u ∈ LF
2 ([0, τ], U), U � Z � K � L2(Γ),

Bv: U⟶ Z, Bθu � 1θu is a bounded linear operator,
zt ∈ C([− r, 0]; Z) and is defined by zt(s) �

z(t + s), − r≤ s≤ 0, ϕ ∈ C, and the operators
Ie

k: [0, τ]× Z × U⟶ Z, for k � 1, 2, . . . , p,
fe: [0, τ] × C × U ⟶ Z,
ge: [0, τ] × C × U⟶ L0

2(K, Z) are defined by

I
e
k(t, z, u)(x) � Ik(t, z(x), u(x)),

f
e
(t, ϕ(− r, ·), u(·))(x) � f(t, ϕ(− r, x), u(x)),

g
e
(t, ϕ(− r, ·), u(·))(x) � g(t, ϕ(− r, x), u(x)).

(17)

Proposition 1. Under condition (3) the function fe and ge

satisfies

f
e
(t,ϕ, u)

����
����Z

+ g
e
(t, ϕ, u)

����
����L0

2
≤ 􏽢a0‖ϕ(− r)‖Z + 􏽢b0, 0≤ t≤ τ.

(18)

4. Approximate Controllability of the Linear
Heat Equation

Since the associated linear stochastic heat equation is ap-
proximately controllable in any interval of the form
[τ − δ, τ], with 0< δ ≤ τ, we shall recall some properties and
characterizations of the approximate controllability of linear
deterministic evolution equations and linear stochastic
evolution equations. In this regard, we consider the corre-
sponding linear stochastic heat equation:

ztz(t, x) � Δz(t, x) + 1θu(t, x) + _m(t, x)􏼂 􏼃, in [0, τ] × Γ,

z t0, x( 􏼁 � z0(x).
􏼨

(19)

Note that, for all z0 random variableF0-measurable and
u ∈ LF

2 ([0, τ], U), the initial value problem

dz(t) � − Az(t) + Bθu(t)􏼈 􏼉dt + dm(t),

z t0( 􏼁 � z0,
􏼨 (20)

admits only one mild solution given by

z(t) � z t, t0, z0, u( 􏼁 � T(t)z0 + 􏽚
t

t0

T(t − s)Bθu(s)ds

+ 􏽚
t

t0

T(t − s)dm(s), 0≤ t0 ≤ τ.

(21)

We also consider the deterministic system corre-
sponding to (20), and for all y0 ∈ Z and u ∈ L2([0, τ], U),
the initial value problem

y′ � − Ay(t) + Bθu(t), y ∈ Z,

y t0( 􏼁 � y0,

⎧⎨

⎩ (22)

admits only one mild solution given by

y(t) � y t, t0, y0, u( 􏼁 � T(t)y0 + 􏽚
t

t0

T(t − s)Bθu(s)ds, 0≤ t0 ≤ τ.

(23)

Definition 3. 'e stochastic linear system (20) is said to be
approximately controllable on [0, τ] if for every initial state
z0 ∈ F0 and final state z1 ∈ L2(Ω,Fτ , Z) and any ϵ> 0 there
exists a control u ∈ LF

2 ([0, τ], U), Z � U � L2(Γ), such that
the mild solution of (20) z(·) corresponding to u verifies

z(0) � z0,

z(τ) − z
1����
����L2 Ω,Fm

τ ,Z( )< ε,
(24)

where

z(τ) − z
1����
����L2 Ω,Fm

τ ,Z( ) � E z(τ) − z
1����
����
2
Z

􏼒 􏼓
(1/2)

,

z(τ) − z
1����
����
2
Z

� 􏽚
Γ

z(τ, x) − z
1
(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dx.

(25)

It is known that approximately controllability of the
stochastic linear system (20) and deterministic linear system
(22) for linear infinite dimensional systems are equivalent
(see Mahmudov [34]). Now, we define the following
operator.

Definition 4 (see [33]). For system (22), we define the fol-
lowing concept: the controllability maps
Gτδ: L2([τ − δ, τ], U)⟶ Z, Gδ: L2([0, δ], U)⟶ Z de-
fined by

Gτδu � 􏽚
τ

τ− δ
T(τ − s)Bθu(s)ds, u ∈ L2([τ − δ, τ], U),

Gδv � 􏽚
δ

0
T(s)Bθv(s)ds, v ∈ L2([0, δ], U),

(26)

satisfy the following relation:
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Gτδu � 􏽚
τ

τ− δ
T(τ − s)Bθu(s)ds � 􏽚

δ

0
T(s)Bθu(τ − s)ds

� Gδu(τ − ·).

