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The study of coupled systems of hybrid fractional differential equations requires the attention of scientists for the exploration of their
different important aspects. Our aim in this paper is to study the existence and uniqueness of the solution for impulsive hybrid
fractional differential equations. The novelty of this work is the study of a coupled system of impulsive hybrid fractional differential
equations with initial and boundary hybrid conditions. We used the classical fixed-point theorems such as the Banach fixed-point
theorem and Leray-Schauder alternative fixed-point theorem for existence results. We also give an example of the main results.

1. Introduction

Fractional differential equations appear naturally in a
number of fields such as physics, engineering, biophysics,
blood flow phenomena, aerodynamics, electron-analyt-
ical chemistry, biology, and control theory. An excellent
account of fractional differential equations is given in
this study. Undergoing abrupt changes at certain mo-
ments of time like earthquake, harvesting, and shock,
these perturbations can be well approximated as in-
stantaneous change of state or impulses. Furthermore,
these processes are modelled by impulsive differential
equations.

On the other hand, impulsive differential equations ap-
pear as a natural description of many evolutionary phe-
nomena in the real world. The majority of processes in applied
sciences are represented by differential equations. However,
the situation is different in certain physical phenomena un-
dergoing abrupt changes during their evolution as mechanical
systems with impact, biological systems (heartbeat, blood
flow, and so on), the dynamics of populations, natural

disasters, etc. These changes are often of very short duration
and are therefore produced instantly in the form of pulses. The
modeling of such phenomena requires the use of forms that
explicitly and simultaneously involve the continuous evolu-
tion of the phenomenon as well as instantaneous changes.

Such models are said to be “impulsive;” they are evo-
lutionary of continuous processes governed by differential
equations combined with difference equations representing
the effect impulsive has undergone.

For some recent developments on the topic, see [1-5]
and the references therein.

Hybrid fractional differential equations have also been
studied by several researchers. This class of equations in-
volves the fractional derivative of an unknown hybrid
function with the nonlinearity depending on it. Some recent
results on hybrid differential equations can be found in a
series of papers [6-11].

By applying the Banach fixed-point theorem and
Kransnoselskii fixed-point theorem, the existence results for
the solution are obtained. Shah et al. [12] studied the coupled
system of fractional impulsive boundary problems:
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D%x(t) = O (t,x(t), y (1)) ae.

x(0) = h(x),x(1) = g(x),
Dﬁy(t) =W (t,x(t), y(t) ae

[ x(0) = x(x),x(1) = f(x),

where 1<a, <2, ®, ¥, I, I, J;, and J; are continuous
functions, g, h, k, and f are fixed continuous functionals,
and Axl,, = x(t]) - x(t;), A'x|t=ti =x'(t/) - x'(t;) and
Ayl = y(E)) =y (£5): Ayl = ' (£)) = ' (£).

D"‘( u(t)

?FERBEES>:9NLMﬂmu»

w(tf) = u(ty) + I (u(5)),

3 D/j( u(®)

m) =g, (tu(t),v(t)),

W(17) = v(55) + 1,((55)):

u(0) ~ o) v(0)
[ £1(0,u(0),v(0)) "7 £,(0,u(0),v(0))

D* and DF stand for Caputo fractional derivative of order
a and B, respectively; f; € C([0,1] x R x R,R\{0}), g; € C
([0, 1] xR xR, R), (i=1,2),and ¢,y : C([0,1],R) — R
are continuous functions defined by ¢ (1) = Y, ;u (&) and
v(v) = Z;-':I(Sjv(ﬂj), where fi,ﬂj €(0,1) fori=1,2,...,n,
j=12,...,m; and I;:R— R and u(t})=Ilim,__.
u(t, +¢) and u(ty) = lim,__-u(t; — &) represent the right
and left limits of u(t) at t = t;, (k =1, j).

We assume that Y7 Au(&)*'<1 and Y8y
()< 1.

This paper is arranged as follows. In Section 2, we recall
some concepts and some fractional calculation laws and es-
tablish preparation results. In Section 3, we present the main
results. Section 4 is devoted to an example of the main results.

2. Preliminaries

In this section, we recall some basic definitions and prop-
erties of the fractional calculus theory and preparation
results.

