
Research Article
On Some Sufficiency-Type Global Stability Results for
Time-Varying Dynamic Systems with
State-Dependent Parameterizations

M. De la Sen

Institute of Research and Development of Processes IIDP, University of the Basque Country,
Campus of Leioa, P. O. Box 48940, Leioa, Bizkaia, Spain

Correspondence should be addressed to M. De la Sen; manuel.delasen@ehu.eus

Received 1 March 2019; Revised 1 August 2019; Accepted 12 August 2019; Published 1 October 2019

Academic Editor: Peiguang Wang

Copyright © 2019M. De la Sen.&is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

&is paper formulates sufficiency-type global stability and asymptotic stability results for, in general, nonlinear time-varying
dynamic systems with state-trajectory solution-dependent parameterizations. &e stability proofs are based on obtaining suf-
ficiency-type conditions which guarantee that either the norms of the solution trajectory or alternative interval-type integrals of
the matrix of dynamics of the higher-order than linear terms do not grow faster than their available supremum on the preceding
time intervals. Some extensions are also given based on the use of a truncated Taylor series expansion of chosen truncation order
with multiargument integral remainder for the dynamics of the differential system.

1. Introduction

It is of interest to investigate explicit solution forms, if
possible, and the stability and asymptotic stability prop-
erties of ordinary differential equations whose coefficients
eventually depend on the solution trajectory and on its
relevant derivatives with respect to time. In particular,
differential equations whose coefficients depend on the
solution and derivatives up till a certain order have been
formally investigated, for instance, in [1, 2] and references
therein. On the other hand, the stability properties of time-
varying dynamic linear and nonlinear systems have been
also investigated, for instance, in [3–12] and some of the
references therein. In particular, Lyapunov second method
for stability theory has been successfully used to address
and discuss the boundedness and stability properties of the
solutions of two class of third-order differential equations
whose coefficients are time-varying functions which might
depend on the solution and their two first-order time-
derivatives.

&e duality which exists between ordinary and func-
tional differential equations of orders higher than one is
well known. &is duality is also reflected in their

alternative equivalent descriptions in terms of sets of
systems of first-order differential equations. On the other
hand, it is also well known the usefulness of such de-
scriptions to find explicit closed forms of solutions and to
perform the analysis of their stability properties. Note that
the descriptions of ordinary and functional differential
equations of order n through sets of n first-order differ-
ential equations, eventually coupled, is suitable to for-
malize both the analytic solutions and, in particular, the
stability properties of real-world dynamic systems of order
n. &is procedure might allow, to some extent, to get
standard solution trajectory analytic expressions in a
closed form and to obtain conditions of stability for the
original differential equation.

&is paper states and proves sufficiency-type global
Lyapunov’s stability and Lyapunov’s asymptotic stability
results of a differential system of an arbitrary n-th order
decomposed as a set of n first-order ordinary differential
equations whose parameterization is, in general, time-
varying and depends on the solution trajectory. &e dif-
ferential system is, in fact, the description via first-order
differential equations of an ordinary, or functional, dif-
ferential equation of the same order whose coefficients
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depend on the solution, its relevant time-derivatives, and,
eventually, explicitly with time. &e technical mathe-
matical proofs are based on getting “ad hoc” mathematical
expressions which are obtained analytically for upper-
bounds depending on time of the supremum of the so-
lution norm. It is assumed that such a supremum norm
evolves with time at a sufficiently slow rate. It is proved
that either the global stability or the global asymptotic
stability holds under the stability of a matrix function
which generates the fundamental matrix of a certain
reference unforced system and the sufficiently smallness of
the error matrix function between the dynamics of the
whole differential system and the above-mentioned sta-
bility matrix.

Alternative sufficiency-type global asymptotic stability
conditions are got under the time integrability of the norm,
or a power of the norm, of the error matrix function with
sufficiently small values of the time-interval integral. Taking
advantage of the fact that the decomposition of a matrix in a
sum of matrices is not unique, there is a freedom in the
choice of the matrix which is requested to be stable, the so-
called nominal matrix of dynamics, but then the error matrix
related to that of the system has to have a sufficiently small
norm to achieve the stability properties.

Some extended results are also given if a truncated
Taylor series expansion with an integral remainder around
the equilibrium point is developed. In particular, the re-
mainder expression is obtained by respecting the com-
patibility of the regularity conditions, with respect to the
state-trajectory solution and time, of the matrix defining
the whole dynamics of the differential system and the
truncation order in the series expansion chosen to define
the error matrix. &e first one of those matrices defines the
nominal matrix of dynamics, which exhibits stability
properties, while the second one defines the error matrix
related to the whole matrix function associated to the
differential system at hand.

On the other hand, it can be pointed out that there are
certain epidemic models where some of the coefficients
describing the differential equations are time-varying and
depending on the state defined by the subpopulations
which take part of the model. In particular, a normalized
SIR epidemic model (that is, with susceptible, infectious,
and recovered integrated subpopulations) whose recovery
rate is time-varying and state dependent is described and
analyzed in [13]. In [14], an epidemic model with random
screening (that is, the detected infectious are removed into
a special class) is proposed with a nonlinear incidence rate
which depends on the susceptible and the infectious, that is
on the model state. On the other hand, in [15], a true-mass
action type SEIR epidemic model (that is, with susceptible,

exposed, infectious, and recovered integrated sub-
populations) such that the coefficient disease transmission
rate is normalized with the total population is analyzed. In
such a way, such a normalized parameter becomes state-
dependent, and thus time-varying, in the model. &e above
three types of state-dependent parameterizations are very
common to some commonly used epidemic models. &is
feature results in their describing differential equations, or
their state equations, to have state-dependent and time-
varying parameterizations.

&e following basic notation is used through the
manuscript:

R+ � z ∈ R: z> 0{ },

R0+ � z ∈ R: z≥ 0{ },

Z+ � z ∈ Z: z> 0{ },

Z0+ � z ∈ Z: z≥ 0{ }.

(1)

&e disjunction and conjunction logic propositions are,
respectively, denoted by the symbols “∨” and “∧”:

n � 1, 2, . . . , n{ }. (2)

Ln
∞[0, t] and, respectively, Ln

p[0, t] are the sets of real
n-vector functions which are bounded or, respectively,
p-integrable on [0, t] for any p ∈ Z+. In particular, Ln

∞ �

Ln
∞[0,∞] and Ln

p � Ln
p[0,∞] for any p ∈ Z+; cl S denotes the

closure of the set S.

2. Problem Statement

Consider the n-th differential system of first-order
equations.

_z(t) � B(z(t), t)z(t),

z(0) � z0,
(3)

where the matrix function B: (R0+ × Rn) × R0+⟶ Rn×n has
piecewise continuous entries for each pair (z(t), t) ∈ Rn ×

R0+ such that z : R0+⟶ Rn is a solution of (3). Such a
matrix function can be, in general nonuniquely, decom-
posed as

B(z(t), t) � A(z(t), t) + 􏽥A(z(t), t), ∀t ∈ R0+. (4)

It is assumed thoroughly in the paper that the only
(nonnecessarily stable) equilibrium point of (3) for the given
􏽥A(z(t), t) and for the case when 􏽥A(z(t), t) ≡ 0 is
ze � 0 ∈ Rn; ∀t ∈ R0+. In mathematical terms,

ze ∈ R
n

: ze ∈ Ker B ze, t( 􏼁( 􏼁􏼂 􏼃∨ ze ∈ Ker A ze, t( 􏼁( 􏼁􏼂 􏼃;∀t ∈ R0+( 􏼁( 􏼁⟺ ze � 0 ∈ R
n

( 􏼁, (5)
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what implies that KerB(0, t) � KerA(0, t) � 0{ } ⊂ Rn;
∀t ∈ R0+, as a result. &is feature introduces a further
constraint on the nonunique additive decomposition (4).

It is, furthermore, assumed that the matrix functions
A, 􏽥A : (R0+ × Rn) × R0+⟶ Rn×n have piecewise continu-
ous entries for each pair (z(t), t) ∈ Rn × R0+ such that z :

R0+⟶ Rn is a solution of (3). To fix ideas, it is interpreted
that A(., .) defines the nominal dynamics and 􏽥A(., .) defines
the error dynamics of (3), subject to (4).

