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We consider the nonlinear eigenvalue problem [𝐷(𝑢)𝑢󸀠]󸀠 + 𝜆𝑓(𝑢) = 0, 𝑢(𝑡) > 0, 𝑡 ∈ 𝐼 fl (0, 1), 𝑢(0) = 𝑢(1) = 0, where 𝐷(𝑢) = 𝑢𝑘,𝑓(𝑢) = 𝑢2𝑛−𝑘−1 + sin 𝑢, and 𝜆 > 0 is a bifurcation parameter. Here, 𝑛 ∈ N and 𝑘 (0 ≤ 𝑘 < 2𝑛 − 1) are constants. This equation is
related to the mathematical model of animal dispersal and invasion, and 𝜆 is parameterized by the maximum norm 𝛼 = ‖𝑢𝜆‖∞ of
the solution 𝑢𝜆 associated with 𝜆 and is written as 𝜆 = 𝜆(𝛼). Since𝑓(𝑢) contains both power nonlinear term 𝑢2𝑛−𝑘−1 and oscillatory
term sin 𝑢, it seems interesting to investigate how the shape of 𝜆(𝛼) is affected by 𝑓(𝑢). The purpose of this paper is to characterize
the total shape of 𝜆(𝛼) by 𝑛 and 𝑘. Precisely, we establish three types of shape of 𝜆(𝛼), which seem to be new.

1. Introduction

This paper is concerned with the following nonlinear eigen-
value problems:

[𝐷 (𝑢 (𝑡)) 𝑢 (𝑡)󸀠]󸀠 + 𝜆𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ 𝐼 fl (0, 1) , (1)

𝑢 (𝑡) > 0, 𝑡 ∈ 𝐼, (2)

𝑢 (0) = 𝑢 (1) = 0, (3)

where 𝐷(𝑢) = 𝑢𝑘, 𝑓(𝑢) = 𝑢2𝑛−𝑘−1 + sin 𝑢, and 𝜆 >0 is a bifurcation parameter. Here, 𝑛 ∈ N and 𝑘 (0 ≤𝑘 < 2𝑛 − 1) are constants. Bifurcation problems have a
long history and there are so many results concerning the
asymptotic properties of bifurcation diagrams.We refer to [1–
8] and the references therein.Moreover, bifurcation problems
with nonlinear diffusion have been proposed in the field of
population biology, and several model equations of logistic
type have been considered. We refer to [9] and the references
therein. In particular, the case 𝐷(𝑢) = 𝑢𝑘 (𝑘 > 0) has
been derived from a model equation of animal dispersal and
invasion in [10, 11]. In this situation, 𝜆 is a parameter which
represents the habitat size and diffusion rate. On the other
hand, there are several papers which treat the asymptotic

behavior of oscillatory bifurcation curves. We refer to [7, 12–
19] and the references therein. Our equation (1) contains both
nonlinear diffusion term and oscillatory nonlinear terms.The
purpose of this paper is to find the difference between the
structures of bifurcation curves of the equations with only
oscillatory term and thosewith both nonlinear diffusion term
and the oscillatory term in (1). To clarify our intention, let𝑘 = 2 and 𝑛 = 2. Then (1) is given as

(𝑢2𝑢󸀠)󸀠 + 𝜆 (𝑢 + sin 𝑢) = 0. (4)

The corresponding equation without nonlinear diffusion is
the case 𝑘 = 0 and 𝑛 = 1, namely,

𝑢󸀠󸀠 + 𝜆 (𝑢 + sin 𝑢) = 0. (5)
It should be mentioned that, by using a generalized time-
map argument in [9], for any given 𝛼 > 0, there exists a
unique classical solution pair (𝜆, 𝑢𝛼) of (1)–(3) satisfying 𝛼 =‖𝑢𝛼‖∞. Furthermore, 𝜆 is parameterized by 𝛼 as 𝜆 = 𝜆(𝛼)
and is continuous in 𝛼 > 0. For (5), the following asymptotic
formula for 𝜆(𝛼) as 𝛼 󳨀→ ∞ has been obtained.