Throughout, this paper denotes J, = [0,t,], ], = (¢,,1,],
o Jp = (tp,l,tp], Jp = (tp,l], and we introduce the
spaces: for t; € (0,1) such that ¢, <t,<---<t, and
I' =1\{t},t),...,t,}, define the space X ={u:[0,1] —

Axlyy, = 1 (x (8)), A%, = T (x (t:)),

Ax't:tj = ]i(x(tj))’ A,xltzr,- = Tj(x(tj))’
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te]:[o)lL t:/:ti’ 1<(XS2,
ti € (0,1),i= 1,2,...,m,
(1)
tej,1<p<2,
t;e (0,1), j=12,...,m,

Motivated by some recent studies to the boundary value
problem of a class of impulsive hybrid fractional differential,
we consider the problem of coupled hybrid fractional dif-
ferential equations:

te[0,1], t#t,i=1,2,...,n,0<a<l,
t; € (0,1),i=1,2,...,n
te[01], t#t), j=1,2...,m 0<p<l, (2)

tie(0,1), j=12,....m,

=y (),

R :u e C(I')andleftu(t}) and right limit u (£;) existand u
(t7) —u(t;),1<i<n}.

Then, clearly (X, |[-]]) is the Banach space under the
norm u = max, o ;lu (t)|.

Similarly, for t; € (0,1) such that ¢, <t, < --- <t,, and
J'=\{t,ts,.. ..t} define the space Y ={v:[0,1] —
R:veC(J')andlefty (t}r) and rightlimitv(t]‘») existand v
(t;) - v(tj), 1<j<n}.

Then, clearly (Y, ||-||) is the Banach space under the norm
v =maxo|v(t)].

Consequently, the product X xY is a Banach space
under the norms |[|(u, v)| = lull + [[v| and |(u, v)|| = max

{llul, lv}-

Definition 1 (see [13]). The fractional integral of the func-
tion h € L' ([a,b],R,) of order a € R, is defined by

a-1
I*h(t) = Jt )

uwh(s)ds, (3)

where T is the gamma function.

Definition 2 (see [13]). For a function h given on the interval
[a, b], the Riemann-Liouville fractional-order derivative of
h is defined by
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Coa B 1 d\" (-5 !
( Du+h) (t) = T(n—a) (a) Jaw (s)ds, (4)

where n = [a] + 1 and [«] denotes the integer part of a.

Definition 3 (see [13]). For a function h given on the interval
[a, b], the Caputo fractional-order derivative of h is defined

by

K™ (s)ds,  (5)

RN B (e
( D“+h)(t) "T(n-a) L I'(x)

where n = [a] + 1 and [«] denotes the integer part of a.

3. Main Results

In this section, we will prove the existence of a mild solution
for (2).

To obtain the existence of a mild solution, we will need
the following assumptions:

(H,): the function u — (u/f, (t,u,v)) is increasing
in R for every t € [0, [

(H,): the function v — (v/f, (t,u, v)) is increasing in
R for every t € [0, 1, [

(H;): the functions f; are continuous and bounded;

that is, there exist positive numbers L; >0 such that
|fi(t,u,v)|<L; forall (t,u,v) € [0,1]x RxR(i=1,2)

(H,): for all u,u,v,v € R for all ¢ € [0, 1] there exist
positive numbers M, >0, such that

|9: (t,v) = g, (8,5,9)| < M, [|u =2l +v = 7],
(i=1,2).

(Hs): there exist constants A, B>0 such that for all
u,u,v,veR

ILw) - |L@)|<Alu-ul, i=1,2...,n

(7)

o=@ <Blv-%,  j=12....m

(Hg): for any u,v € C([0, 1], R), there exist constants
K4 K, >0, such that

I (1) = p W)l < Kgllue = v,
ly () =y (W <K flue = v].