Example 1. &e differential system (3) can compactly
describe a time-varying n-th ordinary differential system
whose coefficients depend also on the derivatives up till
n-th order and which are linear in the solution and its first
(n − 1)-th derivatives. For instance, a differential equation
subject to a more general forcing term than equation (3) of
[2] which, together with its second order analogous, plays
an important role in the phase locked loop model realized
by a T.V. system (see [2, 16, 17]), may be (in general,
nonuniquely) described in the form (3) and (4), as follows:

z(t) � (x(t), _x(t), €x(t))
T
,

e(z(t), t) � c(z(t), t) + 􏽥A(z(t), t)z(t),

∀t ∈ R0+,

(6)

according, for instance, to
(a)

Aa � Aa(z(t), t) �

0 1 0

0 0 1

− a10 − a20 − a30

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥Aa(z(t), t) �

0 0 0

0 0 0

a10 a20 − b(t)g(x(t)) a30 − a(t)f( _x(t))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(7)

which is clearly equivalent to the third-order differential
equation:

x
...

(t) + a(t)f( _x(t)) €x(t) + b(t)g(x(t)) _x(t)

� e(x(t), _x(t), €x(t), t) − c(x(t), _x(t), €x(t), t),
(8)

independent of any real constants ai0 for i � 1, 2, 3. If
c(t, z(t)) � a(t)x(t) and 􏽥Ab � 􏽥Ab(z(t), t) � 0; ∀t ∈ R0+, it is
possible to describe the differential system, again in alter-
native ways, for instance, as follows:

(b)

Ab(t) � Ab(z(t), t) �

0 1 0

0 0 1

− a(t) − b(t)g(x(t)) − a(t)f( _x(t))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥Ab � 􏽥Ab(z(t), t) � 0; ∀t ∈ R0+,

(9)

(c)

Ac(t) � Ac(z(t), t) �

0 0 0

0 0 0

− a1(t) − b(t)g(x(t)) − a(t)f( _x(t))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥Ac(t) � 􏽥Ac(z(t), t) �

0 0 0

0 0 1

− a2(t) 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ∀t ∈ R0+,

(10)

with a2(t) � a(t) − a1(t); ∀t ∈ R0+,

(d)

Ad � Ad(z(t), t) �

0 0 0

0 0 0

− a10 − a20 + b(0)g(x(0))( 􏼁 − a30 + a(0)f( _x(0))( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ∀t ∈ R0+,

􏽥Ad(z(t), t) �

0 0 0

0 0 1

a10 − a(t) a20 + b(0)g(x(0)) − b(t)g(x(t)) a30 + a(0)f( _x(0)) − a(t)f( _x(t))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ∀t ∈ R0+.

(11)
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&e following further assumptions are made to be used
in some of the main subsequent results.

Assumption 1. A(z(t), t) commutes with 􏽒
t

0 A(z(τ), τ)dτ;
∀t ∈ R0+.

Assumption 2. &e matrix function A : (R0+ × Rn)

×R0+⟶ Rn×n satisfies ‖A(z(t), t)‖≤ a, and it is a stability
matrix for each pair (z(t), t) ∈ Rn × R0+ such that
z : R0+⟶ Rn is a solution of (3).

Assumption 3. ‖􏽥A(z(t), t)‖≤ 􏽥a; ∀(z(t), t) ∈ Rn × R0+ such
that z : R0+⟶ Rn is a solution of (3).

Remark 1. Note that the decomposition (4) is always
possible and nonunique if B : (R0+ × Rn) × R0+⟶ Rn×n

has piecewise continuous entries for each pair (z(t), t)

∈ Rn × R0+ such that z : R0+⟶ Rn is a solution of (3). On
the other hand, taking advantage that the decomposition (4)
is not unique, one concludes that Assumption 1 is not re-
strictive at all, in practice. It would suffice, for instance, to
take a diagonal A(z(t), t) and 􏽥A(z(t), t) � B(z(t), t)

− A(z(t), t); ∀t ∈ R0+.

&e main objective of the paper is to derive and prove
sufficiency-type global stability and global asymptotic sta-
bility results of the differential system (3), subject to (4) by
examining the growing rules of its norm through time
through “ad hoc” derived integral inequalities.

3. Some Stability Results

&e subsequent result relies on the existence and uniqueness
of the solution of (3).

Theorem 1. If Assumption 1 holds, then the n-th differential
system (3) has a unique solution for each initial condition
z(0) � z0 ∈ Rn which is given by

z(t) � e
􏽒

t

0
A(z(τ),τ)dτ

z0

+ 􏽚
t

0
e
􏽒

t

τ
A(z(σ),σ)dσ 􏽥A(z(τ), τ)z(τ)dτ,

∀t ∈ R0+,

(12)

where Ψ(z0, t, 0) � e
􏽒

t

0
A(z(τ),τ)dτ; ∀t ∈ R0+ is the funda-

mental matrix function of the n-th differential system dif-
ferential system _y(t) � A(z(t), t)y(t); y(0) � y0, which
satisfies Ψ(z0, 0, 0) � In; ∀z0 ∈ Rn:

_Ψ z0, t, 0( 􏼁 � A(z(t), t)e
􏽒

t

0
A(z(τ),τ)dτ

� A(z(t), t)Ψ(t, 0) � Ψ(t, 0)A(z(t), t),

∀(t, τ) ∈ R0+ × R0+.

(13)

Proof. Note from (12) that z(0) � z0 and that (12) is ev-
erywhere time-differentiable on R0+ whose derivative is by
using Leibnitz’s rule:

_z(t) � A(z(t), t)e
􏽒

t

0
A(z(τ),τ)dτ

z0 + e
􏽒

t

t
A(z(σ),σ)dσ 􏽥A(z(t), t)z(t)

+ 􏽚
t

0
A(z(t), t)e

􏽒
t

τ
A(z(σ),σ)dσ 􏽥A(z(τ), τ)z(τ)dτ

� A(z(t), t) e
􏽒

t

0
A(z(τ),τ)dτ

z0 + 􏽚
t

0
e
􏽒

t

τ
A(z(σ),σ)dσ 􏽥A(z(τ), τ)z(τ)dτ􏼢 􏼣

+ e
􏽒

t

t
A(z(σ),σ)dσ 􏽥A(z(t), t)z(t) � A(z(t), t)z(t) + 􏽥A(z(t), t)z(t), ∀t ∈ R0+,

(14)

after replacing (3) in the second identity of (14). Note that
(12) is a unique solution for each z(0) � z0 ∈ Rn since it is a
closed formula and that it is calculated by taking the aux-
iliary system _y(t) � A(z(t), t)y(t) as the unforced system
with y(0) � y0 and whose solution is y(t) �

Ψ(z0, t, 0)y(0) � e
􏽒

t

0
A(z(τ),τ)dτ

y0; ∀t ∈ R0+. □
It can be pointed out that time-varying matrices, con-

trarily to constant matrices, do not preserve the stability
under arbitrary transformations. &ere are specific trans-
formations, as, for instance, the so-called Bohl trans-
formations [5], which keep the stability properties from the
original representation.

Example 2. Retaking Example 1 with e(t) ≡ 0 and the
particular parameterization of (a) of the matrix

Aa �

0 1 0
0 0 1

− a10 − a20 − a30

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ yields that the fundamental matrix

is Ψ(t, 0) � eAt; ∀t ∈ R0+. Assumption 1 holds trivially and
the boundedness part of Assumption 2 also holds.

&e subsequent result is related to the boundedness of
the solution and the stability properties of (3).