Theorem 1 (see [12]). Consider (5) with (2)–(3).Then as 𝛼 󳨀→∞,

𝜆 (𝛼) = 𝜋2 − 4𝜋𝛼√ 𝜋2𝛼 sin (𝛼 − 𝜋4 ) + 𝑜 (𝛼−3/2) . (6)
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Figure 1: The graph of 𝜆(𝛼) for (5) (𝑘 = 0, 𝑛 = 1).

For (5) with (2)–(3), the asymptotic behavior of 𝜆(𝛼) as𝛼 󳨀→ 0 is as follows. For a solution pair (𝜆(𝛼), 𝑢𝛼) satisfying‖𝑢𝛼‖∞ = 𝛼, put V𝛼(𝑡) fl 𝑢𝛼(𝑡)/𝛼 and let 𝛼 󳨀→ 0. Then we
easily obtain the function V0 ∈ 𝐶2(𝐼) which satisfies −V󸀠󸀠0 (𝑡) =2𝜆(0)V0(𝑡), V0(𝑡) > 0 for 𝑡 ∈ 𝐼 with V0(0) = V0(1) = 0.
This implies 𝜆(0) = 𝜋2/2. By this fact and Theorem 1, the
bifurcation curve 𝜆(𝛼) starts from 𝜋2/2 and tends to 𝜋2 with
oscillation and intersects the line𝜆 = 𝜋2 infinitelymany times
for 𝛼 ≫ 1.

Since (4) includes both the nonlinear diffusion function
and oscillatory term, it seems interesting how the nonlinear
diffusion functions give effect to the structures of bifurcation
curves.

Now we state our main results.

Theorem 2. Consider (1) with (2)–(3). Then as 𝛼 󳨀→ ∞,

𝜆 (𝛼) = 4𝑛𝛼2𝑘+2−2𝑛 {𝐴2𝑘,𝑛
− 2𝐴𝑘,𝑛√ 𝜋2𝑛𝛼𝑘+(1/2)−2𝑛 sin (𝛼 − 𝜋4 )
+ 𝑜 (𝛼𝑘+(1/2)−2𝑛)} ,

(7)

where

𝐴𝑘,𝑛 = ∫1
0

𝑠𝑘√1 − 𝑠2𝑛 𝑑𝑠. (8)

By Theorem 2, we obtain the global behavior of 𝜆(𝛼) as𝛼 󳨀→ ∞ for 𝑛 = 𝑘 = 2 and see that the asymptotic behavior
of 𝜆(𝛼) is completely different from that for 𝑘 = 0, 𝑛 = 1 by
comparing Figures 1 and 2.

Nowwe establish the asymptotic behavior of𝜆(𝛼) as𝛼 󳨀→0 to obtain a complete understanding of the structure of 𝜆(𝛼).
Let

𝐵0 fl ∫1
0

𝑠𝑘
√1 − 𝑠𝑘+2𝑑𝑠, (9)

𝐵1 fl 𝑘 + 212 (𝑘 + 4) ∫1
0

𝑠𝑘 (1 − 𝑠𝑘+4)
(1 − 𝑠𝑘+2)3/2 𝑑𝑠, (10)

o





()

 = 8A
2
2,2

2

Figure 2:The graph of 𝜆(𝛼) for 𝑘 = 𝑛 = 2.

𝐵2 = 𝑘 + 22𝑛 ∫1
0

𝑠𝑘 (1 − 𝑠2𝑛)
(1 − 𝑠𝑘+2)3/2 𝑑𝑠, (11)

𝐵3 = 𝑛𝑘 + 2 ∫1
0

𝑠𝑘 (1 − 𝑠𝑘+2)
(1 − 𝑠2𝑛)3/2 𝑑𝑠. (12)

Theorem 3. Consider (1) with (2)–(3). Then the following
asymptotic formulas hold as 𝛼 󳨀→ 0.

