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This paper presents theoretical results about control of the coefficient function in a hyperbolic problem with Dirichlet conditions.
The existence and uniqueness of the optimal solution for optimal control problem are proved and adjoint problem is used to
obtain gradient of the functional. However, a second adjoint problem is given to calculate the gradient on the space𝑊12 (0, 𝑙). After
calculating gradient of the cost functional and proving the Lipschitz continuity of the gradient, necessary condition for optimal
solution is constructed.

1. Introduction

Hyperbolic boundary value problems have appeared as
mathematical modelling of physical phenomena like small
vibration of a string, in the fields of science and engineering.
There has been much attention to studies related to optimal
control problems involving hyperbolic problems [1]. There
have been many studies about optimal control for hyperbolic
systems which are considered [2–4].

Some of these important studies can be summarized as
follows.

Hasanov [5] has considered problem of controlling the
function 𝑤 fl {𝐹(𝑥, 𝑡); 𝑓(𝑡)} for the following problem:

𝑢𝑡𝑡 = (𝑘 (𝑥) 𝑢𝑥)𝑥 + 𝐹 (𝑥, 𝑡) ,
(𝑥, 𝑡) ∈ (0, 𝑙) × (0, 𝑇)

𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,
𝑢𝑡 (𝑥, 0) = 𝑢1 (𝑥) ,

𝑥 ∈ (0, 𝑙)

−𝑘 (0) 𝑢𝑥 (0, 𝑡) = 𝑓 (𝑡) ,
𝑘 (𝑙) 𝑢𝑥 (𝑙, 𝑡) = 0

𝑡 ∈ (0, 𝑇)
(1)

with the conditions

𝑢 (𝑥, 𝑇) = 𝜇 (𝑥) ,
𝑢𝑡 (𝑥, 𝑇) = V (𝑥) , (2)

using the functionals

𝐽1 (𝑤) = ∫
𝑙

0
[𝑢 (𝑥, 𝑇; 𝑤) − 𝜇 (𝑥)]2 𝑑𝑥,

𝐽2 (𝑤) = ∫
𝑙

0
[𝑢𝑡 (𝑥, 𝑇;𝑤) − V (𝑥)]2 𝑑𝑥,

𝐽3 (𝑤) = 𝐽1 (𝑤) + 𝐽2 (𝑤) .

(3)
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Majewski [6] has controlled the function𝑢(𝑥, 𝑦) ∈ 𝐿2(𝑃,R𝑀)
for hyperbolic equation:

𝜕2𝑧
𝜕𝑥𝜕𝑦 (𝑥, 𝑦)

= 𝑓(𝑥, 𝑦, 𝑧 (𝑥, 𝑦) , 𝜕𝑧𝜕𝑥 (𝑥, 𝑦) ,
𝜕𝑧
𝜕𝑦 (𝑥, 𝑦) , 𝑢 (𝑥, 𝑦))

𝑧 (𝑥, 0) = 𝑧 (0, 𝑦) = 0, ∀𝑥, 𝑦 ∈ [0, 1]

(4)

using the functional

𝐽𝑘 (𝑧 (⋅) , 𝑢 (⋅)) = ∫
𝑃
𝐹𝑘 (𝑥, 𝑦, 𝑧 (𝑥, 𝑦) , 𝑢 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦.

𝑘 = 0, 1, 2, . . .
(5)

Yeloğlu and Subaşı [7] have dealt with determination pair𝑤 fl {𝑓(𝑥, 𝑡), ℎ(𝑥)} in the following problem:

𝑝 (𝑥) 𝑢𝑡𝑡 = (𝑘 (𝑥) 𝑢𝑥)𝑥 + 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω𝑇
𝑢 (𝑥, 0) = 𝑔 (𝑥) ,
𝑢𝑡 (𝑥, 0) = ℎ (𝑥) ,