Theorem 2. If Assumptions 1–3 hold, then the n-th dif-
ferential system (3), subject to (4), has a uniformly bounded
solution for any finite initial conditions and it is globally
asymptotically stable at large (i.e., in Rn) if 􏽥a is sufficiently
small satisfying a maximum measurable guaranteed upper-
bound amount which is given explicitly in the proof.
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Proof. Note that, from Assumption 2, ‖eA(z (t), t)‖≤

KA(z(t), t)e
− 􏽒

t

0
ρA(z(τ),τ)dτ for some bounded piecewise-

continuous functions KA : (R0+ × Rn) × R0+⟶ [1,∞)

and ρA : (R0+ × Rn) × R0+⟶ (0, +∞).
&en,

Ψ z0, t, 0( 􏼁
����

���� � e
􏽒

t

0
A(z(τ),τ)dτ

��������

��������

≤Ke
− 􏽒

t

0
ρA(z(τ),τ)dτ ≤Ke

− ρ0 z0 ,t( )t ≤Ke
− ρt

,

∀t ∈ R0+,

(15)
where

K � sup
t∈R0+

sup
z0∈Rn

KA z0, t( 􏼁,

0< ρ0 z0, t( 􏼁 ≤
􏽒

t

0 ρA(z(τ), τ)dτ
t

,

ρ � inf
t∈R0+

inf
z0∈Rn

ρ0 z0, t( 􏼁.

(16)

Note that ρ> 0 since ρ0(z0, t)> 0 for t ∈ R+ and, from
L’Hopital rule,

lim
t⟶0+

ρ0 z0, t( 􏼁 � lim
t⟶0+

􏽒
t

0 ρA(z(τ), τ)dτ
t

� ρA z0, 0( 􏼁> 0.

(17)

&en,

‖z(t)‖ ≤Ke
− ρt

z0
����

���� + 􏽚
t

0
e
ρτ

‖􏽥A(z(τ), τ)‖‖z(τ)‖dτ􏼠 􏼡;

≤Ke
− ρt

z0
����

���� +
eρt − 1

ρ
􏽥a sup
0≤τ≤t

‖z(τ)‖􏼠 􏼡; ∀t ∈ R0+.

(18)

Define

tt � max τ ∈ [0, t] : ‖z(τ)‖ � sup
0≤σ≤τ

‖z(σ)‖􏼠 􏼡, ∀t ∈ R0+,

(19)

sup
0≤τ≤t

‖z(τ)‖ � z tt( 􏼁
����

����≤Ke
− ρtt z0

����
���� + K

1 − e− ρtt

ρ
􏽥a sup
0≤τ≤t

‖z(τ)‖,

∀t ∈ R0+.

(20)

Now, assume that 􏽥a< (ρ/K)inf t≥01/(1 − e− ρtt )≤ (ρ/K),
then ‖z(t)‖≤ sup0≤τ<∞‖z(τ)‖≤ ρK‖z0‖/(ρ − K􏽥a); ∀t ∈ R0+

since ‖z(t)‖≤ sup0≤τ≤t‖z(τ)‖≤ ρKe− ρtt ‖z0‖/(ρ + K(e− ρtt − 1))
􏽥a≤ ρK‖z0‖/(ρ − K􏽥a)< +∞; ∀t ∈ R0+.

&en, the solution (12) is uniformly bounded for all time
for any given finite initial conditions, and the differential
system (3) is globally uniformly stable at large in Lyapunov’s
sense as a result. It is now proved by contradiction argument
that the stability is asymptotic. Assume on the contrary that
there is a sequence tj􏽮 􏽯

∞
j�0 ⊂ R0+ such that suptk+1≤ t<tk+2

‖z(t)‖ ≥ suptk≤ t<tk+1
‖z(t)‖; ∀tk ∈ tj􏽮 􏽯

∞
j�0. Assume that the

following cases can occur.

Case a. &ere is a subsequence tji
􏽮 􏽯
∞
i�0⊆ tj􏽮 􏽯

∞
j�0 such that

suptk+1≤ t<tk+2
‖z(t)‖> suptk≤ t<tk+1

‖z(t)‖; ∀tk ∈ tji
􏽮 􏽯
∞
i�0. &is

case is not possible since then the solution is not uniformly
bounded for all t ∈ R0+.

Case b. &ere is a subsequence tji
􏽮 􏽯
∞
i�0⊆ tj􏽮 􏽯

∞
j�0 such that

suptk+1≤ t<tk+2
‖z(t)‖ � suptk≤ t<tk+1

‖z(t)‖ > 0; ∀tk ∈ tji
􏽮 􏽯
∞
i�0.

&en,

sup
tk+j+1≤τ<tk+j+2

‖z(τ)‖ � z tk+j+1 + σk+j+1􏼐 􏼑
�����

�����

≤Ke
− ρ tk+j+1− tk+1+σk+j+1 − σk+1( 􏼁

· sup
tk+1≤τ<tk+2

‖z(τ)‖

+ K
1 − e− ρ tk+j+1− tk+1+σk+j+1− σk+1( 􏼁

ρ
􏽥a

· sup
0≤τ<tk+j+2

‖z(τ)‖,

∀tk ∈ tji
􏽮 􏽯
∞
i�0, ∀t ∈ R0+,

(21)

where σk ∈ [0, tk+1 − tk), ∀tk ∈ tji
􏽮 􏽯
∞
i�0, such that

suptk≤τ<tk+1
‖z(τ)‖ � ‖z(tk + σk)‖ if and only if τ � 0; i.e., tk +

σk is the largest time instant in [tk, tk+1) where the supremum
is reached within such an interval for all tk ∈ tji

􏽮 􏽯
∞
i�0. Now, if

the subsequence tji
􏽮 􏽯
∞
i�0 is not unique then, with no loss in

generality, take the one such that there is some finite tj0
∈ t{

ji
}∞i�0 and there is no t(≥ tj0

) ∈ R0+ such that ‖z(t)‖ >
suptk≤τ<tk+1

‖z(τ)‖; ∀tk ∈ tji
􏽮 􏽯
∞
i�0 so that supτ≥tj0

‖z(τ)

‖ � suptj0≤τ<tk
‖z(τ)‖; ∀tk(≥tj0

) ∈ tj􏽮 􏽯
∞
j�0 and tj0

∈ tji
􏽮 􏽯
∞
i�0.

&us, one gets from (21) that
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sup
tj0≤τ<tk+j+2

‖z(τ)‖≤Ke
− ρ tk+j+1 − tk+1+σk+j+1− σk+1( 􏼁 sup

tj0≤τ<tk+j+2

‖z(τ)‖ + K
1 − e− ρ tk+j+1− tk+1+σk+j+1 − σk+1( 􏼁

ρ
􏽥a sup

tj0≤τ<tk+j+2

‖z(τ)‖; ∀tk ∈ tj􏽮 􏽯
∞
j�0,

∀t ∈ R0+,

(22)

1 − Ke
− ρ tk+j+1− tk+1+σk+j+1− σk+1( 􏼁

− K
1 − e− ρ tk+j+1 − tk+1+σk+j+1− σk+1( 􏼁

ρ
􏽥a⎛⎝ ⎞⎠ sup

tj0≤τ<tk+j+2

‖z(τ)‖≤ 0; ∀tk ∈ tj􏽮 􏽯
∞
j�0, ∀t ∈ R0+, (23)

so that

lim sup
j⟶∞

1 − Ke
− ρ tk+j+1− tk+1+σk+j+1 − σk+1( 􏼁

− K
1 − e− ρ tk+j+1− tk+1+σk+j+1− σk+1( 􏼁

ρ
􏽥a⎛⎝ ⎞⎠ sup

tj0≤τ<tk+j+2

‖z(τ)‖⎡⎢⎢⎣ ⎤⎥⎥⎦≤ 0, (24)

for some tj0
∈ tji

􏽮 􏽯
∞
i�0; ∀tk ∈ tj􏽮 􏽯

∞
j�0, ∀t ∈ R0+. &en, (1 −

(K􏽥a/ρ))suptj0≤τ<∞
‖z(τ)‖≤ 0 which implies that for any

subsequence tji
􏽮 􏽯
∞
i�0 ⊆ tj􏽮 􏽯

∞
j�0 such that z � limsuptk⟶∞

suptk≤t<tk+1
‖z(t)‖; ∀tk ∈ tji

􏽮 􏽯
∞
i�0 it holds that z � 0, a con-

tradiction to the assumption of Case b. &en, Case b is not
possible either. As a result, the proved global stability is also
asymptotic at large. □

Some necessary, but not sufficient, conditions for
global stability or global asymptotic stability can be got by
simple direct inspection of the various parameterizations
of the differential system (3), subject to (4), given in the
particular Example 1. Such conditions are basically
addressed by inspecting the (3, 3)-entry of the corre-
sponding matrices A(z(t), t) as discussed in the next
result.

