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We expand an SIR epidemic model with vertical and nonlinear incidence rates from a deterministic frame to a stochastic one. %e
existence of a positive global analytical solution of the proposed stochastic model is shown, and conditions for the extinction and
persistence of the disease are established. %e presented results are demonstrated by numerical simulations.

1. Introduction

Mathematicalmodels play an important role in the analysis and
control of infectious diseases, and thus effective measures can
be taken to reduce its transmission as much as possible. %e
study of mathematical models in epidemiology has received
much attention from many scientists, and some novel results
are obtained [1–4]. Recently, stochastic analysis has widely
been applied in mathematical modeling in biology [5–9].

For compartmental mathematical models, the total
population is divided into three classes, namely, susceptible
population S(t), infected population I(t), and recover pop-
ulation R(t). For more details, see [10]. For some diseases,
such as AIDS, rubella, varicella, hepatitis B, hepatitis,
syphilis, and mumps, it is one of the main transmission
modes that infected mothers infect their unborn or newborn
offsprings, called vertical transmission [11]. Meng and Chen
[12] proposed an SIR epidemic model with vaccination and
vertical transmission mode as follows:

dS

dt
� − βSI − bS +(1 − m)pdI + b(1 − m)(S + R),

dI

dt
� βSI − (pd + r)I,

dR

dt
� rI − bR + dmpI + mb(S + R),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where b is the mortality rate in the susceptible and the
recovered individuals and d is the mortality rate in the
infective individuals. %e constants p and q (p + q � 1) are
vertical transmission rates, namely, p and q are, re-
spectively, the proportion of the offspring of infective
parents that are susceptible individuals and the rest are
born infected. %e arrival of newborns constitutes a re-
cruitment rate of b(S + R) into the susceptible individuals
and q dI into the infectious individuals. m(0≤m≤ 1) is
the successful vaccination proportion to the newborn
from S and R, r is the recover rate in the infective in-
dividuals into recovered individuals, and β is the contact
rate. System (1) has a basic reproduction number R0
defined by

R0 �
(1 − m)β

pd + r
. (2)

On the contrary, environmental fluctuations have great
influence on all aspects of real life. %e aim of this work is to
study the effect of these environmental fluctuations on the
transmission rate β. We assume that the stochastic per-
turbations are of white noise type, that is, β⟶ β + σ _B(t),
where B(t) is a Brownian motion and σ is the intensity.
%en, the stochastic version corresponding to the de-
terministic model (1) with general incidence rate is as
follows:
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dS � −
βSI

1 + α1S + α2I + α3SI
− bS +(1 − m)pdI + b(1 − m)(S + R)􏼠 􏼡dt −

σSI

1 + α1S + α2I + α3SI
dB(t),

dI �
βSI

1 + α1S + α2I + α3SI
− (pd + r)I􏼠 􏼡dt +

σSI

1 + α1S + α2I + α3SI
dB(t),

dR � (rI − bR + dmpI + mb(S + R))dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where B(t) is the independent standard Brownian motions
defined on a complete probability space (Ω,F, Ft􏼈 􏼉t≥0, P)

with a filtration Ft􏼈 􏼉t≥ 0 satisfying the usual conditions (i.e.,
it is increasing and right continuous whileF0 contains all P

null sets).
g(S, I) � βSI/(1 + α1S + α2I + α3SI) is the incidence

rate, where α1, α2, α3 ≥ 0. In addition, the incidence rate is
the number of new infected situations by population in a
determined time period. To model the disease transmission
process, several authors employ the following bilinear in-
cidence rate βSI, where β is a positive constant [13]. Yet,
there exist many forms of nonlinear incidence rate and every
form presents some advantages [14–16]. It is very important
to note that g(S, I) � βSI/(1 + α1S + α2I + α3SI) is a general
form which represents mutual interference between S and I.
in particular cases:

(1) If α1 � α2 � α3 � 0, g(S, I) becomes a bilinear in-
cidence rate

(2) If α1 � α2 � 0 or α1 � α3 � 0, g(S, I) becomes a
saturated incidence rate [17]

(3) If α3 � 0, g(S, I) becomes a Beddington–DeAngelis
functional response [18]

(4) If α3 � α1α2, g(S, I) becomes the Crowley–Martin
functional response presented in [19]

Next, we consider the d-dimensional stochastic system:

dx(t) � f(x(t), t)dt + g(x(t), t)dB(t), (4)

where f(x, t) is a function in IRd defined in [t0, +∞) and
g(x, t) is a d × m matrix, and f and g are locally Lipschitz
functions in x. B(t){ }t≥0 is a d-dimensional standard Wiener
process defined on the above probability space.

