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)e study of coupled systems of hybrid fractional differential equations requires the attention of scientists for the exploration of their
different important aspects. Our aim in this paper is to study the existence and uniqueness of the solution for impulsive hybrid
fractional differential equations. )e novelty of this work is the study of a coupled system of impulsive hybrid fractional differential
equations with initial and boundary hybrid conditions. We used the classical fixed-point theorems such as the Banach fixed-point
theorem and Leray–Schauder alternative fixed-point theorem for existence results. We also give an example of the main results.

1. Introduction

Fractional differential equations appear naturally in a
number of fields such as physics, engineering, biophysics,
blood flow phenomena, aerodynamics, electron-analyt-
ical chemistry, biology, and control theory. An excellent
account of fractional differential equations is given in
this study. Undergoing abrupt changes at certain mo-
ments of time like earthquake, harvesting, and shock,
these perturbations can be well approximated as in-
stantaneous change of state or impulses. Furthermore,
these processes are modelled by impulsive differential
equations.

On the other hand, impulsive differential equations ap-
pear as a natural description of many evolutionary phe-
nomena in the real world.)emajority of processes in applied
sciences are represented by differential equations. However,
the situation is different in certain physical phenomena un-
dergoing abrupt changes during their evolution as mechanical
systems with impact, biological systems (heartbeat, blood
flow, and so on), the dynamics of populations, natural

disasters, etc. )ese changes are often of very short duration
and are therefore produced instantly in the form of pulses.)e
modeling of such phenomena requires the use of forms that
explicitly and simultaneously involve the continuous evolu-
tion of the phenomenon as well as instantaneous changes.

Such models are said to be “impulsive;” they are evo-
lutionary of continuous processes governed by differential
equations combined with difference equations representing
the effect impulsive has undergone.

For some recent developments on the topic, see [1–5]
and the references therein.

Hybrid fractional differential equations have also been
studied by several researchers. )is class of equations in-
volves the fractional derivative of an unknown hybrid
function with the nonlinearity depending on it. Some recent
results on hybrid differential equations can be found in a
series of papers [6–11].

By applying the Banach fixed-point theorem and
Kransnoselskii fixed-point theorem, the existence results for
the solution are obtained. Shah et al. [12] studied the coupled
system of fractional impulsive boundary problems:
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Dαx(t) � Φ(t, x(t), y(t)) a.e. t ∈ J � [0, 1], t≠ ti, 1< α≤ 2,

Δx|t�ti
� Ii x ti( ( ,Δ′x

t�ti
� Ii x ti( ( , ti ∈ (0, 1), i � 1, 2, . . . , m,

x(0) � h(x), x(1) � g(x),

Dβy(t) � Ψ(t, x(t), y(t)) a.e. t ∈ j′, 1< β≤ 2,

Δx|t�tj
� Ji x tj  , Δ′x

t�ti
� Jj x tj  , tj ∈ (0, 1), j � 1, 2, . . . , m,

x(0) � κ(x), x(1) � f(x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where 1< α, β≤ 2, Φ, Ψ, Ii, Ii, Jj, and Jj are continuous
functions, g, h, κ, and f are fixed continuous functionals,
and Δx|t�ti

� x(t+
i ) − x(t−

i ), Δ′x|t�ti
� x′(t+

i ) − x′(t−
i ) and

Δy|t�tj
� y(t+

j ) − y(t−
j ), Δ′y|t�tj

� y′(t+
j ) − y′(t−

j ).