Proposition 1. Consider the third-order Example 1 of the
differential system (3) subject to (4). =en, the following
properties hold:

(i) If a10 � 0, b(t) � (a20/g(x(t))) and a(t) �

(a30/f( _x(t))) with a20 > 0 and a30 > 0, then the sys-
tem is not globally asymptotically stable at large, but it
can be globally stable at large. &e property can also
hold if a10 � 0, b(t) � (a20/g(x(t))) and
a(t) � (a30/f( _x(t))) do not hold for all time while
‖􏽥A(z(t), t)‖≤ 􏽥a; ∀(z(t), t) ∈ Rn × R0+ (Assumption
3) with sufficiently small 􏽥a.

(ii) If Ab(t) satisfies Assumption 1 and its third row has
no entry either being identically zero or un-
bounded or negative for all time, then the system
(3), subject to (4), can be globally asymptotically
stable only if

lim
t⟶∞

􏽚
t

0
a(τ)f( _x(τ))dτ � − ∞. (25)

(iii) If Ac(t) satisfies Assumption 1 and its third row has
no entry either being identically zero or negative for
all time, and if ‖􏽥Ac(t)‖ satisfies Assumption 3 with
|a2(t)| being sufficiently small for all t ∈ R0+, then
the system (3), subject to (4), can be globally as-
ymptotically stable only if

lim
t⟶∞

􏽚
t

0
a(τ)f( _x(τ))dτ � − ∞. (26)

(iv) If the entries of the third row of Ad satisfy a10 > 0
and, for each given initial conditions, a20 > − b

(0)g(x(0)) and a30 > − a(0)f( _x(0)) while􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(t), t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 satisfies either

a(t) � a10,

b(t) �
a20 + b(0)g(x(0))

g(x(t))
,

a(t) �
a30 + a(0)f( _x(0))

f( _x(t))
,

(27)

or if some of the above equalities fail but Assumption 3
holds, with |a2(t)| being sufficiently small for all t ∈ R0+,
then the system (3), subject to (4), can be globally asymp-
totically stable.

Proof. Note that Assumption 1 and the first part of As-
sumption 2 on boundedness hold trivially since Aa is
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constant. On the other hand, since 􏽥Aa(z(t), t) � 0; ∀t ∈ R0+,
Assumption 3 holds trivially and the stability of the dif-
ferential system reduces to the stability of the constant
matrix Aa. Note that the characteristic equation of Aa is
p(s) � s3 + a20s + a30 � 0, and since the coefficient of s2 in
the characteristic polynomial is zero, then the matrixAa is not
a stability matrix and then the differential system cannot be
globally asymptotically stable but can be globally stable
depending on the values of a20 and a30 since they are positive.
Furthermore, since det eAat � det ettrAa � det e− a30t⟶ 0 as
t⟶ +∞, (at least) an eigenvalue Λ1(t) of the fundamental
matrix of multiplicity pα(< n) ∈ Z+ vanishes exponentially
with time as time tends to infinity (note that pα
cannot equalize n since then Aa would be a stability matrix).
&us, the remaining eigenvalues of eAat of
spectrum sp(eAat) � Λi(t); i ∈ n􏼈 􏼉 fulfill that
􏽑

n− 1
i�1 [Λi(t)] � o(tpα− 1e− αt). If the given equalities fail but

Assumption 3 holds, then the nonasymptotic property can
still holds under extra sufficiency-type conditions from
&eorem 2. Proposition 1 (i) has been proved.
Propositions 1 (ii) and 1 (iii) follow in the same way
provided that limt⟶∞ 􏽒

t

0 a(τ)f( _x(τ))dτ � − ∞ which

guarantees that limt⟶∞det e
􏽒

t

0
Ab(τ)dτ

� 0, respectively,

limt⟶∞det e
􏽒

t

0
Ac(τ)dτ

� 0 which is a necessary condition for
global asymptotic stability. Proposition 1 (iv) follows from
close arguments as those invoked for proving Proposition 1 (i)
if Ad is a stability matrix (note that this is possible depending
on its eigenvalues while contrarily Aa can never be a stability
matrix) and 􏽥Ad(z(t), t) is either zero or with sufficiently
norm for all time.

Example 3. Assume that the system of Example 1 with
e(t) ≡ 0 is parameterized with the parameterization of (a).
&e constant matrix Aa is a stability matrix if its charac-
teristic equation s3 + a10s

2 + a20s + a30 � 0 has all its roots in
the open complex left-hand-side.&is holds from the Routh-
Hurwitz criterion if and only if a10 > 0, a20 > 0, and
0< a30 < a10a20. If the parameterization of (d) is used, then
the modified matrix of dynamics Ad is a stability matrix if
and only if

a10 > 0,

a20 + b(0)g(x(0)) > 0,

a10 a20 + b(0)g(x(0))( 􏼁> a(0)f( _x(0)).

(28)

(i) &e parameterization of (a) is useful to guarantee
the global asymptotic stability of the differential
system (3), subject to (4), that is if Aa is stable and,
furthermore,

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥Aa(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 is sufficiently small for all

time in the sense that if (− ρMa) is the stability
abscissa of Aa, i.e., the absolute value of its (stable)
eigenvalue being closer to the complex imaginary
axis satisfying:

􏽥a1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 􏽥a2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 􏽥a3(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� a10 − a(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ a20 − b(t)g(x(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ a30 − a(t)f( _x(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

< ρ2Ma.

(29)

(ii) &e parameterization of (d) is useful if Ad is a sta-
bility matrix of stability abscissa (− ρMd), and

a10 − a(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ a20 + b(0)g(x(0)) − b(t)g(x(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ a30 + a(0)f( _x(0)) − a(t)f( _x(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 < ρ2M d.

(30)

Remark 2. &eorem 2 proves that sup0≤t<∞‖z(t)‖

≤ ρK‖z0‖/ρ − K􏽥a under Assumption 3 which requests the
uniform boundedness of ‖A(z(t), t)‖ and ‖􏽥A(z(t), t)‖ for
any pair (z(t), t) ∈ Rn × R0+ such that z : R0+⟶ Rn is a
solution of (3).&e theorem concludes the global asymptotic
stability at large of (3). &is suggests that the global as-
ymptotic stability in a closed ball (rather than in the large)
can be formulated for a certain closed ball of Rn containing
the solution trajectory of (3) for any initial conditions in a
given closed ball without invoking Assumption 3. &us,
define the closed balls B0(0, r0) � z0 ∈ Rn : ‖z0‖≤ r0􏼈 􏼉 and

B 0,
ρKr0

ρ − K􏽥a
􏼠 􏼡 � z ∈ Rn

: ‖z‖≤
ρKr0

ρ − K􏽥a
∧ z0 ∈ B0 0, r0( 􏼁􏼠 􏼡􏼨 􏼩.

(31)

&us,&eorem 2 has the following useful corollary which
does need “a priori” boundedness conditions on the norm of
the supremum of the solution as invoked in Assumption 3.

Corollary 1. If Assumptions 1 and 2 hold, then the n-th
differential system (3), subject to (4), has a uniformly bounded
solution for any initial conditions in B0(0, r0) � z0 ∈ Rn :􏼈

‖z0‖≤ r0} and it is globally asymptotically stable with the
trajectory solution contained in

B 0,
ρKr0

ρ − K􏽥a
􏼠 􏼡 � z ∈ Rn

: ‖z‖≤
ρKr0

ρ − K􏽥a
∧ z0 ∈ B0 0, r0( 􏼁􏼠 􏼡􏼨 􏼩,

(32)

if 􏽥a is small enough such that 􏽥a< (ρ/K) (see =eorem 2).□

The subsequent result is similar to Theorem 2 without
assuming the boundedness of 􏽥A(z(t), t) which can be ex-
panded in series for all values of the trajectory solution at any
time according to a small time-varying parameter. Also, it
can grow unboundedly with time if sup0≤τ≤t‖z(τ)‖ is strictly
upper-bounded by the inverse of a small time-varying
function which can vanish asymptotically.
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The bounded closed domain which contains the state
trajectory solution for all time may be defined depending on
the relevant parameters of the differential system.