Denote by C2,1(IRd × [t0, +∞); IR+) the family of all
nonnegative functions U(x, t) defined on IRd × [t0, +∞)

such that they are continuously twice differentiable in x and
once in t.%e differential operatorL [16] associated with (4)
is defined by

L �
z

zt
+ 􏽘

d

i�1
fi(x, t).

z

zxi

+
1
2

􏽘

d

i,j�1
g

T
(x, t)g(x, t)􏽨 􏽩

ij
.

z

zxizxj

.

(5)

If the differential operator L acts on a function
U ∈ C2,1(IRd × [t0, +∞); IR+), then

LU � Ut(x, t) + Ux(x, t)f(x, t)

+
1
2
Trac g(x, t)

T
Uxx(x, t)g(x, t)􏽨 􏽩,

(6)

where Ut(x, t) � zU/zt, Ux(x, t) � (zU/zx1, . . . , zU/zxd),
and Uxx(x, t) � (z2U/zxizxj).

%e organization of this paper is as follows. In Section 2,
we show the existence of unique positive global solution to
the given SDE system. Extinction and persistence in mean
results are explored in Section 3 and Section 4, respectively.
In Section 5, the analytical results are illustrated with the
support of numerical examples. Finally, we close the paper
with conclusion and future directions.

2. Existence and Uniqueness of the
Nonnegative Solution

As we are dealing with the population model, the positive
solution of the model is of our interest.%e coefficients of (3)
are locally Lipschitz continuous and do not satisfy the linear
growth condition, so the solution of (3) may explode at a
finite time. %e following theorem shows that the solution is
positive and will not explode at a finite time.

We define a subset Δ of IR3 as follows:

Δ � (x, y, z) ∈ IR
3
+ : x + y + z � 1􏽮 􏽯. (7)

Theorem 1. For any given initial value X0 � (S(0), I(0),

R(0)) ∈ Δ, there is a unique positive solution X(t) �

(S(t), I(t), R(t)) of (3) on t≥ 0, and the solution will remain
in Δ with probability 1, namely, (S(t), I(t), R(t)) ∈ Δ for all
t≥ 0 almost surely (briefly a.s.).

Proof 1. Since the coefficients of system (3) are locally
Lipschitz continuous, for any initial value (S(0), I(0),

R(0)) ∈ Δ, there is a unique local solution on [0, τe), where
τe is the explosion time. To show this solution is global, we
need to show that τe �∞ a.s. For this, we define the
stopping time τ by

τ � inf t ∈ 0, τe􏼂 􏼁 : S(t)≤ 0, or I(t)≤ 0, orR(t)≤ 0􏼈 􏼉,

(8)

with the traditional setting inf ∅ �∞ (as usual ∅ denotes
the empty set). We have τ ≤ τe. If we can show that τ �∞
a.s., then τe �∞ a.s. and (S(t), I(t), R(t)) ∈ Δ for all t≥ 0.
In other words, to complete the proof, all we only need to
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show is that τ �∞. Assume that this statement is false, then
there exists a T> 0 such that P(τ <T)> 0. Define a C2

function U, by the expression

U(S, I, R) � − ln(SIR). (9)

Using Itô’s formula, we get

dU(X(t)) �
− 1
S

−
βSI

f(S, I)
− bS +(1 − m)pdI + b(1 − m)(S + R)􏼢 􏼣dt

−
1
I

βSI

f(S, I)
− (pd + r)I􏼢 􏼣dt −

1
R

[rI − bR + dmpI + mb(S + R)]dt

+
1
2

σI

f(S, I)
􏼠 􏼡

2

+
1
2

σS

f(S, I)
􏼠 􏼡

2
⎡⎣ ⎤⎦dt +

σI

f(S, I)
−

σS

f(S, I)
􏼢 􏼣dB(t).

(10)

Since f(S, I)≥ 1, and S≤ 1, I≤ 1, we get,

dU(X(t))≤H dt +
σ(I − S)

f(S, I)
dB(t), (11)

where H � β + 2b + pd + r + σ2. %en, we have

U(X(t)) ≤U X0( 􏼁 + 􏽚
t

0
H ds + 􏽚

t

0

σ(I(s) − S(s))

f(S(s), I(s))
dB(s).

(12)

Note that some components of X(τ) equal 0; thus,
limt⟶τU(X(t)) � +∞.