(i) Assume that 𝑘 + 4 < 2𝑛. Then

𝜆 (𝛼) = 2 (𝑘 + 2) 𝛼𝑘 {𝐵20 + 2𝐵0𝐵1𝛼2 + 𝑜 (𝛼2)} . (13)

(ii) Assume that 2𝑛 = 𝑘 + 4. Then

𝜆 (𝛼) = 2 (𝑘 + 2) 𝛼𝑘 {𝐵20 − 10𝐵0𝐵1𝛼2 + 𝑜 (𝛼2)} . (14)

(iii) Assume that 𝑘 + 2 < 2𝑛 < 𝑘 + 4. Then

𝜆 (𝛼)
= 2 (𝑘 + 2) 𝛼𝑘 {𝐵20 − 𝐵0𝐵2𝛼2𝑛−𝑘−2 + 𝑜 (𝛼2𝑛−𝑘−2)} . (15)

(iv) Assume that 2𝑛 = 𝑘 + 2. Then

𝜆 (𝛼) = (𝑘 + 2) 𝛼𝑘 {𝐵20 + 𝐵0𝐵1𝛼2 + 𝑜 (𝛼2)} . (16)

(v) Assume that 𝑘 + 1 < 2𝑛 < 𝑘 + 2. Then

𝜆 (𝛼) = 4𝑛𝛼2(𝑘+1−𝑛) {𝐴2𝑘,𝑛 − 2𝐴𝑘,𝑛𝐵3𝛼𝑘+2−2𝑛
+ 𝑜 (𝛼𝑘+2−2𝑛)} . (17)

The rough images of the graphs of 𝜆(𝛼) for 𝑘 = 1, 𝑛 = 2,𝑛 = 𝑘 = 2, and 𝑘 = 1, 𝑛 = 3 are given in Figures 3, 4, and 5.
The proofs depend on the generalized time-map argu-

ment in [9] and stationary phase method (cf. Lemma 4).
It should be mentioned that if we apply Lemma 4 to our
situation, careful consideration about the regularity of the
functions is necessary.
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Figure 3: The graph of 𝜆(𝛼) for 𝑘 = 1, 𝑛 = 2.
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Figure 4: The graph of 𝜆(𝛼) for 𝑘 = 𝑛 = 2.
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Figure 5: The graph of 𝜆(𝛼) for 𝑘 = 1, 𝑛 = 3.

2. Proof of Theorem 2

We put

Λ fl {𝛼 > 0 | 𝑓 (𝛼) > 0, ∫𝛼
𝑢

𝑓 (𝑡)𝐷 (𝑡) 𝑑𝑡 > 0 for all 𝑢
∈ [0, 𝛼)} .

(18)

It was shown in [9, (2.7)] that if 𝛼 ∈ Λ, then 𝜆(𝛼) is well
defined. In our situation, it is clear that, for 𝑡 > 0, 𝐷(𝑡) > 0,𝑓(𝑡) > 0, so 𝑓(𝑡)𝐷(𝑡) > 0. Therefore, Λ ≡ R+. By this
and the generalized time-map obtained in [9] (cf. (24)) and
the time-map argument in [8, Theorem 2.1], we see that, for
any given 𝛼 > 0, there exists a unique classical solution pair(𝜆, 𝑢𝛼) of (1)–(3) satisfying 𝛼 = ‖𝑢𝛼‖∞. Furthermore, 𝜆 is
parameterized by 𝛼 as 𝜆 = 𝜆(𝛼) and is continuous in 𝛼 > 0.
For 𝑢 ≥ 0, we put

𝐺 (𝑢) fl ∫𝑢
0

𝑓 (𝑦)𝐷 (𝑦) 𝑑𝑦 = 12𝑛𝑢2𝑛 + 𝐺1 (𝑢)
fl

12𝑛𝑢2𝑛 + ∫𝑢
0

𝑦𝑘 sin 𝑦𝑑𝑦.
(19)