(27)

'e adjoint of these operators
G∗τδ : Z⟶ L2([τ − δ, τ], U), G∗δ : Z⟶ L2([0, δ], U) are
given by

G
∗
τδz( 􏼁(t) � B

∗
θT
∗
(τ − t), t ∈ [τ − δ, τ],

G
∗
δz( 􏼁(t) � B

∗
θT
∗
(t), t ∈ [0, δ].

(28)

'e controllability operators Qδ: Z⟶ Z are given by

Qδ(z) � GδG
∗
δ(z) � 􏽚

δ

0
T(t)BθB

∗
θT
∗
(t)dt. (29)

Qτδ: Z⟶ Z is defined by

Qτδ(z) � GτδG
∗
τδ(z) � 􏽚

τ

τ− δ
T(τ − t)BθB

∗
θT
∗
(τ − t)dt � Qδ(z).

(30)

'e following lemma holds in general for a linear-
bounded operator G: W⟶ Z between Hilbert spaces W

and Z(see Bashirov et al. [5]; Curtain and Pritchard [35];
Curtain and Zwart [36] and Leiva et al. [37]).

Lemma 1 ?e following statements are equivalent to the
approximate controllability of the linear system (20) on
[τ − δ, τ].

(a) Range(Gτδ) � Z

(b) Ker(G∗τδ) � 0{ }

(c) 〈Qτδz, z〉> 0, z≠ 0 in Z

(d) limα⟶0+α(αI + Qτδ)
− 1z � 0

Remark 1. Lemma 1 implies that, for all z ∈ Z, we have

Gτδuα � z − α αI + Qτδ( 􏼁
− 1

z, (31)

where uα � G∗τδ(αI + Qτδ)
− 1z, α ∈ (0, 1].

So, limα⟶0Gτδuα � z and the error Eτδz of this ap-
proximation is given by the formula:

Eτδz � α αI + Qτδ( 􏼁
− 1

z, α ∈ (0, 1], (32)

and the family of linear operators Γατδ : Z⟶W, defined
for 0< α≤ 1 by

Γατδz � G
∗
τδ αI + Qτδ( 􏼁

− 1
z, (33)

is an approximate inverse for the right of the operator Gτδ, in
the sense that

lim
α⟶0

GτδΓατδ � I, (34)

in the strong topology.

Lemma 2. Qτδ > 0 if and only if linear system (22) is ap-
proximately controllable on [τ − δ, τ]. Moreover, given an
initial state y0 ∈ Z and a final state z1, we can find a sequence
of controls uα􏼈 􏼉0< α≤ 1 ⊂ L2(τ − δ, τ; U), where

uα � G
∗
τδ αI + Qτδ( 􏼁

− 1
y
1

− T(τ)y0􏼐 􏼑, α ∈ (0, 1], (35)

such that the solutions y(t) � y(t, τ − δ, y0, uα) of the initial
value problem

y′ � Ay + Buα(t)􏼈 􏼉, y ∈ Z, t> 0,

y(τ − δ) � y0,

⎧⎨

⎩ (36)

satisfies

lim
α⟶0+

y τ, τ − δ, y0, uα( 􏼁 � z
1
, (37)

i.e.,

lim
α⟶0+

y(τ) � lim
α⟶0+

T(δ)y0 + 􏽚
τ

τ− δ
T(τ − s)Buα(s)ds􏼚 􏼛 � z

1
.

(38)

5. S∗-Controllability of the Semilinear
Stochastic System

In this section, we shall prove the main result of this paper,
the interior S∗-controllability of the heat equation with
impulses, delay, and multiplicative noise (1), which is
equivalent to prove the S∗-controllability of system (16). To
this end, for all ϕ ∈ C and u ∈ LF

2 ([0, τ], U), the initial value
problem

dz � − Az + Bθu + f
e

t, zt(− r), u(s)( 􏼁􏼈 􏼉dt + g
e

t, zt(− r), u(t)( 􏼁dm(t), z ∈ Z, 0≤ t≤ τ,

z(s) � ϕ(s), s ∈ [− r, 0],

z t
+
k( 􏼁 � z t

−
k( 􏼁 + I

e
k tk, z tk( 􏼁, u tk( 􏼁( 􏼁, k � 1, 2, 3, . . . , p,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)
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admits only one mild solution given by

z
u
(t) � T(t)ϕ(0) + 􏽚

t

0
T(t − s)Bθu(s)ds + 􏽚

t

0
T(t − s)f

e
(s, z(s − r), u(s))ds

+ 􏽚
t

0
T(t − s)g

e
(s, z(s − r), u(s))dm(s) + 􏽘

0< tk < t

T t − tk( 􏼁I
e
k tk, z tk( 􏼁, u tk( 􏼁( 􏼁,

(40)

with 0≤ t≤ τ.