Letting t⟶ τ in (12), we obtain

+∞≤U X0( 􏼁 + 􏽚
τ

0
H ds + 􏽚

τ

0

σ(I(s) − S(s))

f(S(s), I(s))
dB(s)< +∞,

(13)

which contradicts our assumption. %en, τ �∞ a.s. %is
completes the proof of theorem. □

3. Extinction

In the following, we give a condition for the extinction of the
disease. Let

Rs �
R0

(1 − m)
−

σ2

2 1 + α1(1 − m)( 􏼁
2
(pd + r)

. (14)

Theorem 2. Let (S(t), I(t), R(t)) be the solution of system
(3) with initial value (S(0), I(0), R(0)) ∈ Δ. Assume that

(i) σ2 > β2/(2(pd + r)) or
(ii) Rs < 1 and σ2 < β

5en,

lim sup
t⟶+∞

ln
I(t)

t
≤

β2

2σ2
− (pd + r)< 0 a.s. if (i) holds,

lim sup
t⟶+∞

ln
I(t)

t
≤ 􏽥Rs − 1( 􏼁(pd + r)< 0 a.s. if (ii) holds.

(15)

Namely, I(t) tends to zero exponentially a.s., i.e., the
disease dies out with probability 1.

Proof 2. Applying Itô’s formula to system (3) leads to

d ln I(t) �
βS

f(S, I)
− (pd + r) −

σ2S2

2f2(S, I)
􏼢 􏼣dt

+
σS

f(S, I)
dB(t).

(16)

Integrating both sides of (16) from 0 to t, we get

ln I(t) � −
σ2

2
􏽚

t

0

S

f(S, I)
−

β
σ2

􏼠 􏼡

2

du +
β2

2σ2
t − (pd + r)t

+ M(t) + ln I(0)

≤
β2

2σ2
− (pd + r)􏼠 􏼡t + M(t) + ln I(0),

(17)

where M(t) � 􏽒
t

0(σS(u)/f(S(u), I(u)))dB(u), which is a
local continuous martingale, and M(0) � 0. Moreover, its
quadratic variation is

〈M, M〉t � 􏽚
t

0

σS(u)

f(S(u), I(u))
􏼠 􏼡

2

du≤ σ2t a.s. (18)

By the large number theorem for martingales [21], we
obtain

lim
t⟶+∞

M(t)

t
� 0 a.s. (19)

If condition (i) is satisfied, dividing by t and taking the
limit superior of both sides of (17), we get

lim sup
t⟶+∞

ln I(t)

t
≤

β2

2σ2
− (pd + r)< 0 a.s. (20)

If the condition (ii) is satisfied, note that
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βS

1 + α1S + α2I + α3SI
�

β
1 + α1

−
β(1 − S)

1 + α1( 􏼁 1 + α1S + α2I + α3SI( 􏼁

−
βα2I

1 + α1( 􏼁 1 + α1S + α2I + α3SI( 􏼁

−
βα3SI

1 + α1( 􏼁 1 + α1S + α2I + α3SI( 􏼁

≤
β

1 + α1
≤

β
1 + α1(1 − m)

.

(21)

It follows that

ln I(t)

t
� 􏽚

t

0

βS

f(S, I)
− (pd + r) −

σ2S2

2f2(S, I)
􏼠 􏼡du +

M(t)

t
+
ln I(0)

t

≤
β

1 + α1(1 − m)
− (pd + r) −

σ2

2 1 + α1(1 − m)( 􏼁
2 +

M(t)

t
+
ln I(0)

t

� (pd + r)
β

1 + α1(1 − m)( 􏼁(pd + r)
−

σ2

2 1 + α1(1 − m)( 􏼁
2
(pd + r)

− 1⎡⎣ ⎤⎦

+
M(t)

t
+
ln I(0)

t

� (pd + r) Rs − 1􏼂 􏼃 +
M(t)

t
+
ln I(0)

t
.

(22)

Taking the superior limit of both sides of (22), we obtain

lim sup
t⟶+∞

ln I(t)

t
≤ (pd + r) Rs − 1􏼂 􏼃< 0 a.s., (23)

which implies that limt⟶+∞I(t) � 0. □

Remark 1. From%eorem 1, we can get that the disease will
die out if Rs < 1, and the white noise is not large such that
σ2 < β, while if the white noise is large enough such that
condition (i) is satisfied, then the infectious disease of system
(3) goes to extinction almost surely.

4. Persistence

Here, we investigate the condition for the persistence of
the disease. %e basic reproduction number R0(see [20]),
is the threshold between disease extinction and persis-
tence, with extinction for R0 ≤ 1 and persistence for R0 > 1
in the deterministic model. In the stochastic model, we
define the threshold of persistence for disease as

R
∗
s � (1 − m)R0 −

σ2

2 1 + α1(1 − m)( 􏼁
2
(1 − m)(pd + r)

.