(8)

(H,): for any u,v € C([0, 1], R), there exist constants
Mg, M, >0 and N, N, >0, such that

3
¢l < Myllu = vll,
lp @)l < M llu =, ©)
9
”I,-(u)"SNMIIuII, i=12,...,n
|| <Nvl, =12 m,
(Hg): there exist constants C,D >0, such that
II; (u)|<C,i=1,2,...,n and IIj(vj)ISD, ji=12,

..,m

(H,): there exist constants p, y > 0, such that |¢ (u)| < p,
VueX, ly(v)|<u,and Vv € Y

(H,p): there exist constants p,,d,>0 and p;,§;>0
(i = 1,2), such that

|9, (6w, v)| < po + pyllull + pylIvils

(10)
|9 (£, v)| < 8y + &, lull + 8,1V,
for all (u,v) e X xY.
For brevity, let us set
Mgl
A =1, K¢+nA+r(“+l) ,
(11)

A, =L1L,|K, +mB+ M,,
C rB+1)]

Lemma 1. Let a € (0,1) and h: [0,T;] — R be contin-
uous. A function u € C([0,T,],R) is a solution to the
fractional integral equation:

a(t—g)*!

u(t) =y - jo o h(s)ds,

t _ el
h(s)ds + jo%

(12)
if and only if u is a solution to the following fractional Cauchy
problems:

t e [0,Ty],

a>0.

{ D*u(t) = h(t)a.e. (13)

u(a) = uy,

Lemma 2. Let us assume that hypotheses (H,) and (H;)
hold. Let a€ (0,1) and h:] — R be continuous. A
function u is a solution to the fractional integral equation:

u() = f, <t,u<t>,v<t>>[¢<“> +0 Z%

t (t _ S){X*l
+ J'Owh(s)ds], t e [thtial,
(14)
where



o(t) ={°’ teltoti] (15)
1, te [to.ty[,

a( u(t)
f1(tu(t),v(t)

| 4 =) L),
u(0) ~
| 710 u(), v~ P

Proof 1. Letus assume that u satisfies (16). Ift € [t,, ¢, [, then

o M(t) _

() =0 eltnl a7
__uO®
f1(0,1(0),v(0))

Applying I* on both sides of (17), we can obtain

u(t) _ u(0) . Jt (t-s)*"
fr1tu(),v(@®)  f10,u(0),v(0) Jo T(a)

= ¢(u). (18)

h(s)ds,

t(f—s)*!

AT Jo I'(a)

h(s)ds,
(19)

then

t(t—s)* !
o TI'(a)

h(s)ds].

(20)

u(®) = f, (b u (), v () [¢<u) N j

If t € [t;,t,[, then

o u(t) B
P (m) B h(t), e [tlrtz[, (21)

u(t)) =u(t))+1I, (u(t)). (22)

According to Lemma 1 and the continuity of
f1(tu(t),v(t)), we have

ul) u(ti) R GED P

Htu@,v®)  fi(tsut)v(n)) JO T'(a) (s)ds

t _ el
+J =97 ) (9,

T(a)

)+ L) (b _S)oc—l o
- fl (tl’u(tl),V(tl)) J-O I‘(a) h( )d

t (t _ S)(x—l
+I )

h(s)ds.
(23)
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if and only if u is a solution of the following impulsive

problem:

)zh(t), te[0,1], t#t,i=12,...,n, 0<a<l,

t, e (0,1),i=1,2,..., n, (16)

Since

- ot =)™
u(ty) = f, (tl’u(tl)’v(tl))[(p(u) + ,[o @) h(S)dS]>
(24)

there exists

L — h (tl - s)D‘*l >
Filtu®,v(®) —<¢(”> +f Ty h)ds
I (u(t)) bty - )"
- h(s)d
@) o T MO
t (t _ S)a—l
! .[ I'(a)
L)
filtpu(t).v(n)

t (t _ S)tx—l
+I I'(a)

h(s)ds,

=¢(u)+

h(s)ds,
(25)

SO

L (u(r))

filtou(ty),v(ty))
(26)

u(t) = fl(t,u(t),V(t))[gb(u) +

Pt —s)"!
! J I'(a)

If t € [t,,t5], then we have

W) o u() (e (-9
AGTORTG R ey RTo i M v
t(t_s)a—l

+J0 T'(a)

h(s)ds].