It is known from [9] that if (𝑢𝛼, 𝜆(𝛼)) ∈ 𝐶2(𝐼) × R+ satisfies
(1)–(3), then

𝑢𝛼 (𝑡) = 𝑢𝛼 (1 − 𝑡) , 0 ≤ 𝑡 ≤ 1, (20)

𝑢𝛼 (12) = max
0≤𝑡≤1

𝑢𝛼 (𝑡) = 𝛼, (21)

𝑢󸀠𝛼 (𝑡) > 0, 0 < 𝑡 < 12 . (22)

In what follows, we denote by 𝐶 various positive constants
independent of 𝛼 ≫ 1. For 0 ≤ 𝑠 ≤ 1 and 𝛼 ≫ 1, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐺1 (𝛼) − 𝐺1 (𝛼𝑠)𝛼2𝑛 (1 − 𝑠2𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫𝛼
𝛼𝑠

𝑤𝑘 sin𝑤𝑑𝑤
𝛼2𝑛 (1 − 𝑠2𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝛼𝑘+1 (1 − 𝑠𝑘+1)

𝛼2𝑛 (1 − 𝑠2𝑛) ≤ 𝐶𝛼𝑘+1−2𝑛
≪ 1.

(23)

By this, (19), and Taylor expansion, we have from [9, (2.5)]
that

√𝜆 (𝛼)2 = ∫𝛼
0

𝐷(𝑢)√𝐺 (𝛼) − 𝐺 (𝑢)𝑑𝑢
= ∫𝛼
0

𝑢𝑘
√(1/2𝑛) (𝛼2𝑛 − 𝑢2𝑛) + 𝐺1 (𝛼) − 𝐺1 (𝑢)𝑑𝑢

= √2𝑛𝛼𝑘+1−𝑛 ∫1
0

𝑠𝑘
√1 − 𝑠2𝑛 + (2𝑛/𝛼2𝑛) (𝐺1 (𝛼) − 𝐺1 (𝛼𝑠))𝑑𝑠

= √2𝑛𝛼𝑘+1−𝑛 ∫1
0

𝑠𝑘√1 − 𝑠2𝑛 {1
− 𝑛𝛼2𝑛 𝐺1 (𝛼) − 𝐺1 (𝛼𝑠)(1 − 𝑠2𝑛) (1 + 𝑜 (1))} 𝑑𝑠
= √2𝑛𝛼𝑘+1−𝑛 {∫1

0

𝑠𝑘√1 − 𝑠2𝑛 𝑑𝑠 − 𝑛𝛼2𝑛 𝐿 (𝛼) (1 + 𝑜 (1))} ,

(24)

where

𝐿 (𝛼) fl ∫1
0

𝑠𝑘
(1 − 𝑠2𝑛)3/2 (𝐺1 (𝛼) − 𝐺1 (𝛼𝑠)) 𝑑𝑠. (25)

We see from (24) and (25) that if we obtain the precise
asymptotic formula for 𝐿(𝛼) as 𝛼 󳨀→ ∞, then we obtain
Theorem 2. To do this, we apply the stationary phase method
to our situation. By combining [13, Lemma 2] and [7, Lemmas
2.24], we have the following equality.

Lemma 4 (see [13, Lemma 2 and 10, Lemma 2.24]). Assume
that the function 𝑓(𝑟) ∈ 𝐶2[0, 1], 𝑤(𝑟) ∈ 𝐶3[0, 1], and

𝑤󸀠 (𝑟) < 0, 𝑟 ∈ (0, 1] ,
𝑤󸀠 (0) = 0,
𝑤󸀠󸀠 (0) < 0.

(26)
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Then as 𝜇 󳨀→ ∞
∫1
0

𝑓 (𝑟) 𝑒𝑖𝜇𝑤(𝑟)𝑑𝑟 = 12𝑒𝑖(𝜇𝑤(0)−(𝜋/4))√ 2𝜋𝜇 󵄨󵄨󵄨󵄨𝑤󸀠󸀠 (0)󵄨󵄨󵄨󵄨𝑓 (0)

+ 𝑂( 1𝜇) .
(27)

In particular, by taking the imaginary part of (27), as 𝜇 󳨀→ ∞,

∫1
0

𝑓 (𝑟) sin (𝜇𝑤 (𝑟)) 𝑑𝑟

= 12√ 2𝜋𝜇 󵄨󵄨󵄨󵄨𝑤󸀠󸀠 (0)󵄨󵄨󵄨󵄨𝑓 (0) sin (𝑤 (0) 𝜇 − 𝜋4 )

+ 𝑂(1𝜇) .