Motivated by some recent studies to the boundary value
problem of a class of impulsive hybrid fractional differential,
we consider the problem of coupled hybrid fractional dif-
ferential equations:

Dα u(t)

f1(t, u(t), v(t))
  � g1(t, u(t), v(t)), t ∈ [0, 1], t≠ ti, i � 1, 2, . . . , n, 0< α< 1,

u t+
i(  � u t−

i(  + Ii u t−
i( ( , ti ∈ (0, 1), i � 1, 2, . . . , n,

Dβ u(t)

f2(t, u(t), v(t))
  � g2(t, u(t), v(t)), t ∈ [0, 1], t≠ tj, j � 1, 2, . . . , m, 0< β< 1,

v t+
j  � v t−

j  + Ij v t−
j  , tj ∈ (0, 1), j � 1, 2, . . . , m,

u(0)

f1(0, u(0), v(0))
� ϕ(u),

v(0)

f2(0, u(0), v(0))
� ψ(v),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Dα and Dβ stand for Caputo fractional derivative of order
α and β, respectively; fi ∈ C([0, 1] × R × R,R\ 0{ }), gi ∈ C

([0, 1] × R × R, R), (i � 1, 2), and ϕ,ψ : C([0, 1],R)⟶ R

are continuous functions defined by ϕ(u) � 
n
i�1λiu(ξi) and

ψ(v) � 
n
j�1δjv(ηj), where ξi, ηj ∈ (0, 1) for i � 1, 2, . . . , n,

j � 1, 2, . . . , m; and Ik : R⟶ R and u(t+
k ) � limε⟶0+

u(tk + ε) and u(t−
k ) � limε⟶0− u(tk − ε) represent the right

and left limits of u(t) at t � tk, (k � i, j).
We assume that 

n
i�1λiu(ξi)

α− 1 < 1 and 
m
j�1δjv

(ηj)
β− 1 < 1.
)is paper is arranged as follows. In Section 2, we recall

some concepts and some fractional calculation laws and es-
tablish preparation results. In Section 3, we present the main
results. Section 4 is devoted to an example of the main results.

2. Preliminaries

In this section, we recall some basic definitions and prop-
erties of the fractional calculus theory and preparation
results.

)roughout, this paper denotes J0 � [0, t1], J1 � (t1, t2],
. . . , Jp− 1 � (tp− 1, tp], Jp � (tp, 1], and we introduce the
spaces: for ti ∈ (0, 1) such that t1 < t2 < · · · < tn and
I′ � I\ t1, t2, . . . , tn , define the space X � u : [0, 1]⟶{

R : u ∈ C(I′) and left u(t+
i ) and right limit u(t−

i ) exist and u

(t−
i ) − u(ti), 1≤ i≤ n}.
)en, clearly (X, ‖·‖) is the Banach space under the

norm u � maxt∈[0,1]|u(t)|.

Similarly, for tj ∈ (0, 1) such that t1 < t2 < · · · < tm and
J′ � J\ t1, t2, . . . , tm , define the space Y � v : [0, 1]⟶{

R : v ∈ C(J′) and left v (t+
j ) and right limit v(t−

j ) exist and v

(t−
j ) − v(tj), 1≤ j≤ n}.
)en, clearly (Y, ‖·‖) is the Banach space under the norm

v � maxt∈[0,1]|v(t)|.

Consequently, the product X × Y is a Banach space
under the norms ‖(u, v)‖ � ‖u‖ + ‖v‖ and ‖(u, v)‖ � max
‖u‖, ‖v‖{ }.

Definition 1 (see [13]). )e fractional integral of the func-
tion h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

I
α
ah(t) � 

t

a

(t − s)α− 1

Γ(α)
h(s)ds, (3)

where Γ is the gamma function.

Definition 2 (see [13]). For a function h given on the interval
[a, b], the Riemann–Liouville fractional-order derivative of
h is defined by
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C
D

α
a+ h (t) �

1
Γ(n − α)

d
dt

 

n


t

a

(t − s)n− α− 1

Γ(α)
(s)ds, (4)

where n � [α] + 1 and [α] denotes the integer part of α.

Definition 3 (see [13]). For a function h given on the interval
[a, b], the Caputo fractional-order derivative of h is defined
by

C
D

α
a+ h (t) �

1
Γ(n − α)


t

a

(t − s)n− α− 1

Γ(α)
h

(n)
(s)ds, (5)

where n � [α] + 1 and [α] denotes the integer part of α.

3. Main Results

In this section, we will prove the existence of a mild solution
for (2).