Proposition 2 (see [37]). If Range(G) � Z, then

sup
α>0

α αI + GτδG
∗
τδ( 􏼁

− 1
�����

�����≤ 1. (41)

Now, we are ready to present and prove the main result
of this paper, the S∗-controllability of the semilinear heat
equation with impulses, delay, and multiplicative noise.

Theorem 1. Under condition (3), the semilinear heat
equations with impulses, delays, and multiplicative noise (1) is
S∗-controllable on [0, τ].

Proof. Given ϕ ∈ C, a final state z1 ∈ Z, and ϵ> 0, we want to
find a sequence of control un{ } ⊂ LF

2 ([0, τ], U) steering the
system from ϕ(0) to an ϵ-neighborhood of z1 ∈ Z on time τ
in probability. Precisely, for 0< δ <min τ − tp, r􏽮 􏽯 � σ < τ,
there exists control un{ } ∈ LF

2 ([0, τ], U) such that the cor-
responding solution of (39) satisfies

P E z
un

(τ)|F
m
τ− σ􏼐 􏼑 − z

1
�����

�����Z
> ε􏼒 􏼓⟶ 0, as n⟶∞.

(42)

Consider any process control u ∈ LF
2 ([0, τ], U) and the

corresponding solution zδ,α(t) � z(t, 0,ϕ, uδ
α) of the initial

value problem (39). For α ∈ (0, 1], we define the control uδ
α

as

u
δ
α(t] �

u(t), if 0≤ t≤ τ − δ,

uα(t), if τ − δ < t≤ τ,
􏼨 (43)

where

uα(t) � B
∗
θT
∗
(τ − t) αI + GτδG

∗
τδ( 􏼁

− 1
z
1

− T(δ)z(τ − δ)􏼐 􏼑,

(44)

uδ
α ∈ LF

2 ([0, τ], U) since z(τ − δ) is Fτ− δ-measurable and
z1 ∈ Z.

Now, since 0< δ < τ − tp, the corresponding solution
zδ,α(t) � z(t, 0,ϕ, uδ

α) of the initial value problem (39) at
time τ can be written as follows:

z
δ,α

(τ) � T(τ)ϕ(0) + 􏽚
τ

0
T(τ − s)Bθu

δ
α(s)ds + 􏽚

τ

0
T(τ − s)f

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑ds

+ 􏽚
τ

0
T(t − s)g

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑dm(s) + 􏽘

0< tk < τ
T τ − tk( 􏼁I

e
k tk, z tk( 􏼁, u

δ
α tk( 􏼁􏼐 􏼑.

(45)

'erefore,

z
δ,α

(τ) � T(δ) T(τ − δ)ϕ(0) + 􏽚
τ− δ

0
T(τ − δ − s)Bθu

δ
α(s)ds􏼨

+ 􏽚
τ− δ

0
T(τ − δ − s)f

e
s, z

δ,α
(s − r), u

δ
α􏼐 􏼑ds

+ 􏽚
τ− δ

0
T(t − δ − s)g

e
s, z

δ,α
(s − r), u

δ
α􏼐 􏼑dm(s)

+ 􏽘
0<tk < τ− δ

T τ − δ − tk( 􏼁I
e
k z

δ,α
tk( 􏼁, u

δ
α tk( 􏼁􏼐 􏼑

⎫⎪⎬

⎪⎭
+ 􏽚

τ

τ− δ
T(τ − s)Bθu

δ
α(s)ds

+ 􏽚
τ

τ− δ
T(τ − s)f

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑ds

+ 􏽚
t

τ− δ
T(t − s)g

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑dm(s).

(46)
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Hence,

z
δ,α

(τ) �T(δ)z(τ − δ) + 􏽚
τ

τ− δ
T(τ − s)Bθuα(s)ds + 􏽚

τ

τ− δ
T(τ − s)f

e
s, z

δ,α
(s − r), uα(s)􏼐 􏼑ds

+ 􏽚
t

τ− δ
T(t − s)g

e
s, z

δ,α
(s − r), uα(s)􏼐 􏼑dm(s).