(28)

We note that, to obtain (27), we have to be careful about
the regularity of 𝑓 and 𝑤.
Lemma 5. As 𝛼 󳨀→ ∞,

𝐿 (𝛼) = √𝜋2 1𝑛3/2𝛼𝑘+(1/2) sin (𝛼 − 𝜋4 ) + 𝑂 (𝛼𝑘) . (29)

Proof. We put 𝑠 = sin 𝜃 and

𝑌 (𝜃) fl 𝑌1 (𝜃) (𝐺1 (𝛼) − 𝐺1 (𝛼 sin 𝜃))
fl

sin𝑘𝜃
(1 + sin2𝜃 + ⋅ ⋅ ⋅ + sin2𝑛−2𝜃)3/2 (𝐺1 (𝛼)

− 𝐺1 (𝛼 sin 𝜃)) .
(30)

By integration by parts, (25) and (30), we have

𝐿 (𝛼) = ∫1
0

𝑠𝑘 (𝐺1 (𝛼) − 𝐺1 (𝛼𝑠))
(1 − 𝑠2)3/2 (1 + 𝑠2 + ⋅ ⋅ ⋅ + 𝑠2𝑛−2)3/2 𝑑𝑠

= ∫𝜋/2
0

1
cos2𝜃

sin𝑘𝜃 (𝐺1 (𝛼) − 𝐺1 (𝛼 sin 𝜃))
(1 + sin2𝜃 + ⋅ ⋅ ⋅ + sin2𝑛−2𝜃)3/2 𝑑𝜃

fl 𝐿1 (𝛼) − 𝐿2 (𝛼)
= [tan 𝜃𝑌 (𝜃)]𝜋/20

− ∫𝜋/2
0

tan 𝜃 {𝑌1 (𝜃) (𝐺1 (𝛼) − 𝐺1 (𝛼 sin 𝜃))}󸀠 𝑑𝜃.

(31)

By l’Hôpital’s rule, we obtain

lim
𝜃󳨀→𝜋/2

𝐺1 (𝛼) − 𝐺1 (𝛼 sin 𝜃)
cos 𝜃

= lim
𝜃󳨀→𝜋/2

𝛼 cos 𝜃 (𝛼 sin 𝜃)𝑘 sin (𝛼 sin 𝜃)
sin 𝜃 = 0.

(32)

This implies that 𝐿1(𝛼) = 0. Next,
𝐿2 (𝛼) = ∫𝜋/2

0
tan 𝜃 {𝑌󸀠1 (𝜃) (𝐺1 (𝛼) − 𝐺1 (𝛼 sin 𝜃)}

− 𝑌1 (𝜃) 𝛼 cos 𝜃 (𝛼 sin 𝜃)𝑘 sin (𝛼 sin 𝜃)} 𝑑𝜃.
fl 𝐿21 (𝛼) − 𝐿22 (𝛼) .

(33)

We first calculate 𝐿21(𝛼). Assume that 𝑘 > 0. Then

𝑌󸀠1 (𝜃) = sin𝑘−1𝜃 cos 𝜃
(1 + sin2𝜃 + ⋅ ⋅ ⋅ + sin2𝑛−2𝜃)3/2 × [𝑘

− 3 (sin2𝜃 + 2sin4𝜃 + ⋅ ⋅ ⋅ + (𝑛 − 1) sin2𝑛−2𝜃)
1 + sin2𝜃 + ⋅ ⋅ ⋅ + sin2𝑛−2𝜃 ] .