To obtain the existence of a mild solution, we will need
the following assumptions:

(H1): the function u⟶ (u/f1(t, u, v)) is increasing
in R for every t ∈ [0, t1[

(H2): the function v⟶ (v/f2(t, u, v)) is increasing in
R for every t ∈ [0, t1[

(H3): the functions fi are continuous and bounded;
that is, there exist positive numbers Li > 0 such that
|fi(t, u, v)|≤ Li for all (t, u, v) ∈ [0, 1]× R × R(i � 1, 2)

(H4): for all u, u, v, v ∈ R for all t ∈ [0, 1] there exist
positive numbers Mgi

> 0, such that

gi(t, u, v) − gi(t, u, v)


≤Mgi
[|u − u| +|v − v|],

(i � 1, 2).
(6)

(H5): there exist constants A, B> 0 such that for all
u, u, v, v ∈ R

Ii(u) − Ii(u)



≤A|u − u|, i � 1, 2, . . . , n,

Ij(v) − Ij(v)




≤B|v − v|, j � 1, 2, . . . , m.
(7)

(H6): for any u, v ∈ C([0, 1], R), there exist constants
Kϕ, Kψ > 0, such that

‖ϕ(u) − ϕ(v)‖≤Kϕ‖u − v‖,

‖ψ(u) − ψ(v)‖≤Kψ‖u − v‖.
(8)

(H7): for any u, v ∈ C([0, 1], R), there exist constants
Mϕ, Mψ > 0 and Nu, Nv > 0, such that

‖ϕ(u)‖≤Mϕ‖u − v‖,

‖φ(u)‖≤Mψ‖u − v‖,

Ii(u)
����

����≤Nu‖u‖, i � 1, 2, . . . , n,

Ij(v)
�����

�����≤Nv‖v‖, j � 1, 2, . . . , m.

(9)

(H8): there exist constants C, D> 0, such that
|Ii(ui)|≤C, i � 1, 2, . . . , n and |Ij(vj)|≤D, j � 1, 2,

. . . , m

(H9): there exist constants ρ, μ> 0, such that |ϕ(u)|≤ ρ,
∀u ∈ X, |ψ(v)|≤ μ, and ∀v ∈ Y

(H10): there exist constants ρ0, δ0 > 0 and ρi, δi > 0
(i � 1, 2), such that

g1(t, u, v)


≤ ρ0 + ρ1‖u‖ + ρ2‖v‖,

g2(t, u, v)


≤ δ0 + δ1‖u‖ + δ2‖v‖,
(10)

for all (u, v) ∈ X × Y.
For brevity, let us set

Δ1 � L1 Kϕ + nA +
Mg1

Γ(α + 1)
 ,

Δ2 � L2 Kψ + mB +
Mg2

Γ(β + 1)
 .

(11)

Lemma 1. Let α ∈ (0, 1) and h : [0, T0]⟶ R be contin-
uous. A function u ∈ C([0, T0],R) is a solution to the
fractional integral equation:

u(t) � u0 − 
a

0

(t − s)α− 1

Γ(α)
h(s)ds + 

t

0

(t − s)α− 1

Γ(α)
h(s)ds,

(12)

if and only if u is a solution to the following fractional Cauchy
problems:

Dαu(t) � h(t) a.e. t ∈ 0, T0 ,

u(a) � u0, a> 0.
 (13)

Lemma 2. Let us assume that hypotheses (H1) and (H3)

hold. Let α ∈ (0, 1) and h : J⟶ R be continuous. A
function u is a solution to the fractional integral equation:

u(t) � f1(t, u(t), v(t)) ϕ(u) + θ(t) 
n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 
⎡⎣

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds, t ∈ ti, ti+1 ,

(14)
where
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θ(t) �
0, t ∈ t0, t1 ,

1, t ∈ t0, t1 ,
 (15)

if and only if u is a solution of the following impulsive
problem:

Dα u(t)

f1(t, u(t), v(t))
  � h(t), t ∈ [0, 1], t≠ ti, i � 1, 2, . . . , n, 0< α< 1,

u t+
i(  � u t−

i(  + Ii u t−
i( ( , ti ∈ (0, 1), i � 1, 2, . . . , n,

u(0)

f1(0, u(0), v(0))
� ϕ(u).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Proof 1. Let us assume that u satisfies (16). If t ∈ [t0, t1[, then

D
α u(t)

f1(t, u(t), v(t))
  � h(t), t ∈ t0, t1 , (17)

u(0)

f1(0, u(0), v(0))
� ϕ(u). (18)

Applying Iα on both sides of (17), we can obtain

u(t)

f1(t, u(t), v(t))
�

u(0)

f1(0, u(0), v(0))
+ 

t

0

(t − s)α− 1

Γ(α)
h(s)ds,

� ϕ(u) + 
t

0

(t − s)α− 1

Γ(α)
h(s)ds,

(19)

then

u(t) � f1(t, u(t), v(t)) ϕ(u) + 
t

0

(t − s)α− 1

Γ(α)
h(s)ds .

(20)

If t ∈ [t1, t2[, then

D
α u(t)

f1(t, u(t), v(t))
  � h(t), t ∈ t1, t2 , (21)

u t
+
1(  � u t

−
1(  + I1 u t

−
1( ( . (22)

According to Lemma 1 and the continuity of
f1(t, u(t), v(t)), we have

u(t)

f1(t, u(t), v(t))
�

u t+
1( 

f1 t1, u t1( , v t1( ( 
− 

t1

0

t1 − s( 
α− 1

Γ(α)
h(s)ds

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds,

�
u t−

1(  + I1 u t−
1( ( ( 

f1 t1, u t1( , v t1( ( 
− 

t1

0

t1 − s( 
α− 1

Γ(α)
h(s)ds

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds.

(23)

Since

u t
−
1(  � f1 t1, u t1( , v t1( (  ϕ(u) + 

t1

0

t1 − s( 
α− 1

Γ(α)
h(s)ds ,

(24)

there exists

u(t)

f1(t, u(t), v(t))
� ϕ(u) + 

t1

0

t1 − s( 
α− 1

Γ(α)
h(s)ds 

+
I1 u t−

1( ( 

f1 t1, u t1( , v t1( ( 
− 

t1

0

t1 − s( 
α− 1

Γ(α)
h(s)ds

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds,

� ϕ(u) +
I1 u t−

1( ( 

f1 t1, u t1( , v t1( ( 

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds,

(25)

so

u(t) � f1(t, u(t), v(t)) ϕ(u) +
I1 u t−

1( ( 

f1 t1, u t1( , v t1( ( 


+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds.

(26)

If t ∈ [t2, t3[, then we have

u(t)

f1(t, u(t), v(t))
�

u t+
2( 

f1 t2, u t2( , v t2( ( 
− 

t2

0

t2 − s( 
α− 1

Γ(α)
h(s)ds

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds,

�
u t−

2(  + I2 u t−
2( ( ( 

f1 t2, u t2( , v t2( ( 
− 

t2

0

t2 − s( 
α− 1

Γ(α)
h(s)ds

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds.

(27)
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For

u t
−
2(  � f1 t2, u t2( , v t2( (  ϕ(u) +

u t−
1(  + I1 u t−

1( (  

f1 t1, u t1( , v t1( ( 


+ 
t2

0

t2 − s( 
α− 1

Γ(α)
h(s)ds,

(28)

we have
u(t)

f1(t, u(t), v(t))
� ϕ(u) +

u t−
1(  + I1 u t−

1( ( ( 

f1 t1, u t1( , v t1( ( 

+ 
t2

0

t2 − s( 
α− 1

Γ(α)
h(s)ds

+
I2 u t−

2( ( 

f1 t2, u t2( , v t2( ( 

− 
t2

0

t2 − s( 
α− 1

Γ(α)
h(s)ds

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds,

� ϕ(u) +
I1 u t−

1( ( 

f1 t1, u t1( , v t1( ( 

+
I2 u t−

2( ( 

f1 t2, u t2( , v t2( ( 
+ 

t

0

(t − s)α− 1

Γ(α)
h(s)ds,

(29)

so

u(t) � f1(t, u(t), v(t)) ϕ(u) + 
2

i�1

Ii u t−
i( ( 

fi ti, u ti( , v ti( ( 
⎛⎝

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds.