𝑥 ∈ (0, 𝑙)
𝑢 (0, 𝑡) = 0,
𝑢 (𝑙, 𝑡) = 0,

𝑡 ∈ (0, 𝑇]

(6)

for the functional

𝐽𝛼 (𝑤) = ∫
𝑙

0
[𝑢 (𝑥, 𝑇;𝑤) − 𝑦 (𝑥)]2 𝑑𝑥 + 𝛼 ‖𝑤‖2𝑊 . (7)

Kröner [8] has specified the function 𝑢(𝑡) ∈ 𝐿2(0, 𝑇) for
nonlinear hyperbolic equation:

𝑦𝑡𝑡 − 𝐴 (𝑢, 𝑦) = 𝑓
𝑦 (0) = 𝑦0 (𝑢) ,
𝑦𝑡 (0) = 𝑦1 (𝑢)

(8)

using the functional

𝐽 (𝑢, 𝑦1) = ∫𝑇
0
𝐽1 (𝑦1 (𝑡)) 𝑑𝑡 + 𝐽2 (𝑦1 (𝑇)) + 𝛼

2 ‖𝑢‖2𝑈 . (9)

Tagiyev [9] has studied the problem of controlling the
coefficients V = (𝑘(𝑥), 𝑞(𝑥, t)) ∈ 𝐿∞(Ω) × 𝐿∞(𝑄𝑇) for linear
hyperbolic equation:

𝜕2𝑢
𝜕𝑡2 −

𝑛∑
𝑖=1

𝜕
𝜕𝑥𝑖 (𝑘𝑖 (𝑥)

𝜕𝑢
𝜕𝑥𝑖) + 𝑞 (𝑥, 𝑡) 𝑢 = 𝑓 (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ 𝑄𝑇
𝑢|𝑡=0 = 𝜑0 (𝑥) ,

𝜕𝑢
𝜕𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 = 𝜑1 (𝑥) ,
𝑢|𝑆𝑇 = 0

(10)

using the functional

𝐽 (V) = 𝛼0 ∫
𝑄𝑇

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡, V) − 𝑧0 (𝑥, 𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑥𝑑𝑡

+ 𝛼1 ∫
Ω

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑇, V) − 𝑧1 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑥.
(11)

2. Statement of the Problem

In this study, we deal with the process of vibration in finite
homogeneous string, occupying the interval (0, 𝑙). As the
control function, we take the transverse elastic force which is
in the coefficient of the vibration problem. Also, we propose
the usage of a more regular space than the space of square
integrable functions in the cost functional. In general, this
process exposes some difficulties in the stage of acquiring
the gradient. This study offers a second adjoint problem to
overcome this case.

In the domainΩ fl (𝑥, 𝑡) ∈ (0, 𝑙) × (0, 𝑇), we consider the
functional

𝐽𝛼 (𝑞) = ∫
𝑙

0
[𝑢 (𝑥, 𝑇; 𝑞) − 𝑦 (𝑥)]2 𝑑𝑥 + 𝛼 󵄩󵄩󵄩󵄩𝑞 − 𝑟󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙)

(12)

on the set

𝑄 = {𝑞 (𝑥) : 𝑞 (𝑥) ∈ 𝑊12 (0, 𝑙) , 0 < 𝑞1 ≤ 𝑞 (𝑥)
≤ 𝑞2, 󵄩󵄩󵄩󵄩𝑞 (𝑥)󵄩󵄩󵄩󵄩𝑊1

2
(0,𝑙) ≤ 𝑞3}

(13)

subject to the hyperbolic problem

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑞 (𝑥) 𝑢 = 0, (𝑥, 𝑡) ∈ Ω (14)

𝑢 (𝑥, 0) = 𝜑1 (𝑥) ,
𝑢𝑡 (𝑥, 0) = 𝜑2 (𝑥) ,

𝑥 ∈ (0, 𝑙)
(15)

𝑢 (0, 𝑡) = 0,
𝑢 (𝑙, 𝑡) = 0,

𝑡 ∈ (0, 𝑇) .
(16)

Here 𝑦(𝑥) ∈ 𝐿2(0, 𝑙) is the desired target function to which𝑢(𝑥, 𝑇)must be close enough. The function 𝑟(𝑥) ∈ 𝑊12 (0, 𝑙) is
an initial guess for optimal solution. 𝛼 > 0 is regularization
parameter. 𝑞1, 𝑞2, 𝑞3 > 0 are given positive numbers.