(47)

'us,

z
δ,α

(τ) � T(δ)z(τ − δ) + 􏽚
τ

τ− δ
T(τ − s)Bθuα(s)ds + 􏽚

τ

τ− δ
T(τ − s)f

e
s, z

δ,α
(s), uα(s)􏼐 􏼑ds

+ 􏽚
t

τ− δ
T(t − s)g

e
s, z

δ,α
(s − r), uα(s)􏼐 􏼑dm(s).

(48)

Also, the corresponding mild solution yδ,α(t) � y(t, τ −

δ, z(τ − δ), uα) of the initial value problem of linear solution
(22) at time τ is given by

y
δ,α

(τ) � T(δ)z(τ − δ) + 􏽚
τ

τ− δ
T(τ − s)Bθuα(s)ds, (49)

or equivalently

y
δ,α

(τ) � T(δ)z(τ − δ) + 􏽚
τ

τ− δ
T(τ − s)BθB

∗
θT
∗
(τ − s) αI + GτδG

∗
τδ( 􏼁

− 1
z
1

− T(δ)z(τ − δ)􏼐 􏼑ds. (50)

Since z(τ − δ) is Fm
τ− δ-measurable, and also yδ,α(τ) is

Fm
τ− δ-measurable, it is measurable with respect to the smaller

σ field Fm
τ− σ . On the other hand, we have that

y
δ,α

(τ) − z
1

� α αI + GτδG
∗
τδ( 􏼁

− 1
T(δ)z(τ − δ) − z

1
􏼐 􏼑,

(51)

and subtracting (49) from (48), we get

z
δ,α

(τ) − y
δ,α

(τ) � 􏽚
τ

τ− δ
T(τ − s)f

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑ds

+ 􏽚
τ

τ− δ
T(t − s)g

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑dm(s).

(52)

Taking conditional expectation with respect toFm
τ− σ and

using the fact that the term

􏽚
τ

τ− δ
T(t − s)g

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑dm(s), (53)

is independent of Fm
τ− σ , we have

E z
δ,α

(τ) − y
δ,α

(τ)|F
m
τ− σ􏼐 􏼑 � E 􏽚

τ

τ− δ
T(τ − s)f

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑ds|F

m
τ− σ􏼒 􏼓. (54)
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'erefore, putting M � sup0≤t≤τ‖T(t)‖ and applying
Jensen’ inequality, we have that

E z
δ,α

(τ) − y
δ,α

(τ)|F
m
τ− σ􏽨 􏽩

�����

�����
2

Z
� E 􏽚

τ

τ− δ
T(τ − s)f

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑ds|F

m
τ− σ􏼔 􏼕

�������

�������

2

Z

≤ E 􏽚
τ

τ− δ
T(τ − s)f

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑ds|F

m
τ− σ

�������

�������
􏼠 􏼡

2

≤ E 􏽚
τ

τ− δ
‖T(τ − s)‖Z f

e
s, z

δ,α
(s − r), u

δ
α(s)􏼐 􏼑

�����

�����Z
ds|F

m
τ− σ􏼔 􏼕􏼒 􏼓

2

≤M
2

􏽚
τ

τ− δ
􏽥a0 z

δ,α
(s − r)

�����

�����Z
+ 􏽥b0􏼚 􏼛ds􏼒 􏼓

2

� M
2

􏽥a0 􏽚
τ

τ− δ
z
δ,α

(s − r)
�����

�����Z
ds + 􏽚

τ

τ− δ
􏽥b0ds􏼒 􏼓

2
.

(55)

If we take 0< δ < r and τ − δ < s< τ, then
s − r< τ − r< τ − δ and zδ,α(s − r) � z(s − r). So, we obtain
the following estimate:

E z
δ,α

(τ) − y
δ,α

(τ)|F
m
τ− σ􏽨 􏽩

�����

�����
2

Z
≤M

2
􏽥a0K1δ + 􏽥b0δ􏼐 􏼑

2
≤ 2M

2δ2 􏽥a
2
0K

2
1 + 􏽥b

2
0􏼒 􏼓, (56)