(30)

If t ∈ [ti, ti+1[(i � 3, 4, . . . , n), using the same method,
we get

u(t) � f1(t, u(t), v(t)) ϕ(u) + 
k

i�1

Ii u t−
i( ( 

fi ti, u ti( , v ti( ( 
⎛⎝

+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds.

(31)

Conversely, assume that u satisfies (14). If t ∈ [t0, t1[,
then we have

u(t) � f1(t, u(t), v(t)) ϕ(u) + 
t

0

(t − s)α− 1

Γ(α)
h(s)ds .

(32)

)en, divided by f1(t, u(t), v(t)) and applying Dα on
both sides of (32), (17) is satisfied.

Again, substituting t � 0 in (32), we have
(u(0)/f1(0, u(0)v(0))) � ϕ(u). Since u⟶ (u/f(t, u, v))

is increasing in R for t ∈ [t0, t1[, the map
u⟶ (u/f(t, u, v)) is injective in R. )en, we get (18).

If t ∈ [t1, t2], then we have

u(t) � f1(t, u(t), v(t)) ϕ(u) +
I1 u t−

1( ( 

f1 t1, u t1( , v t1( ( 


+ 
t

0

(t − s)α− 1

Γ(α)
h(s)ds.

(33)

)en, divided by f1(t, u(t), v(t)) and applying Dα on
both sides of (33), (19) is satisfied. Again by (H3),
substituting t � t1 in (32) and taking the limit of (33), (33)
minus (32) gives (22).

If t ∈ [ti, ti+1[(i � 2, 3, . . . , n), similarly we get

Dα u(t)

f1(t, u(t), v(t))
  � h(t), t ∈ tk, tk+1 ,

u t+
i(  � u t−

i(  + Ii u t−
i( ( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(34)

)is completes the proof. □

Lemma 3. Let g1, g2 are continuous, then (u, v) ∈ X × Y is a
solution of (2) if and only if (u, v) is the solution of the integral
equations:

u(t) � f1(t, u(t), v(t)) ϕ(u) + θ(t) 
n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 
⎡⎣

+ 
t

0

(t − s)α− 1

Γ(α)
g1(t, u(t), v(t))ds, t ∈ ti, ti+1 ,

v(t) � f2(t, u(t), v(t)) ψ(v) + ω(t) 
m

j�1

Ij v t−
j  

f2 t, u tj , v tj  

⎡⎢⎢⎣

+ 
t

0

(t − s)β− 1

Γ(β)
g2(t, u(t), v(t))ds, t ∈ tj, tj+1 ,

(35)

where

θ(t) �
0, t ∈ t0, t1 ,

1, t �∈ t0, t1 ,


ω(t) �
0, t ∈ t0, t1 ,

1, t �∈ t0, t1 .


(36)

We define an operator Φ : X × Y⟶ X × Y by

Φ(u, v)(t) � Φ1(u, v)(t),Φ2(u, v)(t)( , (37)

where
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Φ1(u, v)(t) � f1(t, u(t), v(t)) ϕ(u)

+ θ(t) 
n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 

+ 
t

0

(t − s)α− 1

Γ(α)
g1(s, u(s), v(s))ds,

Φ2(u, v)(t) � f2(t, u(t), v(t)) ψ(v)

+ ω(t) 
m

j�1

Ij v t−
j  

f2 t, u tj , v tj  

+ 
t

0

(t − s)β− 1

Γ(β)
g2(s, u(s), v(s))ds.

(38)

Now, we are in a position to present our first result that
deals with the existence and uniqueness of solutions for the
problem (2). )is result is based on Banach’s contraction
mapping principle.