Example 4. Let the initial conditions of (3), subject to (4),
satisfy ‖z0‖≤ r0. &en, sufficient conditions for
‖z(t)‖≤ r< +∞; ∀t ∈ R0+ for some r � μr0 > r0 can be got
from &eorem 2, equation (18), as follows:

‖z(t)‖≤K e
− ρt

+
1
ρ

sup
0≤t<+∞

‖􏽥A(t)‖μ􏼠 􏼡r0 ≤ μr0 � r,

∀t ∈ R0+,

μ �
r

r0
≥K 1 +

1
ρ

sup
0≤t<+∞

‖􏽥A(t)‖μ􏼠 􏼡

≥K e
− ρt

+
1
ρ

sup
0≤t<+∞

‖􏽥A(t)‖μ􏼠 􏼡, ∀t ∈ R0+.

(33)

So, r≥K(1 + (1/ρ)sup0≤t<+∞‖􏽥A(t)‖μ)r0 � Kr0 + (K/ρ)

sup0≤t<+∞‖􏽥A(t)‖ r, or r≥Kρr0/(ρ − Ksup0≤t<+∞‖􏽥A(t)‖) if
sup0≤t<+∞‖􏽥A(t)‖< ρ/K. Note that μ≥Kρ/(ρ − Ksup0≤t<+∞
‖􏽥A(t)‖) >K≥ 1 as a result.

Now, assume that r0 is given as the radius of the closed
ball around zero which fixes the domain for initial conditions
and r is prefixed as the radius of the suitable closed ball which
guarantees that the solution remains within it for all time.
&us, ρ(r − Kr0)≥ rKsup0≤τ<+∞‖􏽥A(t)‖ so that the constraint
sup0≤τ<+∞‖􏽥A(t)‖≤ ρ(μ − K)r0/rK guarantees the respective
radii r0 and r � μr0 for a given ρ> 0 provided that
sup0≤t<+∞‖􏽥A(t)‖< ρ/K. &e combination of both norm
constraints leads that the first one is stronger since sup0≤τ<+∞‖
􏽥A(t)‖≤ (ρ/K)min(1, (μ − K/μ)) � (ρ/K)(1 − (K/μ)).

Theorem 3. Let Assumptions 1–2 hold and assume also that

(1) The pair of real constants (ρ, K) defined in the proof
of =eorem 2 satisfies the constraint ρ> (K/1 − ε0)

(2) There exists a function ε : [0, t]⟶ R+; ∀t ∈ R0+

such that ε0(t) � ε(t)sup0≤τ≤t‖z(τ)‖≤ ε0 < 1 (note
that ε(t) is allowed to be asymptotically vanishing)
and such that ‖􏽥A(z(t), t)‖≤􏽐

∞
i�0εi(t)supi

0≤τ≤t‖z(τ)‖

=en, the n-th differential system (3), subject to (4), has a
uniformly bounded solution for any finite initial conditions,
and it is globally asymptotically stable at large (i.e., in Rn).

Proof. Note that ε(t) � (ε0(t)/sup0≤τ<∞‖z(τ)‖); ∀t ∈ R0+

for some ε0(t) ∈ [0, ε0) and some 0≤ ε0 ≤ 1; ∀t ∈ R0+ implies
that

‖􏽥A(z(t), t)‖≤ 􏽘
∞

i�0
εi

(t) sup
i

0≤τ≤t
‖z(τ)‖

� 􏽘
∞

i�0
εi
0(t) �

1
1 − ε0

�
1

1 − ε(t)sup0≤τ≤t‖z(τ)‖
;

∀t ∈ R0+,

(34)

with

sup
0≤τ≤t

‖z(τ)‖≤
ε0
ε(t)
<

1
ε(t)

. (35)

Equation (20) is modified as follows:

sup
0≤τ≤t

‖z(τ)‖ � z tt( 􏼁
����

����≤Ke
− ρtt z0

����
����

+ K
1 − e− ρtt

ρ
1

1 − ε(t)sup0≤τ<∞‖z(τ)‖
sup
0≤τ≤t

‖z(τ)‖,

∀t ∈ R0+,

(36)

leading to

1 − ε0( 􏼁 sup
0≤τ≤t

‖z(τ)‖≤ 1 − ε(t) sup
0≤τ<∞

‖z(τ)‖􏼠 􏼡 sup
0≤τ≤t

‖z(τ)‖

� 1 − ε(t) sup
0≤τ<∞

‖z(τ)‖􏼠 􏼡 z tt( 􏼁
����

����

≤K 1 − ε(t) sup
0≤τ<∞

‖z(τ)‖􏼠 􏼡e
− ρtt z0

����
����

+ K
1 − e− ρtt

ρ
sup
0≤τ≤t

‖z(τ)‖,

∀t ∈ R0+,

(37)

or

1 − ε0 −
K

ρ
􏼠 􏼡 sup

0≤τ≤t
‖z(τ)‖≤ 1 − ε0 − K

1 − e− ρtt

ρ
􏼠 􏼡 sup

0≤τ≤t
‖z(τ)‖

≤K 1 − ε(t) sup
0≤τ<∞

‖z(τ)‖􏼠 􏼡e
− ρtt z0

����
����,

∀t ∈ R0+,

(38)
so that
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1 − ε0 −
K

ρ
􏼠 􏼡 sup

0≤τ≤t
‖z(τ)‖ ≤

ρK

ρ 1 − ε0( 􏼁 − K

· 1 − ε(t) sup
0≤τ<∞

‖z(τ)‖􏼠 􏼡e
− ρtt z0

����
����,

∀t ∈ R0+,

(39)

and since ρ>K/(1 − ε0)≥K/(1 − ε0 + Kε(t)e− ρtt ‖z0‖) and
sup0≤τ≤t ‖z(τ)‖ � (ε0(t)/ε(t))≤ (ε0/ε(t))< (1/ε(t)); ∀t ∈
R0+, one has

sup
0≤τ≤t

‖z(τ)‖≤
ρK

ρ 1 − ε0( 􏼁 − K

· 1 − ε(t) sup
0≤τ≤t

‖z(τ)‖􏼠 􏼡e
− ρtt z0

����
����,

∀t ∈ R0+,

(40)

sup
0≤τ≤t

‖z(τ)‖≤
ρKe− ρtt z0

����
����

ρ 1 − ε0 + Kε(t)e− ρtt z0
����

����􏼐 􏼑 − K
< +∞,

∀t ∈ R0+,

(41)

which proves the global uniform stability at large. &e as-
ymptotic stability at large is proved by contradiction ar-
guments by the construction of the appropriate solution
sequences as in &eorem 2.

Corollary 2. =eorem 2 still holds if ‖􏽥A(z(t), t)‖≤
􏽐

k
i�0ε

i(t)sup0≤τ≤ti‖z(τ)‖; ∀t ∈ R0+ for some given positive
integer k with ε0(t) � ε(t)sup0≤τ≤t‖z(τ)‖≤ ε0 < 1; ∀t ∈ R0+.

Proof. In this case, one has

‖􏽥A(z(t), t)‖≤ 􏽘

k

i�0
εi

(t) sup
i

0≤τ≤t
‖z(τ)‖

�
1 − εk(t)sup0≤τ≤t‖z(τ)‖

1 − ε(t)sup0≤τ≤t‖z(τ)‖
≤

1
1 − ε(t)sup0≤τ≤t‖z(τ)‖

;

∀t ∈ R0+.

(42)

&e proof follows by using the above constraint. □
&e subsequent result does not invoke Assumption 3.

Instead, an upper-bound maximum growing time-interval
condition on the time integral of the norm of 􏽥A(z(t), t) is
used to address sufficiency-type conditions for the global
stability and asymptotic stability of (3), subject to (4).

Theorem 4. If Assumptions 1 and 2 hold and, furthermore,

􏽚
t+T

t
‖􏽥A(z(τ), τ)‖

4
dτ ≤ c1T + c2,

∀t ∈ R0+,∀T ∈ R+,

(43)

for some sufficiently small c1, c2 ∈ R0+, then the differential
system (3), subject to (4), is globally asymptotically Lyapu-
nov’s stable at large.