(34)

This implies that, for 𝛼 ≫ 1,
󵄨󵄨󵄨󵄨󵄨tan 𝜃𝑌󸀠1 (𝜃)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶 󵄨󵄨󵄨󵄨󵄨sin𝑘𝜃󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶. (35)

By direct calculation, we also obtain (35) for the case where𝑘 = 0. By integration by parts, we obtain

󵄨󵄨󵄨󵄨𝐺1 (𝛼) − 𝐺1 (𝛼 sin 𝜃)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝛼

𝛼 sin 𝜃
𝑤𝑘 sin𝑤𝑑𝑤󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨[−𝑤𝑘 cos𝑤]𝛼
𝛼 sin 𝜃

󵄨󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝛼

𝛼 sin 𝜃
𝑘𝑤𝑘−1 cos𝑤𝑑𝑤󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝛼𝑘.
(36)

By (35) and (36), for 𝛼 ≫ 1, we obtain
󵄨󵄨󵄨󵄨𝐿21 (𝛼)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨tan 𝜃𝑌󸀠1 (𝜃) (𝐺1 (𝛼) − 𝐺1 (𝛼 sin 𝜃))󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝛼𝑘. (37)

Since

𝐿22 (𝛼) = 𝛼𝑘+1 ∫𝜋/2
0

𝑌1 (𝛼) sin𝑘+1𝜃 sin (𝛼 sin 𝜃) 𝑑𝜃, (38)

by putting 𝜃 = (𝜋/2)(1 − 𝑟), we obtain

𝐿22 (𝛼) = 𝜋2 𝛼𝑘+1 ∫1
0

cos2𝑘+1 (𝜋/2) 𝑟
(1 + cos2 (𝜋/2) 𝑟 + ⋅ ⋅ ⋅ + cos2𝑛−2 (𝜋/2) 𝑟)3/2 sin (𝛼 cos 𝜋2 𝑟) 𝑑𝑟. (39)
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Let

𝑓 (𝑟) fl cos2𝑘+1 (𝜋/2) 𝑟
(1 + cos2 (𝜋/2) 𝑟 + ⋅ ⋅ ⋅ + cos2𝑛−2 (𝜋/2) 𝑟)3/2 ,

𝑤 (𝑟) fl cos 𝜋2 𝑟,
𝜇 fl 𝛼.

(40)

Case 1. Assume that 𝑘 > 1/2 or 𝑘 = 0. Then clearly 𝑓(𝑟) ∈𝐶2[0, 1], and we are able to apply Lemma 4 to (39). Then we
obtain

𝐿22 (𝛼) = √𝜋2 1𝑛3/2 𝛼𝑘+(1/2) sin (𝛼 − 𝜋4 ) + 𝑂 (𝛼𝑘) . (41)

By this, (33), and (37), we obtain (29).

Case 2. Assume that 0 < 𝑘 < 1/2. Then 𝑓(𝑟) ∈ 𝐶1+2𝑘[0, 1]
with 0 < 2𝑘 < 1. Therefore, 𝑓(𝑟) does not satisfy the
condition in Lemma 4. However, we found in [14] that we
can still apply Lemma 4 to (39) in this situation and obtain
(41). For completeness, the reason will be explained in the

Appendix. By this, (33), and (41), we obtain (29). Thus the
proof is complete.

By (24) and Lemma 5, we obtainTheorem 2 immediately.
Thus the proof is complete.

3. Proof of Theorem 3

In this section, let 0 < 𝛼 ≪ 1.The proofs ofTheorem 3 (i)-(v)
are similar. Therefore, we only prove (i) and (iv).