The initial status functions are in the following spaces:

𝜑1 (𝑥) ∈ 𝑊12 (0, 𝑙) ,
𝜑2 (𝑥) ∈ 𝐿2 (0, 𝑙) . (17)

The aim of this study is to deal with the problem of

𝐽𝛼∗ = inf
𝑞∈𝑄

𝐽𝛼 (𝑞) = 𝐽𝛼 (𝑞∗) (18)

under conditions (12)-(17).
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Namely, we want to control the transverse elastic force on
the space𝑊12 (0, 𝑙) and the solution 𝑢(𝑥, 𝑇) corresponding to
this control function must be close enough to 𝑦(𝑥) in 𝐿2(0, 𝑙).
In order to get a stable solution, we choose the space𝑊12 (0, 𝑙)
which is more regular than 𝐿2(0, 𝑙).

The inner product and norm in 𝑊12 (0, 𝑙) are defined,
respectively, as

(𝑓, 𝑔)𝑊1
2
(0,𝑙) = ∫

𝑙

0
[𝑓 (𝑥) .𝑔 (𝑥) + 𝑑𝑓 (𝑥)

𝑑𝑥 .𝑑𝑔 (𝑥)𝑑𝑥 ] 𝑑𝑥,
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙) = ∫

𝑙

0
([𝑓 (𝑥)]2 + [𝑑𝑓 (𝑥)𝑑𝑥 ]2)𝑑𝑥.

(19)

The paper is organized as follows: in Section 3, we obtain the
generalized solution for hyperbolic problem. In Section 4, we
prove the existence and uniqueness of the optimal solution.
In Section 5, we obtain the adjoint problem for the optimal
control problem and find the gradient of the functional. The
main contribution of this paper is executed in this section.
Because the controls are chosen in the space𝑊12 (0, 𝑙), getting
the gradient of the functional necessitates finding a second
adjoint problem. In the last section, we demonstrate the
Lipschitz continuity of the gradient and state the necessary
condition for optimal solution.

3. Solvability of the Problem

In this section, we first give the definition of the generalized
solution for hyperbolic problem.

The generalized solution of problem (14)-(15) is the

function 𝑢 ∈ o𝑊1,12 (Ω) satisfying the following integral
equality:

∫
Ω
[−𝑢𝑡𝜂𝑡 + 𝑢𝑥𝜂𝑥 + 𝑞 (𝑥) 𝑢𝜂] 𝑑𝑥 𝑑𝑡

= ∫𝑙
0
𝜑2 (𝑥) 𝜂 (𝑥, 0) 𝑑𝑥

(20)

for ∀𝜂 ∈ o𝑊1,12 (Ω), 𝜂(𝑥, 𝑇) = 0.
It can be seen in [10] that solution in the sense of (20)

exists, is unique, and satisfies the following inequality:

max
0≤𝑡≤𝑇

(‖𝑢 (⋅, 𝑡)‖2𝐿2(0,𝑙) + 󵄩󵄩󵄩󵄩𝑢𝑡 (⋅, 𝑡)󵄩󵄩󵄩󵄩2𝐿2(0,𝑙)
+ 󵄩󵄩󵄩󵄩𝑢𝑥 (⋅, 𝑡)󵄩󵄩󵄩󵄩2𝐿2(0,𝑙)) ≤ 𝑐1 (󵄩󵄩󵄩󵄩𝜑1󵄩󵄩󵄩󵄩2𝑊12 (0,𝑙) + 󵄩󵄩󵄩󵄩𝜑2󵄩󵄩󵄩󵄩2𝐿2(0,𝑙))