Proof. One gets from (18) in the proof of &eorem 1 and
Hölder’s inequality that

‖z(t + T)‖≤Ke− ρT‖z(t)‖ + 􏽚
t+T

t
Ke

− ρ(t+T− τ)
‖􏽥A(z(τ), τ)‖‖z(τ)‖dτ

≤Ke− ρT‖z(t)‖ + K 􏽚
t+T

t
e

− 2ρ(t+T− τ)
dτ􏼠 􏼡

1/2

􏽚
t+T

t
(‖􏽥A(z(τ), τ)‖‖z(τ)‖)

2
dτ􏼠 􏼡

1/2

≤Ke− ρT‖z(t)‖ + K 􏽚
t+T

t
e

− 2ρ(t− τ)
dτ􏼠 􏼡

1/2

􏽚
t+T

t
‖􏽥A(z(τ), τ)‖

4
dτ􏼠 􏼡

1/4

􏽚
t+T

t
‖z(τ)‖

4
dτ􏼠 􏼡

1/4

≤Ke− ρT‖z(t)‖ + K

�������
1 − e− 2ρT

2ρ

􏽳

􏽚
t+T

t
‖􏽥A(z(τ), τ)‖

4
dτ􏼠 􏼡

1/4

􏽚
t+T

t
‖z(τ)‖

4
dτ􏼠 􏼡

1/4

≤Ke− ρT‖z(t)‖ + K

�������
1 − e− 2ρT

2ρ

􏽳

c1T + c2( 􏼁
1/4 sup

t≤τ≤t+T

‖z(τ)‖T1/4

≤Ke− ρT‖z(t)‖ + K

�������
1 − e− 2ρT

2ρ

􏽳

c1/41 T1/4 + c1/42( 􏼁T1/4 sup
t≤τ≤t+T

‖z(τ)‖, ∀t ∈ R0+,

(44)
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and for some tt ∈ [t, t + T] defined as tt � (max τ ∈
[t, t + T] : ‖z(τ)‖ � sup0≤σ≤T‖z(t + σ)‖); ∀t ∈ R0+,

sup
t≤τ≤t+T

‖z(τ)‖ � z tt( 􏼁
����

����≤Ke
− ρ tt− t( )‖z(t)‖

+ K

�������
1 − e− 2ρT

2ρ

􏽳

c
1/4
1 T

1/4
+ c

1/4
2􏼐 􏼑T

1/4

sup
t≤τ≤t+T

‖z(τ)‖, ∀t ∈ R0+.

(45)

Since c1 and c2 are small enough such that 1>K������������
(1 − e− 2ρT/2ρ)

􏽰
(c1/41 T1/4 + c1/42 )T1/4, one has

sup
t≤τ≤t+T

‖z(τ)‖ ≤
Ke− ρ tt− t( )‖z(t)‖

1 − K
����������
1 − e− 2ρT/2ρ

􏽰
c1/41 T1/4 + c1/42( 􏼁T1/4

,

∀t ∈ R0+.

(46)

Assume that limt⟶∞‖z(t)‖ � +∞. Since T is arbitrary
in (43), there are nonunique strictly increasing real se-
quences kT{ }

∞
0 ⊂ R0+ such that ‖z((k + jk)T)‖> ‖z(kT)‖;

for some sufficiently large finite jk � jk(T) ∈ Z+, ∀k ∈ Z0+.
&en, for any given finite T> 0 and k ∈ Z0+, sufficiently large
values of jk ∈ Z0+ and sufficiently small related constants
c1 � c1(T), c2(T), one has

‖z(kT)‖ < z k + jj􏼐 􏼑T􏼐 􏼑
�����

�����

≤
Ke− ρjkT‖z(kT)‖

1 − K
�����������
1 − e− 2ρjkT/2ρ

􏽰
c1/41 jkT( 􏼁

1/4
+ c1/42􏼐 􏼑 jkT( 􏼁

1/4

< ‖z(kT)‖, ∀t ∈ R0+,

(47)

because of the dominance of the second right-hand-side nu-
merator related to the denominator for sufficiently large jk and
sufficiently small c1, c2 since T is finite. Hence, a contradiction
for some sufficiently large finite T> 0. &us, the differential
system (3), subject to (4), is globally stable at large as a result.
On the other hand, consider three particular cases concerned
with the differential system (3), subject to (4).

Case a. It is globally stable at large for sufficiently small
constants c1, c2. &us, no further proof is needed.

Case b. Its solution is unbounded for sufficiently small
constants c1 and c2. In this case, it is unstable what con-
tradicts its already proved global Lyapunov’s stability at
large. So, this case is impossible.

Case c. Its solution is bounded but oscillatory. &us,
there is a time interval [0, ta], of finite or zero measure, with
ta � ta(z0)≥ 0 such that sup0≤t≤ta

‖z(t)‖ � sup0≤t<+∞‖z(t)‖

so that there is a subsequence of time instants 􏼈tkj
􏼉
∞
0
⊂ R0+

defined by tkj
� ta + kjT + τkj

, with kj ∈ Z0+ and τkj
∈ [0, T);

∀j ∈ Z0+, such that ‖z(tkj
)‖ � sup0≤t≤ta

‖z(t)‖ so that one gets
from the first inequality of (44) that

sup
0≤t≤ta

‖z(t)‖ � z tkj
􏼒 􏼓

������

������≤Ke
− ρ kjT+τkj

􏼐 􏼑
z ta( 􏼁

����
���� + sup

0≤t≤ta

‖z(t)‖

· 􏽚
kjT+τkj

0
Ke

− ρ kjT+τkj
− τ􏼐 􏼑 􏽥A z τ + ta( 􏼁, τ + ta( 􏼁

����
����dτ􏼠 􏼡

≤Ke
− ρ kjT+τkj

􏼐 􏼑
z ta( 􏼁

����
���� +

K

ρ
1 − e

− ρ kjT+τkj
􏼐 􏼑

􏼠 􏼡

· c1 kjT + τkj
􏼒 􏼓 + c2􏼒 􏼓 sup

0≤t≤ta

‖z(t)‖,

(48)
and then one gets the following contradiction for some
sufficiently large finite T> 0:

sup
0≤t≤ta

‖z(t)‖ ≤
Ke

− ρ kjT+τkj
􏼐 􏼑

z ta( 􏼁
����

����

1 − (K/ρ) 1 − e
− ρ kjT+τkj

􏼐 􏼑
􏼠 􏼡 c1 kjT + τkj

􏼒 􏼓 + c2􏼒 􏼓

< z ta( 􏼁
����

����, ∀t ∈ R0+,

(49)

by defining the subsequences kj􏽮 􏽯
∞
j�0 ⊂ Z0+, 􏼈εkj

􏼉
∞
j�0
⊂ R+

and 􏼈mkj
􏼉
∞
j�0
⊂ R+ with εkj

� e
− ρ(kjT+τkj

) (note that 􏼈εkj
􏼉⟶

0) such that

0< εkj
<min 1,

1
K z ta( 􏼁

����
����

􏼠 􏼡,

kj � −
1
T

ln
εkj

ρ
+ τkj

􏼠 􏼡 ∈ Z+,

mkj
� c1kjT + c2 <

1
K

− εkj
z ta( 􏼁

����
����􏼒 􏼓

ρ
1 − εkj

,

(50)

and note also that it suffices to see that the contradiction
holds for the finite first element k0 ∈ kj􏽮 􏽯

∞
j�0 and sufficiently

small c1, c2 related to ρ/K.&us, the solution to (3), subject to
(4), for any finite initial conditions cannot be bounded and
oscillatory. &us, one concludes that the differential system
is globally asymptotically Lyapunov’s stable at large if c1 and
c2 are sufficiently small.

&e particular 4-th power in ‖􏽥A(z(τ), τ)‖ in the integral
(43) assumed in&eorem 4 is not crucial to the proof except
for the “amount of smallness” needed for the constants c1
and c2 to guarantee the theorem. In this context, note the
subsequent result.

Corollary 3. Assume that the inequality (43) in=eorem 4 is
replaced with
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􏽚
t+T

t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(τ), τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dτ ≤d1T + d2, ∀t ∈ R0+, ∀T ∈ R,

(51)

for some sufficiently small d1, d2 ∈ R0+, or with

􏽚
t+T

t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(τ), τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ ≤f1T + f2, ∀t ∈ R0+, ∀T ∈ R+,

(52)

for some sufficiently small f1, f2 ∈ R0+. =en, =eorem 4 still
holds under the same given remaining assumptions.