h(s)ds,

_ () + L) (o (-9
 filtyu(t)v(t) Jo T'(a) h(s)d

t(t—s)*!
+J I'(a)

h(s)ds.
(27)
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For
u(ty) = f, (tziu(tz):v(h))[‘/’(u) + [u(ty) + 1, (u(1))]

filtnu(ty),v(ty))

(t, - S)a_l
N JO s |
(28)

we have
w® o, @)+ L)
frtu(),v(t) Pl Fitpu(t),v(t,))
(- S)M_1
i Jo I'(a)
L L)
fi(tyu(ty),v(ty))

_ g (tz‘s)‘H
JO (s

h(s)ds

t (t _ S)oc—l
+ JO o9,

t(t—s)!
N IO s

(29)
s0

t _ el
+J (t=s) h(s)ds).
0

I'(a)
(30)

Ifte(t,t, [(i=34,...
we get

,1), using the same method,

u(t) = £, (tLu(t), v(t))<¢(u) +i%

t(t—g)*!
+JO o h(s)ds).

Conversely, assume that u satisfies (14). If ¢ € [t,, 1, [,
then we have

(31)

(_S)txl
I'(a)

ma=ﬁmummmﬂmm j hua]

(32)

Then, divided by f, (t,u(t),v(t)) and applying D* on
both sides of (32), (17) is satisfied.

Again, substituting ¢t=0 in (32), we have
(1(0)/ f1(0,u(0)v(0))) = ¢(u). Since u — (u/f(t,u,v))
is increasing in R for te€ [ty t,[, the map
u — (u/f (t,u,v)) is injective in R. Then, we get (18).

If t € [t,,t,], then we have

I (u(ty))
filtou(ty),v(ty))

u(t) = f, (f,u(f),V(t))[fb(u) +

t(t—s)*!
N JO o h(s)ds].

Then, divided by f, (t,u(t),v(t)) and applying D* on
both sides of (33), (19) is satisfied. Again by (Hj;),
substituting t = ¢, in (32) and taking the limit of (33), (33)
minus (32) gives (22).

Iftelt t;,1[(=23,..., n), similarly we get

) =h(t), te [tptel

(33)

D"‘( u(t)
fr1tu®),v(t)) (34)

w(t)) = u(f) + 1;(u(t))

This completes the proof. O

Lemma 3. Let g,, g, are continuous, then (u,v) € X xY isa
solution of (2) if and only if (u, v) is the solution of the integral
equations:

u(t;))

u(t) = f,(tu(t), v(t))[¢(u) + e(t)ZW

¢ _ el
+L“N2 mmummmmﬂ,t € [totia],

m I.(v(t:
Wﬂ:h@“@m@{ﬁﬂ+ﬂﬂz @)

= fa(6u(t;) (1))

t AY: !
+J (tr(;s)) gz(t,u(t),v(t))ds], te[tptinl
(35)
where
8t :{0, tf [to-11]
1, te[tyt ] (36)
{0, t e [tot],
w(t) = _
1, te[tyt]

We define an operator ® : X xY — X xY by
@ (u,) () = (@, (1, v) (£), @, (1, v) (1)), (37)

where



D, (u,v)(t) = f, (t,u(t),V(t))[gb(u)

L (u(17))

*“”memwtvam

t _ el
+ Jo %gl (s,u(s), v(s))ds] ,

(38)
@, (u,v) (1) = fz(t,u(t),V(t))[V/(V)

e 1)
O 2 7 () (1)

_p1
+ JO (tr(ﬁ)) g, (s, u(s), v(s))dS]

Now, we are in a position to present our first result that
deals with the existence and uniqueness of solutions for the
problem (2). This result is based on Banach’s contraction
mapping principle.

Theorem 1. Suppose that the condition (H,) — (H,) holds
and that g,, g, : [0,1] x R* — R are continuous functions.
In addition, there exist positive constants A;, (;, i = 1, 2, such that

|g1 (t,u,v) — g, (t,ﬁ,?)] <Mlu-ul+{lv-7,
(39)
|g2(t, u,v) — gz(t,ﬁ,V)| <Ahlu-ul+{Glv-1.

If max(A;,A,) <1, A, and A, are given by (11), then the
impulsive coupled system (2) has a unique mild solution.