(24)

Definition 1. System (3) is said to be persistent in themean if

lim inf
t⟶∞

1
t

􏽚
t

0
I(u)du> 0 a.s. (25)

We define

〈x(t)〉 �
1
t

􏽚
t

0
x(u)du. (26)

Theorem 3. If R∗s > 1, then the solution (S(t), I(t), R(t)) of
system (3) with initial initial value (S(0), I(0), R(0)) ∈ Δ is
persistent in mean. Moreover, we have

lim inf
t⟶∞

〈I(t)〉≥
1 + α1(1 − m)( 􏼁(pd + r)

χ
R
∗
s − 1􏼂 􏼃 a.s.,

(27)

where χ � β(1 − m)(((r + dmp)/b)(1 − m) + ((α2 + α3)(pd +

r)/β(1 − m))).
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Proof 3. We have

〈S(t)〉 +〈I(t)〉 +〈R(t)〉 � 1. (28)

Integrating from 0 to t and dividing by t> 0 the third
equation of system (3), we get

R(t) − R(0)

t
� mb〈S(t)〉 +(r + dmp)〈I(t)〉

− b(1 − m)〈R(t)〉.

(29)

From (28), one can get

〈S(t)〉 � −
r + dmp

b
+ 1 − m􏼠 􏼡〈I(t)〉 +(1 − m) +

φ(t)

b
,

(30)

where φ(t) � (R(t) − R(0))/t. From Itô’s formula and (3),
we obtain

d 1 + α1(1 − m)( 􏼁ln I(t) + α2 + α3( 􏼁I( 􏼁

�
1 + α1(1 − m)( 􏼁βS

1 + α1S + α2I + α3SI
− 1 + α1(1 − m)( 􏼁(pd + r) −

σ2 1 + α1(1 − m)( 􏼁S2

2 1 + α1S + α2I + α3SI( 􏼁
2

⎡⎣ ⎤⎦dt

+ α2 + α3( 􏼁
βSI

1 + α1S + α2I + α3SI
− (pd + r)I􏼢 􏼣

+
1 + α1(1 − m)( 􏼁σS

1 + α1S + α2I + α3SI
dB +

α2 + α3( 􏼁σSI

1 + α1S + α2I + α3SI
dB

≥
1 + α1(1 − m)( 􏼁βS

1 + α1 + α2I + α3I
− 1 + α1(1 − m)( 􏼁(pd + r) −

σ2 1 + α1(1 − m)( 􏼁S2

2 1 + α1S + α2I + α3SI( 􏼁
2

⎡⎣ ⎤⎦dt,

α2 + α3( 􏼁
βSI

1 + α1 + α2I + α3I
− (pd + r)I􏼢 􏼣 +

1 + α1(1 − m)( 􏼁σS

1 + α1 + α2I + α3I
dB +

α2 + α3( 􏼁σSI

1 + α1 + α2I + α3I
dB

≥ β(1 − m)S − 1 + α1(1 − m)( 􏼁(pd + r) − α2 + α3( 􏼁(pd + r)I −
σ2

2 1 + α1(1 − m)( 􏼁
􏼢 􏼣dt + σ(1 − m)SdB.

(31)

Integrating from 0 to t and dividing by t> 0 on both sides
of yields

1 + α1(1 − m)( 􏼁ln I(t) − 1 + α1(1 − m)( 􏼁ln I(0)

t
+

α2 + α3( 􏼁I − α2 + α3( 􏼁I(0)

t

≥ β(1 − m)〈S〉 − 1 + α1(1 − m)( 􏼁(pd + r) − α2 + α3( 􏼁(pd + r)〈I〉 −
σ2

2 1 + α1(1 − m)( 􏼁
􏼢 􏼣dt +

M(t)

t

≥ β(1 − m) −
r + dmp

b
+ 1 − m􏼠 􏼡〈I(t)〉 +(1 − m) +

φ(t)

b
􏼢 􏼣 − α2 + α3( 􏼁(pd + r)〈I〉

−
σ2

2 1 + α1(1 − m)( 􏼁
+

M(t)

t
− 1 + α1(1 − m)( 􏼁(pd + r) − α2 + α3( 􏼁(pd + r)

� − β(1 − m)
r + dmp

b
+ 1 − m +

α2 + α3( 􏼁(pd + r)

β(1 − m)
􏼠 􏼡〈I(t)〉 + β(1 − m)

2

+
β(1 − m)φ(t)

b
− 1 + α1(1 − m)( 􏼁(pd + r) −

σ2

2 1 + α1(1 − m)( 􏼁
+

M(t)

t
.