Outline of Proof. &e relevant inequalities of (44) are
modified as follows if (43) is replaced with (51):

‖z(t + T)‖≤Ke− ρT‖z(t)‖ + 􏽚
t+T

t
Ke

− ρ(t+T− τ)
􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(τ), τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌z(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ ≤Ke

− ρT
‖z(t)‖ + K 􏽚

t+T

t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(τ), τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dτ􏼠 􏼡

1/2

􏽚
t+T

t
‖z(τ)‖

2
dτ􏼠 􏼡

1/2

≤Ke− ρT‖z(t)‖ + K d1T + d2( 􏼁
1/2 sup

t≤τ≤t+T

‖z(τ)‖T1/2 ≤Ke− ρT‖z(t)‖ + K
��
d1

􏽰
T +

����
d2T

􏽰
( 􏼁 sup

t≤τ≤t+T

‖z(τ)‖, ∀t ∈ R0+,

(53)

and the rest of the proof follows “mutatis-mutandis” to that
of &eorem 4. In the same way, if (43) is replaced with (52),
then the modified set of inequalities holds:

‖z(t + T)‖≤Ke− ρT‖z(t)‖ + K 􏽚
t+T

t
‖􏽥A(z(τ), τ)‖

2
dτ􏼠 􏼡

1/2

􏽚
t+T

t
‖z(τ)‖

2
dτ􏼠 􏼡

1/2

≤Ke− ρT‖z(t)‖ + K f1T + f2( 􏼁 sup
t≤τ≤t+T

‖z(τ)‖T1/2 ≤Ke− ρT‖z(t)‖ + K f1T
3/2 + f2

��
T

√
( 􏼁 sup

t≤τ≤t+T

‖z(τ)‖; ∀t ∈ R0+,

(54)

and the stability result is again proved. □

Remark 3. Note that the global stability of the various
proved results guarantees that the solution of the differential
system and all its time-derivatives up till n-th order are
bounded for all time for any given finite initial conditions.
On the other hand, the global asymptotic stability guarantees
in addition the asymptotic convergence of the above
functions to zero.

Theorem 5. Assume the following particular differential
system (3) and (4) which is also forced with an external
function

_z(t) � B(t)z(t) + ω(t), z(0) � z0, ∀t ∈ R0+, (55)

where the matrix function B : ×R0+⟶ Rn×n has piecewise
continuous entries and it is nonuniquely decomposed as
B(t) � A(t) + 􏽥A(t); ∀t ∈ R0+, and assume also that the
amended Assumptions 1–3 hold referred just to time, instead
to the pair (z(t), t), in view of (55). =en, the following
properties hold:

(i) İe differential system is globally stable if the unforced
system is globally asymptotically stable and ω ∈ Ln

∞ or
ω ∈ Ln

p for any p ∈ Z+ if 􏽥a is small enough.
(ii) Assume, in addition, that ω is of exponential order

(− ρω)< 0 with ρω being larger than the average

stability abscissa of A(t). =en, the differential system
is globally asymptotically stable at large.

Proof. In this case, (12) is replaced as follows:

z(t) � zunf(t) + zf(t), ∀t ∈ R0+, (56)

where the unforced and forced solutions are

zunf(t) � e
􏽒

t

0
A(τ)dτ

z0 + 􏽚
t

0
e
􏽒

t

τ
A(σ)dσ 􏽥A(τ)z(τ)dτ,

zf(t) � 􏽚
t

0
e
􏽒

t

τ
A(σ)dσω(τ)dτ, ∀t ∈ R0+.

(57)

Note that closely to the arguments used in the proof of

&eorem 2 that
􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e

􏽒
t

0
A(τ)dτ􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Ke
− 􏽒

t

0
ρA(τ)dτ ≤ Ke− ρ0(z0 ,t)t ≤

Ke− ρt; ∀t ∈ R0+, where K � supt∈R0+
supz0∈RnKA(z0, t); 0< ρ

≤ infτ,t(>τ)∈R0+
(􏽒

t

τ ρA(τ)dτ)/(t − τ). &us, the following ad-
ditive terms have to be added for the obtained unforced upper-
bounds of the unforced sup0≤τ≤t‖zunf(τ)‖; ∀t ∈ R0+ in the
various former given results applied to this particular differ-
ential system:

(a) K 􏽒
t

0 e− ρ(t− τ)‖ω(τ)‖dτ ≤Ksup0≤τ<∞ ‖ω(τ)‖(1/ρ) �

(KM∞/ρ); ∀t ∈ R0+if ω ∈ Ln
∞ and ‖ω‖∞ � M∞.

&en, sup0≤τ≤t‖z(τ)‖≤ sup0≤τ≤t‖zunf(τ)‖ +(KM∞/ρ).
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(b) K 􏽒
t

0 e− ρ(t− τ)‖ω(τ)‖dτ ≤K 􏽒
t

0 ‖ω(τ)‖dτ � KM1; ∀t ∈
R0+ if ω ∈ Ln

1 and ‖ω‖1 � M1. &en, sup0≤τ≤t
‖z(τ)‖≤ sup0≤τ≤t‖zunf(τ)‖ + KM1.

(c) K􏽒
t

0e− ρ(t− τ)‖ω(τ)‖dτ ≤K(􏽒
t

0e− ρp(t− τ))1/p(􏽒
t

0‖ω(τ)‖p)1/p

dτ � (K/(pρ)1/p)Mp; ∀t ∈ R0+ if ω ∈ Ln
1 and ‖ω‖1 �

M1. &en, sup0≤τ≤t‖z(τ)‖≤ sup0≤τ≤t‖zunf(τ)‖ +

KM1; if ω ∈ Ln
p and ‖ω‖p � Mp for any p ∈ Z+.

&en, sup0≤τ≤t‖z(τ)‖≤ sup0≤τ≤t‖zunf(τ)‖ + (K/
(pρ)1/p)Mp; ∀t ∈ R0+. Note that since ρ>K≥ 1 for
the results on asymptotic stability, the upper-bound
(K/ρ)M1 of (c) might improve, in general, that of (b),
i.e., KM1 if ω ∈ Ln

1. One concludes that, under any of
the conditions obtained for the unforced differential
system to be globally asymptotically stable, the forced
one remains globally stable with the corresponding
above new given norm upper-bounds for all time.
Property (i) has been proved. Property (ii) follows
since if ω is of negative exponential order (− ρω) with
ρω > ρ then zf(t)⟶ 0 exponentially as t⟶∞
since

zf(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 􏽚
t

0
e
􏽒

t

τ
A(σ)dσω(τ)dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤K 􏽚

t

0
e

− 􏽒
t

τ
ρA(σ)dσ

K1e
− ρωτdτ

≤KK1e
− ρt

􏽚
t

0
e

ρ− ρω( )τ ≤KK1e
− ρte

ρ− ρω( )t − 1
ρ − ρω

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

∀t ∈ R0+.

(58)

Remark 4. &e upper-bounds of&eorem 5 for the norm of
the whole solution of (55) may be improved if the forcing
function belongs jointly to several normed function spaces
on [0,∞] by using the minimum of the corresponding finite
norms. For instance, one has

sup
0≤τ≤t

‖z(τ)‖≤ sup
0≤τ≤t

zunf(τ)
����

���� + Mω1,

∀t ∈ R0+,

(59)

where Mω1 � (K/ �ρ√
)min((M∞/

�ρ√
), (M1/

�ρ√
)) if

ω ∈ Ln
∞ ∩ Ln

1. Since Ln
∞ ∩Ln

1 ⊃ Ln
2, then Mω1 may be replaced

with Mω2 � (K/ �ρ√
)min((M∞/

�ρ√
), (M1/

�ρ√
), (M2/

�
2

√
))

in (59) since ω ∈ Ln
∞ ∩ Ln

1 ∩ Ln
2.

&e so-called property of global ultimate boundedness
guarantees also the global Lyapunov’s (nonasymptotic) sta-
bility property since the smooth solution of (3) and (4) has to
be necessarily continuous for all time so that it cannot have
finite escape times (i.e., right or left finite-time discontinuity
points to ± ∞), as a result. An explicit related result follows.