Proof 2. Let us set sup,;g,(£,0,0) =k, <co and sup,;

|g, (£,0,0)| = k; <co and define a closed ball: B = {(u,v)
€ X XY : |(u,v)| <r}, where

r > max Lix ,
1-L(My+nN, +(UT (a+ 1) (A, +1,))

Lyx, ],
1-Ly(M, +nN, + (UL(B+ 1) ({ +8)) |
(40)

Then, we show that ®B ¢ B. For (u,v) € B, we obtain
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|, (u,v) (1) <L,

¢>(u)+9(t)z—fl (( )‘ o)

>

_ el
+ Jo %gl (s,u(s), v(s))ds

<L, [M¢||u|| + nN,, |lul

t _ el
+J-0 (tl“(l)) (igl(&u(s),v(s))

- 9,(5,0,0)] +|g, (5,0, O)l)ds],

(4

1
$L1[M¢Ilull +nN,, |lull + Tt )

+me+mﬂ

1
SLl [(M¢ +1’lNu)7" +m (()Ll +A2)1" + Kl)]'

(41)
Hence,

[@, (u,v) ()] <L, [(Mg,J + nNu)r + (A +A)r + Kl)].

I'a+1)
(42)
Working in a similar manner, one can find that
1
[, ) ()] < L, [(MW PN s (@ s Kz)].
(43)

From (42) and (43), it follows that ||® (u, v)|| < 7.
Next, for (u,v), (1,¥) € X xY, and for any t € [0, 1], we
have

|, () (1) - D, (@,7) ()| =

fr(tu(t), V(t))[¢(u)

t(t—s)*!
o) Zfltu v(t))+_[o T(a) 9

- (s,u(s), v(s))ds]—f (t,u (L), v(1))
(@(t))
9 PNt/
P”” ”Zﬁa a(t). v (1)
(t—s)"
+L e

91 (s, (s), v(s))ds]
<L, [K¢|u —u| +nAlu—1u| +

Mgl = =
Ta+D) (lu -7l +IV—VI)],

— — g
<L, [K¢||u —ul + nAllu —ull + T +11)

(e —ull +llv - VII)],

(44)
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which implies that

91

M —
T(a+ 1)> (e =)l

[@, (. v) - @, (@) sLl(K¢ +nA +

+v =7,

= Ay (llu = ull +llv -
(45)

Similarly, we can show that

|®, (1, v) = D, @ W)|| <Ay (lu -7l +lv-7l).  (46)

From (45) and (46), we deduce that
D (1, v) = @ (@, V)| < max (A}, A,) (lu = @ll +|lv = 7).
(47)
O

In view of this condition max (A, A,) < 1, it follows that
@ is a contraction. So, Banach’s fixed point theorem applies,
and hence the operator ® has a unique fixed point. This, in
turn, implies that the problem (2) has a unique solution on J.
This completes the proof.

In our second result, we discuss the existence of solutions
for the problem (2) by means of Leray-Schauder alternative.

For brevity, let us set

M= T ar 1y
(48)
__ L
RETBr1y
po = min{1 = (uyp) + py01), 1 = (195 + 420,)}. (49)

Lemma 4 (Leray-Schauder alternative, see [14]). Let & :
G — G be a completely continuous operator (i.e., a map that
is restricted to any bounded set in G is compact). Let

P(F)={ueG:u=AFuforsome0<A<1}. Then -either
the set P () is unbounded or F has at least one fixed point.

Theorem 2. Let us assume that conditions (H,) — (H;) and
(Hg) — (H,o) hold. Furthermore, it is assumed that p,p, +
U0, <1 and p,p, + 1,8, <1, where y, and u, are given by
(48). Then, the boundary value problem (2) has at least one
solution.

Proof 3. We will show that the operator @ : X xY — X X
Y satisfies all the assumptions of Lemma 4.

In the first step, we will prove that the operator @ is
completely continuous.

Clearly, it follows by the continuity of functions
f1 f2 97> and g, that the operator @ is continuous.

Let Sc X xY bounded. Then, we can find positive
constants H, and H, such that |g,(t,u,v)|<H, abd|g,
(t,u,v)|<H,, ¥ (u,v) €8.