Theorem 1. Suppose that the condition (H1) − (H7) holds
and that g1, g2 : [0, 1] × R2⟶ R are continuous functions.
In addition, there exist positive constants λi, ζ i, i � 1, 2, such that

g1(t, u, v) − g1(t, u, v)


≤ λ1|u − u| + ζ1|v − v|,

g2(t, u, v) − g2(t, u, v)


≤ λ2|u − u| + ζ2|v − v|.

(39)

If max(Δ1,Δ2)< 1, Δ1 and Δ2 are given by (11), then the
impulsive coupled system (2) has a unique mild solution.

Proof 2. Let us set supt∈Jg1(t, 0, 0) � κ1 <∞ and supt∈J
|g2(t, 0, 0)| � κ1 <∞ and define a closed ball: B � (u, v){

∈ X × Y : ‖(u, v)‖≤ r}, where

r≥max
L1κ1

1 − L1 Mϕ + nNu +(1/Γ(α + 1)) λ1 + λ2(  
,

⎧⎨

⎩

L2κ2
1 − L2 Mψ + nNv +(1/Γ(β + 1)) ζ1 + ζ2(  

⎫⎬

⎭.

(40)

)en, we show that ΦB ⊂ B. For (u, v) ∈ B, we obtain

Φ1(u, v)(t)


≤L1 ϕ(u) + θ(t) 
n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 



+ 
t

0

(t − s)α− 1

Γ(α)
g1(s, u(s), v(s))ds


,

≤L1 Mϕ‖u‖ + nNu‖u‖

+ 
t

0

(t − s)α− 1

Γ(α)
g1(s, u(s), v(s))



− g1(s, 0, 0)
 + g1(s, 0, 0)


ds,

≤L1 Mϕ‖u‖ + nNu‖u‖ +
1
Γ(α + 1)

λ1((

+ λ2‖u‖ + κ1⎤⎦,

≤L1 Mϕ + nNu r +
1
Γ(α + 1)

λ1 + λ2( r + κ1(  .

(41)
Hence,

Φ1(u, v)(t)
����

����≤ L1 Mϕ + nNu r +
1
Γ(α + 1)

λ1 + λ2( r + κ1(  .

(42)

Working in a similar manner, one can find that

Φ2(u, v)(t)
����

����≤ L2 Mψ + nNv r +
1
Γ(β + 1)

ζ1 + ζ2( r + κ2(  .

(43)

From (42) and (43), it follows that ‖Φ(u, v)‖≤ r.
Next, for (u, v), (u, v) ∈ X × Y, and for any t ∈ [0, 1], we

have

Φ1(u, v)(t) − Φ1(u, v)(t)


 � f1(t, u(t), v(t)) ϕ(u)



+ θ(t) 

n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 
+ 

t

0

(t − s)α− 1

Γ(α)
g1

· (s, u(s), v(s))ds]− f1(t, u(t), v(t))

· ϕ(u) + θ(t) 
n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 
⎡⎣

+ 
t

0

(t − s)α− 1

Γ(α)
g1(s, u(s), v(s))ds


,

≤ L1 Kϕ|u − u| + nA|u − u| +
Mg1

Γ(α + 1)
(|u − u| +|v − v|) ,

≤ L1 Kϕ‖u − u‖ + nA‖u − u‖ +
Mg1

Γ(α + 1)
(‖u − u‖ +‖v − v‖) ,

(44)
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which implies that

Φ1(u, v) − Φ1(u, v)
����

����≤L1 Kϕ + nA +
Mg1

Γ(α + 1)
 (‖u − u‖

+‖v − v‖),

� Δ1(‖u − u‖ +‖v − v‖).

(45)

Similarly, we can show that

Φ2(u, v) − Φ2(u, v)
����

����≤Δ2(‖u − u‖ +‖v − v‖). (46)

From (45) and (46), we deduce that

‖Φ(u, v) − Φ(u, v)‖≤max Δ1,Δ2( (‖u − u‖ +‖v − v‖).

(47)

□

In view of this condition max(Δ1,Δ2)< 1, it follows that
Φ is a contraction. So, Banach’s fixed point theorem applies,
and hence the operator Φ has a unique fixed point. )is, in
turn, implies that the problem (2) has a unique solution on J.
)is completes the proof.