Theorem 6. Under Assumptions 1–2, the following prop-
erties hold for the differential system (3), subject to (4):

(i) Assume that limsupt⟶∞(
􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(t), t)z(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌)≤M∞

for some finite real constant M∞ and any given
finite initial conditions. &en, the system is globally

stable at large with ultimate boundedness satisfy-
ing the asymptotic finiteness norm constraint
lim supt⟶∞

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌z(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ (K/ρ)M∞ for any given finite

initial conditions and ρ being defined in &eorem 2.
(ii) Assume that lim supt⟶∞(􏽒

t

0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(τ), τ)z(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
dτ)

≤Mp for some real p> 0 and finite real constant Mp

and any given finite initial conditions. &en, the
system is globally stable at large with ultimate
boundedness satisfying the asymptotic finiteness
norm constraint lim supt⟶∞‖z(t)‖ ≤K(Mp/ρp)1/p

for any given finite initial conditions with ρ being
defined in &eorem 2.

Proof. Since the unforced part of the solution converges
asymptotically to zero, Property (i) follows since

lim sup
t⟶∞

‖z(t)‖≤ lim sup
t⟶∞

􏽚
t

0
Ke

− ρ(t− τ)
(

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(τ), τ)z(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ)􏼠 􏼡

≤
K

ρ
M∞,

(60)

and Property (ii) follows since lim supt⟶∞ (􏽒
t

0 e− ρ(t− τ)dτ)p

≤ (1/ρp) so that

lim sup
t⟶∞

‖z(t)‖ ≤K lim sup
t⟶∞

􏽚
t

0
e

− ρ(t− τ)
􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(τ), τ)z(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ􏼠 􏼡

≤K lim sup
t⟶∞

􏽚
t

0
e

− ρ(t− τ)
dτ􏼠 􏼡

p

􏼠 􏼡

1/p

× lim sup
t⟶∞

􏽚
t

0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(τ), τ)z(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ􏼠 􏼡

1/p

≤K
Mp

ρp
􏼠 􏼡

1/p

.

(61)

Example 5. Assume that, for some finite and positive real
constants zm, θ, and q≥ 1 and some bounded function
􏽥K : R0+⟶ R+, the solution of (3), subject to (4), satisfies

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(t), t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

􏽥K(t), if ‖z(t)‖≤ zm,

􏽥K(t)

‖z(t)‖q + θ
, if ‖z(t)‖≤ zm,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(t), t)z(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽥A(z(t), t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌‖z(t)‖

≤

􏽥K(t)zm, if ‖z(t)‖ > zm,

􏽥K(t)‖z(t)‖

‖z(t)‖q + θ
≤

􏽥K(t)

‖z(t)‖q− 1 + θ‖z(t)‖
, if ‖z(t)‖ > zm,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(62)

then for some positive finite real constant M∞, lim supt⟶∞
(‖􏽥A(z(t), t)‖‖z(t)‖)≤M∞ so that the condition of Property
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(i) of &eorem 6 holds. &us, &eorem 6 (i) holds under
Assumptions 1–2.

4. Some Remarks on the Problem Point of
View under Then Taylor’s Series Remainder

A brief remind of well-known results on Taylor’s series
expansion follow to be then used for the problem at hand in
this paper. Consider a real open interval I � (a, b) and a real
function f(x) which is continuous on cl I � [a, b], m-th
continuously differentiable on I, and such that its m-th
derivative is absolutely continuous on cl I and its (m + 1)-th
derivative exists and it is absolutely continuous on cl I. &en,
the Taylor’s series expansion formula with truncation and
integral remainder gives for any x0, x ∈ I that

f(x) � 􏽘
m

j�0
f(j) x0( 􏼁

j!
x − x0( 􏼁

j
+

1
m!

􏽚
x

x0

f
(m+1)

(ξ)(x − ξ)
m

dξ

� 􏽘
m

j�0
f(j) x0( 􏼁

j!
x − x0( 􏼁

j
+

1
m!

􏽚
1

0
(1 − ξ)

m
f

(m+1)
(ξ)dξ,

(63)

where the last right-hand-side additive term is the integral
remainder. Note that if f(m)(ξ) is just continuous, rather

than absolutely continuous, on [x0, x], then one gets from
the mean value theorem,

Rm(x) �
1

(m + 1)!
f

(m+1)
(ξ)(x − ξ)

m+1

�
1

m!
f

(m+1)
(ς)(x − ς)m

x − x0( 􏼁,

(64)

for some ξ, ς ∈ (x0, x), the first expression of (64) being the
Lagrange remainder form while the second one is the
Cauchy remainder form.

&e formula (63), subject to (64), be easily extended to
the differential system (3), subject to (4), by expanding _z(t)

in Taylor’s series about the equilibrium point, that is, by
expanding the real vector function (B(z(t), t)z(t)) for each
fixed t ∈ R0+ with the assignations x0⟶ ze � 0 ∈ Rn,
x⟶ z(t) for each t ∈ R0+, in particular, x⟶ z0 for t � 0.
&en, assume that all the components of (B(z(t), t)), of
rows Bi(z(t), t) for i � 1, 2, . . . , n, are continuously differ-
entiable with respect to all the components of
z(t) � (z1(t), z2(t), . . . , zn(t))T up till some order m and
that the (m + 1)-th higher-order differentials of all the
entries of B(z(t), t) exist at ze � 0 ∈ Rn, in some open subset
of Rn containing z0 and the unique equilibrium point
ze � 0 ∈ Rn. &us, we have

_z (t) � 0 +∇zT Bij(0, t)z(t)􏼐 􏼑􏽩
ze�0z(t) + R1(z, t) � B(0, t).0􏽼√√√􏽻􏽺√√√􏽽

0

+∇zT Bij(0, t)􏼐 􏼑􏽩
ze�0z(t)

+ 􏽘
m
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+ Rm(z(t) , t), ∀t ∈ R0+, (65)

where the ∇(Nabla)-operator stands for the gradient, i.e.,
∇zT (Bij(0, t))]ze�0 � ([zBij(0, t)/zzj]ij); ∀t ∈ R0+. A useful
simplified notation for (65) is

_z(t) �∇zT Bij(0, t)􏼐 􏼑􏽩
ze�0z(t) +
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× id(m − 1) + Rm(z(t), t), ∀t ∈ R0+, (66)
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where the discrete binary indicator function i d : Z0+

⟶ 0, 1{ } is defined as i d(m − 1) � 0 if m � 0, 1 and
i d(m − 1) � 1 if m≥ 2, and the remainder real vector of the
series expansion in differential and integral forms becomes

Rm(z(t), t) � 􏽘
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, (67)
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, ∀t ∈ R0+, (68)

where Dαf � (z|α|f/zα1x1
...zαn

xn
), where |α| � 􏽐

n
i�1αi, α! �

􏽑
n
i�1[αi!], and zα � 􏽑

n
i�1[zi − zei

] � 􏽑
n
i�1[zi] since ze � 0 so

that ze + t(z − z3) � tz(t) in (68) after using a variable
change s⟶ ze + t(z − ze) to convert the integral from ze �

0 to z into one from t � 0 to t � 1. Note that, if (12), subject
to (67), equivalently to (68), is used to describe (3), subject to
(4), with

A(z(t), t) � ∇zT Bij(0, t)􏼐 􏼑􏽩
ze�0,
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× i d(m − 1) + Rm(z(t), t),

∀t ∈ R0+,

(69)

then Assumptions 1–2 hold provided that the unique
equilibrium point ze � 0 is stable and A(z(t), t) � A(ze, t) �

A(0, t) � A; ∀t ∈ R0+ is a constant (i.e., independent of time)
stability matrix.

&eorem 2 holds under the following simplified “ad hoc”
form.

Theorem 7. Assume that the n-th differential system (3),
subject to (4), is described by (69), subject to (68) with
A(z(t), t) � A; ∀t ∈ R0+ being a stability matrix, such that
the unique equilibrium point ze � 0 is locally asymptotically
stable, and that Assumption 3 holds with 􏽥a being sufficiently
small related to the absolute value of the stability abscissa of
A. =en, the system is globally asymptotically stable at large.
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