(21)

where 𝑐1 = max{3𝑐0, 3𝑐0/𝑞1} and 𝑐0 = max{1, 𝑞2} or
‖𝑢‖2𝑊1,1

2
(Ω)

≤ 𝑐2 (󵄩󵄩󵄩󵄩𝜑1󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙) + 󵄩󵄩󵄩󵄩𝜑2󵄩󵄩󵄩󵄩2𝐿2(0,𝑙)) .

(𝑐2 = 𝑐1𝑇)
(22)

Since 𝜑1 and 𝜑2 are given functions, it can be written as
follows:

‖𝑢‖2𝑊1,1
2
(Ω)

≤ 𝑐3. (23)

Now, we give an increment 𝛿𝑞(𝑥) ∈ 𝑊12 (0, 𝑙) to the control
function 𝑞(𝑥) such as 𝑞+𝛿𝑞 ∈ 𝑄.Then the difference function𝛿𝑢 = 𝛿𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡; 𝑞+𝛿𝑞)−𝑢(𝑥, 𝑡; 𝑞) is the solution of the
following difference initial-boundary problem:

𝛿𝑢𝑡𝑡 − 𝛿𝑢𝑥𝑥 + [𝑞 (𝑥) + 𝛿𝑞 (𝑥)] 𝛿𝑢 + 𝛿𝑞 (𝑥) 𝑢 = 0 (24)

𝛿𝑢 (𝑥, 0) = 0,
𝛿𝑢𝑡 (𝑥, 0) = 0 (25)

𝛿𝑢 (0, 𝑡) = 0,
𝛿𝑢 (𝑙, 𝑡) = 0. (26)

By considering (23), we obtain that the solution of above
difference initial-boundary problem holds the following
inequality:

max
0≤𝑡≤𝑇

(‖𝛿𝑢 (., 𝑡)‖2𝐿2(0,𝑙)) ≤ 𝑐4 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊12 (0,𝑙) . (27)

Here 𝑐4 = (𝑡32𝑙/3)𝑐3 is independent from 𝛿𝑞.
4. Existence and Uniqueness of the
Optimal Solution

To demonstrate the existence and the uniqueness of optimal
solution for problem (12)-(17), it is enough to show that
conditions of the following theorem given by Goebel [11]
hold.

Theorem 1. Let𝐻 be a uniformly convexBanach space and the
set 𝑄 be a closed, bounded, and convex subset of 𝐻. If 𝛼 > 0
and 𝛽 ≥ 1 are given numbers and the functional 𝐽(𝑞) is lower
semicontinuous and bounded from below on the set 𝑄, then
there is a dense set 𝐺 of𝐻 that the functional

𝐽𝛼 (𝑞) = 𝐽 (𝑞) + 𝛼 󵄩󵄩󵄩󵄩𝑞 − 𝑟󵄩󵄩󵄩󵄩𝛽𝐻 (28)

takes its minimum on the set 𝑄 for ∀𝑟 ∈ 𝐺. If 𝛽 > 1 then
minimum is unique.

Before showing that these conditions have been satisfied,
we prove that the functional

𝐽 (𝑞) = ∫𝑙
0
[𝑢 (𝑥, 𝑇; 𝑞) − 𝑦 (𝑥)]2 𝑑𝑥 (29)

is continuous. For this, we write the following increment of
the functional:

𝛿𝐽 (𝑞) = 𝐽 (𝑞 + 𝛿𝑞) − 𝐽 (𝑞)
= ∫𝑙
0
2 [𝑢 (𝑥, 𝑇) − 𝑦 (𝑥)] [𝛿𝑢 (𝑥, 𝑇)] 𝑑𝑥

+ ∫𝑙
0
[𝛿𝑢 (𝑥, 𝑇)]2 𝑑𝑥.