(32)

We can rewrite the inequality (32) as
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〈I(t)〉≥
1
χ

β(1 − m)
2

− 1 +(1 − m)α1( 􏼁(pd + r) −
σ2

2 1 + α1(1 − m)( 􏼁
􏼢 􏼣

+
1
χ

β(1 − m)φ(t)

b
+

M(t)

t
−

1 + α1(1 − m)( 􏼁ln I(t) − 1 + α1(1 − m)( 􏼁ln I(0)

t
−

α2 + α3( 􏼁I(t) − α2 + α3( 􏼁I(0)

t
􏼢 􏼣,

(33)

where χ � β(1 − m)((r + dmp/b) − 1 + m + ((α2 + α3)(pd

+ r)/β(1 − m))). We can see that R(t)≤ 1 and I(t)≤ 1. %us,
one has limt⟶+∞R(t)/t � 0, limt⟶+∞I(t)/t � 0, and

limt⟶+∞φ(t) � 0. Taking the inferior limit of both sides of
(33) yields

lim inf
t⟶+∞

〈I(t)〉≥
1
χ

β(1 − m)
2

− 1 + α1(1 − m)( 􏼁(pd + r) −
σ2

2 1 + α1(1 − m)( 􏼁( 􏼁
􏼢 􏼣

≥
1 + α1(1 − m)( 􏼁(pd + r)

χ
β(1 − m)2

1 + α1(1 − m)( 􏼁(pd + r)
−

σ2

2 1 + α1(1 − m)( 􏼁
2
(pd + r)

− 1⎡⎣ ⎤⎦

�
1 + α1(1 − m)( 􏼁(pd + r)

χ
R
∗
s − 1􏼂 􏼃.

(34)

%is completes the proof of theorem. □

5. Numerical Simulations

In order to illustrate our theoretical results, we give some
numerical simulations. %e values of m, σ, and β will be
varied over the different examples.

Example 1. We choose the parameters in system (3) as
follows:

m � 0.9,

β � 0.6,

p � 0.1,

b � 0.2,

d � 0.4,

r � 0.2,

σ � 0,

α1 � 0.6,

α2 � 0.1,

α3 � 0.1.

(35)

By calculation, we have R0 � 0.4902; in this case, the
disease dies out as shown in Figure 1(a). By choosing
m � 0.3, we obtain R0 � 1.635, and we deduce that the
disease persists in the population. Figure 1(b) illustrates this
result.

Example 2. We choose the parameters in system (3) as
follows:

m � 0.2,

β � 0.8,

p � 0.5,

b � 0.2,

d � 0.4,

r � 0.2,

σ � 0.9,

α1 � 0.6,

α2 � 0.1,

α3 � 0.1.

(36)

A simple computation shows that

Rs � 0.9965< 1,

R0 � 1.0811,

σ2 � 0.6400> 0.1280 �
β2

2(pd + r)
.

(37)

It follows that the condition of %eorem 2 is satisfied.
We conclude that the disease dies out; Figure 2 illustrates
this result.
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Figure 1: Simulations of the path S(t), I(t), and R(t) for the corresponding deterministic system (1).
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Figure 2: Simulations of the path (a) S(t), (b) I(t), and (c) R(t) for the deterministic system (1) and the corresponding stochastic system (3).
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Example 3. On the contrary, we choose m � 0.05 and σ � 0.1
by simple calculation, and it can be found that R∗s �

1.2102> 1 which implies that the disease persists (Figure 3).

6. Conclusion

%is article discusses a stochastic SIR epidemic model with
vertical transmission and vaccination and nonlinear in-
cidence rate. We have shown that when the noise is so small
such that σ2 < β, the extinction of the disease can be de-
termined by the value of Rs, i.e., if Rs < 1, the disease dies out.
Moreover, the disease dies out when the white noise is large
enough such that σ2 > (β2/2(pd + r)).

%e persistence of the disease is determined by R∗s , i.e., if
R∗s > 1, the disease persists. We presented some numerical
simulations to illustrate the obtained analytical results. To go
further in this study, we can give a new dimension to the
stochastic SIR epidemic model (3) by introducing a different
type of noise which is the random telegraph noise (RTN),
modeled by the Markov chain. We will investigate this case
in our future works.

Data Availability

%e data used to support the findings of this study are
available from the corresponding author upon request.
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