where K1 � sup0≤s≤τ‖z(s − r)‖Z. Hence,

E z
δ,α

(τ) − z
1
|F

m
τ− σ􏽨 􏽩

�����

�����
2

Z
� E z

δ,α
(τ) − y

δ,α
(τ)|F

m
τ− σ􏽨 􏽩 + E y

δ,α
(τ) − z

1
|F

m
τ− σ􏽨 􏽩

�����

�����
2

Z

≤ E z
δ·α

(τ) − y
δ,α

(τ)|F
m
τ− σ􏽨 􏽩

�����

�����Z
+ E y

δ·α
(τ) − z

1
|F

m
τ− σ􏽨 􏽩

�����

�����Z
􏼒 􏼓

2

≤ 2 E z
δ·α

(τ) − y
δ,α

(τ) F
m
τ− σ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩

�����

�����
2

Z
+ 2 E y

δ,α
(τ) − z

1
|F

m
τ− σ􏽨 􏽩

�����

�����
2

Z

≤ 4M
2δ2 􏽥a

2
0K

2
1 + 􏽥b

2
0􏼒 􏼓 + 2 E y

δ·α
(τ) − z

1
|F

m
τ− σ􏽨 􏽩

�����

�����
2

Z
,

(57)

or equivalently, by orthogonal projection property of con-
ditional expectation, we have that

E E z
δ·α

(τ) − z
1
|F

m
τ− σ􏽨 􏽩

�����

�����
2

Z
≤ 4M

2δ2 􏽥a
2
0K

2
1 + 􏽥b

2
0􏼒 􏼓 + 2E y

δ,α
(τ) − z

1
�����

�����
2

Z
. (58)

From equation (51), Lemma 1(d), and Proposition 2, we
get that

y
δ,α

(τ) − z
1

�����

�����
2

Z
� α αI + GτδG

∗
τδ( 􏼁

− 1
T(δ)z

δ,α
(τ − δ) − z

1
􏼐 􏼑

�����

�����
2

Z

≤ α αI + GτδG
∗
τδ( 􏼁

− 1
�����

�����
2

Z
T(δ)z

δ,α
(τ − δ) − z

1
􏼐 􏼑

�����

�����
2

Z

≤ T(δ)z
δ,α

(τ − δ)
�����

�����
2

Z
+ z

1����
����
2
Z

.

(59)
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'en, ‖yδ,α(τ) − z1‖ is dominated by an integrable
random variable. Consequently, for every 0< δ < τ,

E y
δ,α

(τ) − z
1

�����

�����
2

Z
⟶ 0, as α⟶ 0+

, δ⟶ 0+
. (60)

'erefore, for fixed 0< σ < τ, we can choose 0< δn < σ
such that

M
2δ2n 􏽥a

2
0K

2
1 + 􏽥b

2
0􏼒 􏼓≤

1
8n

. (61)

'ere exists αn > 0 such that

E y
δn,αn (τ) − z

1
�����

�����
2

Z
<

1
4n

. (62)

'en, there exists a sequence of controls
u
δn
αn
∈ LF

2 ([0, τ], U) such that

E z
δn,αn (τ) − z

1
|F

m
τ− σ􏽨 􏽩

�����

�����
2

� E E z
δn,αn (τ) − z

1
|F

m
τ− σ􏽨 􏽩

�����

�����
2

Z
≤
1
n
⟶ 0, n⟶∞. (63)

Since mean square convergence implies convergence in
probability, we obtain

E z
δn,αn (τ) − z

1
|F

m
τ− σ􏽨 􏽩

�����

�����⟶ 0, in probability, n⟶∞.

(64)

'is completes the proof of the theorem. □

6. Conclusions

In this article the approximate S∗-controllability was proved
for the stochastic semilinear heat equation with impulse,
delay, and multiplicative noise. For this, we avoid the
method of fixed point theorems by applying a new alter-
native method due to Bashirov et al. 'is technique can be
used to prove the S∗-controllability of the stochastic Ben-
jamin Bona Mohany equation with impulses and delays, for
the stochastic strongly damped wave equation under in-
fluence of impulses and delays and stochastic partial dif-
ferential equations modelling the structural damped
vibrations of a string or beam under the influence of im-
pulses and delays.

Considering 'eorem 1, there are many systems that do
not satisfy the sufficient condition (3) and still controllable.
In fact, if we change condition (3) by the following
condition:

|f(t, z, u)| +|g(t, z, u)|≤ a|z|
α

+ b|u|
β

+ c, u, z ∈ R,

(65)

where

1
2
≤ α< 1,

1
2
≤ β< 1,

(66)

the system is still S∗-controllable by using ideas from Leiva
et al. [1, 2, 37].

Moreover, if we observe carefully the proof of 'eorem
1, it can be concluded that condition (3) could be replaced by
the following more general one:

|f(t, z, u)| +|g(t, z, u)|≤ ρ(z), u, z ∈ R, (67)

where ρ: R⟶ [0,∞) is a continuous function. In par-
ticular, ρ(z) � |z|2.
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