Thus, for any u, v € S, we can get

n t (t _ S)a—l
|, (w,v) ()| <Ly |p+ zl C+ L WHlds ,
(50)
Hl
SLl[p+nC+m],
which yields
||CD (u, v)"sL p+nC+ H, . (51)
! ! T(ax+1)

In a similar manner, one can show that

H,
||d>2(u,v)||§L2[0+mD+r(ﬁ+1) . (52)

From the inequalities (51) and (52), we deduce that the
operator @ is uniformly bounded.

Now, we show that the operator @ is equicontinuous.

We take 7,7, € J with 7, <7, and obtain

- Li(u(t)) GEDM
_<</’(u)+0(rl);f1 (t,u(ti),v(ti))+H1 jo @) ds>
= I; u(t;)) 7 (-[2 _5)"‘ 1 7 (Tl _S)a 1
sL1< (8(r,) 6(11)); Fult) @) +H, jo @ ds—jo o) ds) (53)




which tend to 0 independently of (u, v). This implies that the
operator @ (u,v) is equicontinuous. Thus, by the above-
mentioned findings, the operator @ (u,v) is completely
continuous.

In the next step, it will be established that the set P =
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In consequence, we have

lull +l(v)l < (Ly (p + nC) + Ly (6 + mD) + pypy + 14,0,)
+ (#1P1 + /4281)”7/‘” + (H1P2 + [/‘282)""”)

{(u,v) € X xY/(u,v) = A® (1, v),0 <A< 1} is bounded. (57)
Let (4, v) € P. Then, we have (u,v) = A® (u,v). Thus, for  pich in view of (49), can be expressed as
any t € [0, 1], we can write
u(t) :/\(Dl (u, V) (t)> ( ) ”(u 1/)"<L1 (P‘I‘HC)+L2(0+1’}1D)+[41p0+ﬂ280 (58)
54 > = ’
v(t) = A®, (,v) (1), Ho
b This shows that the set is bounded. Hence, all the
then conditions of Lemma 4 are satisfied and consequently the
<l c 1 operator @ has at least one fixed point, which corresponds to
lull <Ly | pnC+ I'(a+1) (o + pullull + plIVI) | (55) a solution of the system (2). This completes the proof. O
<Ly (p+nC) +py (po + pylull + p,lIvl),
which implies that 4. Example
1 Consider the following coupled system of hybrid fractional
WL oemD ol @ ot s 8], el cquaions
(56)
<L, (0 +mD) + p, (8, + & lull + &,IIvll).
t) et +|sinu ()| +|cos v (t)]| 1
cpin u( = , te [0, 1\{t,}, 0<=<1,
<(t+vu(t)+v<t))/(4o+t2) (01N 0<3
w(ty) =u(ey) + (-2u(5)), t#0,1,
(t) e +|sin (2u (1)) +|cos? (v(1))| 1
{ ¢D1”? Y = . te[0,1\{t,}, 0<=<1,
((tz +\u(t)—v(D) )/ (32+ t)> 20 0.1} 0<3 (59)
v(er) = v(t) + (=2v(5)), t;#0,1,
u(0) & v(0) N
———= ) cu(t;), ———————= ) d.u(t;),
L f] (Oiu(0)>v(0)) ; ( ) fz(oyu(o)yv(o)) ; / ( ])

where f,(t,u,v) = ((t +\u(t) +v(£))/ (40 + 7)), f,(t,u,
V) = (2 +Jut) —v(t))/ (32 +1)), g, (Lu,v) = (e +

1
|gl (tupv) —g: (6 ”2"’2)' Sﬁluz

1
|9, (£ 115 v1) = g5 (8 115, 1) Sﬁluz

Vt e [0,1],uy,u,y, vy, v, € R,

M,
Ay =L |Ky+nA+ :

M,
A, =L,| K, +mB+ 2

-2t

[sinu ()| + |cos v(1)])/40), and g, (t,u,v) = ((e +
Isin (2u (£))] + |cos? (v(1))])/20).
Note that
1
!
1
~u| ol =l
(60)

=0.3354687 < 1,
T(a+1)

=0.2548789 < 1.
L+ 1)]
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Thus, all the assumptions in Theorem 2 are satisfied, and
our results can be applied to the problem (59).
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