(30)
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Since 𝑦(𝑥) ∈ 𝐿2(0, 𝑙), if we consider inequalities (22) and
(27), we conclude that this increment satisfies the following
continuity inequality on the set 𝑄:

󵄨󵄨󵄨󵄨𝛿𝐽 (𝑞)󵄨󵄨󵄨󵄨 ≤ 𝑐5 (󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩𝑊1
2
(0,𝑙) + 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙)) . (31)

Here 𝑐5 is independent of 𝛿𝑞.
Thanks to this inequality, we can say that this functional

is also lower semicontinuous and bounded frombelow on the
set 𝑄.

On the other hand, the set𝑊12 (0, 𝑙) is a uniformly convex
Banach space [12], the set𝑄 is a closed, bounded, and convex
subset of𝑊12 (0, 𝑙), and 𝛽 = 2.

Therefore the conditions of above theorem hold and
optimal solution to the problem (18) is unique.

5. Adjoint Problem and Gradient of
the Functional

In this section, we write the Lagrange functional used
for finding adjoint problem, before we show the Frechet
differentiability of the functional 𝐽𝛼(𝑞) on the set𝑄. Lagrange
functional to the problem is

𝐿 (𝑢, 𝑞, 𝜂) = ∫𝑙
0
[𝑢 (𝑥, 𝑇; 𝑞) − 𝑦 (𝑥)]2 𝑑𝑥

+ 𝛼 󵄩󵄩󵄩󵄩𝑞 − 𝑟󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙)

+ ∫𝑇
0
∫𝑙
0
[𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑞 (𝑥) 𝑢] 𝜂 𝑑𝑥 𝑑𝑡.

(32)

Thefirst variation of this functional according to the function𝑢 is obtained such as

𝛿𝐿 = ∫𝑙
0
2 [𝑢 (𝑥, 𝑇) − 𝑦 (𝑥) − 𝜂𝑡 (𝑥, 𝑇)] 𝛿𝑢 (𝑥, 𝑇) 𝑑𝑥

+ ∫𝑙
0
∫𝑇
0
(𝜂𝑡𝑡 − 𝜂𝑥𝑥 + 𝑞 (𝑥) 𝜂) 𝛿𝑢 𝑑𝑡 𝑑𝑥 = 0.

(33)

By means of stationary condition 𝛿𝐿 = 0, the following
adjoint boundary value problem is found:

𝜂𝑡𝑡 − 𝜂𝑥𝑥 + 𝑞 (𝑥) 𝜂 = 0 (34)

𝜂 (𝑥, 𝑇) = 0,
𝜂𝑡 (𝑥, 𝑇) = 2 [𝑢 (𝑥, 𝑇) − 𝑦 (𝑥)] (35)

𝜂 (0, 𝑡) = 0,
𝜂 (𝑙, 𝑡) = 0. (36)

For ∀𝛾 ∈ o𝑊1,12 (Ω), the function 𝜂 ∈ 𝐶1([0, 𝑇], 𝐿2(0, 𝑙)) ∩𝐶0([0, 𝑇],𝑊12 (0, 𝑙)) which satisfies the following equality

∫𝑇
0
∫𝑙
0
[−𝜂𝑡𝛾𝑡 + 𝜂𝑥𝛾𝑥 + 𝑞 (𝑥) 𝜂𝛾] 𝑑𝑥 𝑑𝑡

= ∫𝑙
0
𝜂𝑡 (𝑥, 0) 𝛾 (𝑥, 0) 𝑑𝑥

− ∫𝑙
0
2 [𝑢 (𝑥, 𝑇) − 𝑦 (𝑥)] 𝛾 (𝑥, 𝑇) 𝑑𝑥

(37)

is the solution of adjoint boundary value problem (34)-(36).
This solution satisfies the following inequality:

󵄩󵄩󵄩󵄩𝜂󵄩󵄩󵄩󵄩𝐿2(0,𝑙) ≤ 𝑐6 󵄩󵄩󵄩󵄩𝑢 (𝑥, 𝑇) − 𝑦 (𝑥)󵄩󵄩󵄩󵄩𝐿2(0,𝑙) , ∀𝑡 ∈ [0, 𝑇] . (38)

Now, we can pass the calculation of the gradient. In order
to do this, we must evaluate the increment of the functional𝐽𝛼(𝑞). The increment can be written such as

𝛿𝐽𝛼 (𝑞) = 𝐽𝛼 (𝑞 + 𝛿𝑞) − 𝐽𝛼 (𝑞)
= ∫𝑙
0
2 [𝑢 (𝑥, 𝑇) − 𝑦 (𝑥)] (𝛿𝑢) 𝑑𝑥

+ ∫𝑙
0
(𝛿𝑢)2 𝑑𝑥 + 2𝛼 ⟨𝑞 − 𝑟, 𝛿𝑞⟩𝑊1

2
(0,𝑙) .

(39)

The difference problem (24)-(26) and the adjoint problem
(34)-(36) give together the equality of

2∫𝑙
0
[𝑢 (𝑥, 𝑇) − 𝑦 (𝑥)] (𝛿𝑢) 𝑑𝑥

= ∫𝑇
0
∫𝑙
0
[𝛿𝑞𝛿𝑢𝜂 + 𝛿𝑞𝑢𝜂] 𝑑𝑥 𝑑𝑡.

(40)

Inserting (40) in (39), we have

𝛿𝐽𝛼 (𝑞) = ∫
𝑇

0
∫𝑙
0
𝑢𝜂𝛿𝑞 𝑑𝑥𝑑𝑡 + ∫𝑇

0
∫𝑙
0
𝜂𝛿𝑢𝛿𝑞 𝑑𝑥𝑑𝑡

+ ∫𝑙
0
(𝛿𝑢 (𝑥, 𝑇))2 𝑑𝑥 + 2𝛼 ⟨𝑞 − 𝑟, 𝛿𝑞⟩𝑊1

2
(0,𝑙) .

(41)

By (27) and (38), the second and third integrals of the above
equality give the following inequality:

∫𝑇
0
∫𝑙
0
𝜂𝛿𝑢𝛿𝑞 𝑑𝑥 𝑑𝑡 + ∫𝑙

0
(𝛿𝑢 (𝑥, 𝑇))2 𝑑𝑥

≤ 𝑐7 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙) .

(42)

The statement (41) can be rewritten as

𝛿𝐽𝛼 (𝑞) = ⟨𝑢𝜂, 𝛿𝑞⟩𝐿2(Ω) + 2𝛼 ⟨𝑞 − 𝑟, 𝛿𝑞⟩𝑊12 (0,𝑙)
+ 𝑜 (󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙))

(43)
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or

𝛿𝐽𝛼 (𝑞) = ⟨∫
𝑇

0
𝑢𝜂 𝑑𝑡, 𝛿𝑞⟩

𝐿2(0,𝑙)

+ 2𝛼 ⟨𝑞 − 𝑟, 𝛿𝑞⟩𝑊1
2
(0,𝑙) + 𝑜 (󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙)) .

(44)

In order to pass the inner product in 𝑊12 (0, 𝑙), we rearrange
(44) such as

𝛿𝐽𝛼 (𝑞) = ⟨𝜉 + 2𝛼 (𝑞 − 𝑟) , 𝛿𝑞⟩𝑊1
2
(0,𝑙)

+ 𝑜 (󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙)) .

(45)

Here function 𝜉(𝑥) is the solution of the second adjoint
problem:

−𝜉󸀠󸀠 + 𝜉 = ∫𝑇
0
𝑢𝜂𝑑𝑡

𝜉󸀠 (0) = 0,
𝜉󸀠 (𝑙) = 0.