In our second result, we discuss the existence of solutions
for the problem (2) by means of Leray–Schauder alternative.

For brevity, let us set

μ1 �
L1

Γ(α + 1)
,

μ2 �
L2

Γ(β + 1)
,

(48)

μ0 � min 1 − μ1ρ1 + μ2δ1( , 1 − μ1ρ2 + μ2δ2(  . (49)

Lemma 4 (Leray–Schauder alternative, see [14]). Let F :

G⟶ G be a completely continuous operator (i.e., a map that
is restricted to any bounded set in G is compact). Let

P(F) � u ∈ G : u � λFu for some 0< λ< 1 . Aen either
the set P(F) is unbounded or F has at least one fixed point.

Theorem 2. Let us assume that conditions (H1) − (H3) and
(H8) − (H10) hold. Furthermore, it is assumed that μ1ρ1 +

μ2δ1 < 1 and μ1ρ2 + μ2δ2 < 1 , where μ1 and μ2 are given by
(48). Aen, the boundary value problem (2) has at least one
solution.

Proof 3. We will show that the operator Φ : X × Y⟶ X ×

Y satisfies all the assumptions of Lemma 4.
In the first step, we will prove that the operator Φ is

completely continuous.
Clearly, it follows by the continuity of functions

f1, f2, g1, and g2 that the operator Φ is continuous.
Let S ⊂ X × Y bounded. )en, we can find positive

constants H1 and H2 such that |g1(t, u, v)|≤H1 abd |g2
(t, u, v)|≤H2, ∀(u, v) ∈ S.

)us, for any u, v ∈ S, we can get

Φ1(u, v)(t)


≤L1 ρ + 
n

i�1
C + 

t

0

(t − s)α− 1

Γ(α)
H1ds⎡⎣ ⎤⎦,

≤L1 ρ + nC +
H1

Γ(α + 1)
 ,

(50)

which yields

Φ1(u, v)
����

����≤L1 ρ + nC +
H1

Γ(α + 1)
 . (51)

In a similar manner, one can show that

Φ2(u, v)
����

����≤L2 σ + mD +
H2

Γ(β + 1)
 . (52)

From the inequalities (51) and (52), we deduce that the
operator Φ is uniformly bounded.

Now, we show that the operator Φ is equicontinuous.
We take τ1, τ2 ∈ J with τ1 < τ2 and obtain

Φ1 u τ2( , v τ2( (  − Φ1 u τ1( , v τ1( ( 




≤L1 ϕ(u) + θ τ2(  

n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 
+ H1 

τ2

0

τ2 − s( 
α− 1

Γ(α)
ds⎛⎝ ⎞⎠



− ϕ(u) + θ τ1(  

n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 
+ H1 

τ1

0

τ1 − s( 
α− 1

Γ(α)
ds⎛⎝ ⎞⎠



≤L1 θ τ2(  − θ τ1( ( 
i�1

n Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 




+ H1 

 τ2

0

τ2 − s( 
α− 1

Γ(α)
ds − 

 τ1

0

τ1 − s( 
α− 1

Γ(α)
ds




⎛⎝ ⎞⎠

≤L1 θ τ2(  − θ τ1( (  

n

i�1

Ii u t−
i( ( 

f1 t, u ti( , v ti( ( 




+ H1 

τ1

0

τ1 − s( 
α− 1

− τ2 − s( 
α− 1

Γ(α)
ds − 

τ2

τ2

τ2 − s( 
α− 1

Γ(α)
ds




⎛⎝ ⎞⎠,

Φ2 u τ2( , v τ2( (  − Φ2 u τ1( , v τ1( ( 




≤L2 ω τ2(  − ω τ1( (  

m

j�1

Ij u t−
j  

f2 t, u tj , v tj  




+ H2 

τ1

0

τ1 − s( 
α− 1

− τ2 − s( 
α− 1

Γ(α)
ds − 

τ2

τ2

τ2 − s( 
α− 1

Γ(α)
ds




⎛⎝ ⎞⎠,

(53)
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which tend to 0 independently of (u, v). )is implies that the
operator Φ(u, v) is equicontinuous. )us, by the above-
mentioned findings, the operator Φ(u, v) is completely
continuous.