(46)

Therefore, we have the following gradient:

𝐽󸀠𝛼 (𝑞) = 𝜉 + 2𝛼 (𝑞 − 𝑟) . (47)

6. Lipschitz Continuity of the Gradient

In this section, we introduce a theorem about Lipschitz
continuity of the gradient. By this means, we can express the
necessary condition for optimal solution.

Theorem 2. Gradient 𝐽󸀠𝛼(𝑞) satisfies the following Lipschitz
inequality:

󵄩󵄩󵄩󵄩󵄩𝐽󸀠𝛼 (𝑞 + 𝛿𝑞) − 𝐽󸀠𝛼 (𝑞)󵄩󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙)

≤ 𝑐8 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙) . (48)

Here 𝑐8 is independent from 𝛿𝑞.
Hence, it has been proven that the gradient 𝐽󸀠𝛼(𝑞) is

continuous on the set 𝑄 and it can be seen that it holds the
Lipschitz condition with constant 𝑐8 > 0.
Proof. Increment of the functional 𝐽󸀠𝛼(𝑞) by giving the incre-
ment of 𝛿𝑞 to the control 𝑞 ∈ 𝑄 is obtained:

𝐽󸀠𝛼 (𝑞 + 𝛿𝑞) − 𝐽󸀠𝛼 (𝑞) = 𝜉𝛿 + 2𝛼 (𝑞 + 𝛿𝑞 − 𝑟) − 𝜉
+ 2𝛼 (𝑞 − 𝑟) = 𝛿𝜉 + 2𝛼𝛿𝑞 (49)

where the function 𝛿𝜉(𝑥) is the solution of the increment
problem:

𝛿𝜉󸀠󸀠 (𝑥) − 𝛿𝜉 (𝑥) = ∫𝑇
0
(𝑢𝛿𝛿𝜂 + 𝛿𝑢𝜂) 𝑑𝑡. (50)

Taking the norm of (49) in the space𝑊12 (0, 𝑙), we acquire the
following inequality belonging to the functional 𝛿𝐽󸀠𝛼(𝑞):

󵄩󵄩󵄩󵄩󵄩𝛿𝐽󸀠𝛼 (𝑞)󵄩󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙)

≤ 2 󵄩󵄩󵄩󵄩𝛿𝜉󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙) + 8𝛼2 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙) . (51)

There is a solution of problem (50) in 𝑊12 (0, 𝑙) and this
solution satisfies the following inequality:

󵄩󵄩󵄩󵄩𝛿𝜉 (𝑥)󵄩󵄩󵄩󵄩𝑊1
2
(0,𝑙) ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑇

0
(𝑢𝛿𝛿𝜂 + 𝛿𝑢𝜂) 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(0,𝑙) . (52)

The function
𝛿𝜂 (𝑥, 𝑡) = 𝜂𝛿 (𝑥, 𝑡) − 𝜂 (𝑥, 𝑡)

= 𝜂 (𝑥, 𝑡; 𝑞 + 𝛿𝑞) − 𝜂 (𝑥, 𝑡; 𝑞) (53)

in the right hand side of inequality (52) is the solution of the
following problem:

𝜕2𝛿𝜂
𝜕𝑡2 − 𝜕2𝛿𝜂

𝜕𝑥2 + (𝑞 (𝑥) + 𝛿𝑞 (𝑥)) 𝛿𝜂 + 𝛿𝑞 (𝑥) 𝜂 = 0,
(𝑥, 𝑡) ∈ Ω

𝛿𝜂 (𝑥, 𝑇) = 0,
𝛿𝜂𝑡 (𝑥, 𝑇) = 2𝛿𝑢 (𝑥, 𝑇) ,
𝛿𝜂 (0, 𝑡) = 𝛿𝜂 (𝑙, 𝑡) = 0

(54)

and this function holds the following inequality:

max
0≤𝑡≤𝑇

(󵄩󵄩󵄩󵄩𝛿𝜂 (., 𝑡)󵄩󵄩󵄩󵄩2𝐿2(0,𝑙)) ≤ 𝑐9 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊12 (0,𝑙) . (55)

Here 𝑐9 is independent of 𝛿𝑞.
So, the function 𝑢𝛿 that takes place in the right hand side

of (52) holds the same inequality given as follows:
󵄩󵄩󵄩󵄩𝑢𝛿󵄩󵄩󵄩󵄩2𝐿2(Ω) ≤ 𝑐3. (56)

Hence inequality (52) has the following property:
󵄩󵄩󵄩󵄩𝛿𝜉 (𝑥)󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙) ≤ 2 󵄩󵄩󵄩󵄩𝑢𝛿󵄩󵄩󵄩󵄩2𝐿2(Ω) max

0≤𝑡≤𝑇
(󵄩󵄩󵄩󵄩𝛿𝜂 (., 𝑡)󵄩󵄩󵄩󵄩2𝐿2(0,𝑙))

+ 2 󵄩󵄩󵄩󵄩𝜂󵄩󵄩󵄩󵄩2𝐿2(Ω) max
0≤𝑡≤𝑇

(‖𝛿𝑢 (., 𝑡)‖2𝐿2(0,𝑙)) .
(57)

If inequalities (27), (38), (55), and (56) about functions 𝑢𝛿,𝛿𝜂(., 𝑡), 𝜂, and 𝛿𝑢(., 𝑡) are written in (57), then the following
assessment is obtained:󵄩󵄩󵄩󵄩𝛿𝜉 (𝑥)󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙) ≤ 𝑐10 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙) . (58)

Here 𝑐10 is independent of 𝛿𝑞.
Considering inequality (58), the following is written:
󵄩󵄩󵄩󵄩󵄩𝛿𝐽󸀠𝛼 (𝑞)󵄩󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙)

≤ 2 󵄩󵄩󵄩󵄩𝛿𝜉 (𝑥)󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙)

+ 8𝛼2 󵄩󵄩󵄩󵄩𝛿𝑞 (𝑥)󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙)

≤ 2𝑐10 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙) + 8𝛼2 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1

2
(0,𝑙)

≤ 𝑐11 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙) .

(59)

So the following inequality for the gradient 𝐽󸀠𝛼(𝑞) is obtained:󵄩󵄩󵄩󵄩󵄩𝐽󸀠𝛼 (𝑞 + 𝛿𝑞) − 𝐽󸀠𝛼 (𝑞)󵄩󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙)

≤ 𝑐11 󵄩󵄩󵄩󵄩𝛿𝑞󵄩󵄩󵄩󵄩2𝑊1
2
(0,𝑙) . (60)

Once we take as 𝑐8 = 𝑐11, then the proof is obtained.
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7. The Necessary Condition for
Optimal Solution

After showing Lipschitz continuity of the gradient, it can be
said that the gradient 𝐽󸀠𝛼(𝑞) is continuous on the set 𝑄 and
it holds the Lipschitz constant 𝑐8 > 0. The fact that the
functional 𝐽𝛼(𝑞) is continuously differentiable on the set 𝑄
and the set 𝑄 is convex, in that case the following inequality
is valid according to theorem in [13]:

⟨𝐽󸀠𝛼 (𝑞∗) , 𝑞 − 𝑞∗⟩𝑊1
2
(0,𝑙)

≥ 0, ∀𝑞 ∈ 𝑄. (61)

Therefore, the following inequality is written for optimal
control problem:

⟨𝜉 + 2𝛼 (𝑞∗ − 𝑟) , 𝑞 − 𝑞∗⟩𝑊1
2
(0,𝑙) ≥ 0, ∀𝑞 ∈ 𝑄. (62)
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