In the next step, it will be established that the set P �

(u, v) ∈ X × Y/(u, v) � λΦ(u, v), 0≤ λ≤ 1{ } is bounded.
Let (u, v) ∈ P. )en, we have (u, v) � λΦ(u, v). )us, for

any t ∈ [0, 1], we can write

u(t) � λΦ1(u, v)(t),

v(t) � λΦ2(u, v)(t),
(54)

then

‖u‖≤L1 ρ + nC +
1
Γ(α + 1)

ρ0 + ρ1‖u‖ + ρ2‖v‖(  ,

≤L1(ρ + nC) + μ1 ρ0 + ρ1‖u‖ + ρ2‖v‖( ,

(55)

which implies that

‖v‖≤ L2 σ + mD +
1
Γ(β + 1)

δ0 + δ1‖u‖ + δ2‖v‖(  ,

≤ L2(σ + mD) + μ2 δ0 + δ1‖u‖ + δ2‖v‖( .

(56)

In consequence, we have

‖u‖ +‖(v)‖≤ L1(ρ + nC) + L2(σ + mD) + μ1ρ0 + μ2δ0( 

+ μ1ρ1 + μ2δ1( ‖u‖ + μ1ρ2 + μ2δ2( ‖v‖,

(57)

which in view of (49), can be expressed as

‖(u, v)‖≤
L1(ρ + nC) + L2(σ + mD) + μ1ρ0 + μ2δ0

μ0
. (58)

)is shows that the set is bounded. Hence, all the
conditions of Lemma 4 are satisfied and consequently the
operatorΦ has at least one fixed point, which corresponds to
a solution of the system (2). )is completes the proof. □

4. Example

Consider the following coupled system of hybrid fractional
differential equations:

CD1/2 u(t)

(t +
���������
u(t) + v(t)


)/ 40 + t2( )

  �
e− t +|sin u(t)| +|cos v(t)|

20
, t ∈ [0, 1]\ t1 , 0<

1
2
< 1,

u t+
1(  � u t−

1(  + − 2u t−
1( ( , t1 ≠ 0, 1,

CD1/2 v(t)

t2 +
���������
u(t) − v(t)


 /(32 + t)

⎛⎝ ⎞⎠ �
e− 2t +|sin(2u(t))| + cos2(v(t))




20
, t ∈ [0, 1]\ t1 , 0<

1
2
< 1,

v t+
1(  � v t−

1(  + − 2v t−
1( ( , t1 ≠ 0, 1,

u(0)

f1(0, u(0), v(0))
� 

n

i�1
ciu ti( ,

v(0)

f2(0, u(0), v(0))
� 

m

j�1
dju tj ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

where f1(t, u, v) � ((t +
���������
u(t) + v(t)


)/(40 + t2)), f2(t, u,

v) � ((t2 +
���������
u(t) − v(t)


)/(32 + t)), g1(t, u, v) � ((e− t +

|sin u(t)| + |cos v(t)|)/40), and g2(t, u, v) � ((e− 2t +

|sin(2u(t))| + |cos2(v(t))|)/20).
Note that

g1 t, u1, v1(  − g1 t, u2, v2( 


≤
1
40

u2 − u1


 +
1
40

v2 − v1


,

g2 t, u1, v1(  − g2 t, u2, v2( 


≤
1
20

u2 − u1


 +
1
20

v2 − v1


,

∀t ∈ [0, 1], u1, u2, v1, v2 ∈ R,

Δ1 � L1 Kϕ + nA +
Mg1

Γ(α + 1)
 ≃ 0.3354687< 1,

Δ2 � L2 Kψ + mB +
Mg2

Γ(β + 1)
 ≃ 0.2548789< 1.

(60)
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)us, all the assumptions in)eorem 2 are satisfied, and
our results can be applied to the problem (59).
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