Proof of Theorem 3 (i). We assume that 2𝑛 > 𝑘 + 4. Then by
Taylor expansion, for 0 ≤ 𝑠 ≤ 1, we have

𝐺 (𝛼) − 𝐺 (𝛼𝑠)
= 12𝑛𝛼2𝑛 (1 − 𝑠2𝑛) + 1𝑘 + 2𝛼𝑘+2 (1 − 𝑠𝑘+2)

− 16 (𝑘 + 4)𝛼𝑘+4 (1 − 𝑠𝑘+4) (1 + 𝑜 (1)) .
(42)

By this, (24), Taylor expansion, and putting 𝑢 = 𝛼𝑠, we obtain

√𝜆 (𝛼)2 = ∫𝛼
0

𝑢𝑘
√(1/2𝑛) (𝛼2𝑛 − 𝑢2𝑛) + (1/ (𝑘 + 2)) (𝛼𝑘+2 − 𝑢𝑘+2) − (1/6 (𝑘 + 4)) (𝛼𝑘+4 − 𝑢𝑘+4) (1 + 𝑜 (1))𝑑𝑢

= √𝑘 + 2𝛼𝑘/2 ∫1
0

𝑠𝑘
√1 − 𝑠𝑘+2√1 − ((𝑘 + 2) /6 (𝑘 + 4)) ((1 − 𝑠𝑘+4) / (1 − 𝑠𝑘+2)) 𝛼2 + 𝑜 (𝛼2)𝑑𝑠

= √𝑘 + 2𝛼𝑘/2 ∫1
0

𝑠𝑘
√1 − 𝑠𝑘+2 (1 + 𝑘 + 212 (𝑘 + 4) 1 − 𝑠𝑘+41 − 𝑠𝑘+2𝛼2 + 𝑜 (𝛼2))𝑑𝑠 = √𝑘 + 2𝛼𝑘/2 {𝐵0 + 𝐵1𝛼2 + 𝑜 (𝛼2)} .

(43)

This implies (13). Thus the proof is complete.

Proof of Theorem 3 (iv). We assume that 2𝑛 = 𝑘 + 2. Then by
(42), for 0 ≤ 𝑠 ≤ 1, we have

𝐺 (𝛼) − 𝐺 (𝑤)

= 2𝑘 + 2 (𝛼𝑘+2 − 𝑤𝑘+2)
− 16 (𝑘 + 4) (𝛼𝑘+4 − 𝑤𝑘+4) (1 + 𝑜 (1)) .

(44)

By this, (24), and putting 𝑤 = 𝛼𝑠, we obtain

√𝜆 (𝛼)2 = ∫𝛼
0

𝑤𝑘
√(2/ (𝑘 + 2)) (𝛼𝑘+2 − 𝑤𝑘+2) − (1/6 (𝑘 + 4)) (𝛼𝑘+4 − 𝑤𝑘+4) (1 + 𝑜 (1))𝑑𝑤

= √𝑘 + 22 𝛼𝑘/2 ∫1
0

𝑠𝑘
√1 − 𝑠𝑘+2 {1 − 𝑘 + 212 (𝑘 + 4) 1 − 𝑠𝑘+41 − 𝑠𝑘+2𝛼2 + 𝑜 (𝛼2)}−1/2 𝑑𝑠

= √ 𝑘 + 22 𝛼𝑘/2 ∫1
0

𝑠𝑘√1 − 𝑠𝑘+2 {1 + 𝑘 + 224 (𝑘 + 4) 1 − 𝑠𝑘+41 − 𝑠𝑘+2𝛼2 + 𝑜 (𝛼2)}𝑑𝑠.

(45)
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This implies

√𝜆 = √𝑘 + 2𝛼𝑘/2 {𝐵0 + 12𝐵1𝛼2 + 𝑜 (𝛼2)} . (46)

This implies (16). Thus the proof is complete.

Appendix

In this section, by following the argument in [14], we show
that Case 2 in Lemma 5 holds for completeness. We put

𝑓 (𝑥) = 𝑓1 (𝑥) 𝑓2 (𝑥) fl cos2𝑘+1𝜋2 𝑥
⋅ 1
(1 + cos2 (𝜋/2) 𝑥 + ⋅ ⋅ ⋅ + cos2𝑛−2 (𝜋/2) 𝑥)3/2 .

(A.1)

Note that 0 < 2𝑘 < 1. We see that 𝑓2(𝑥) ∈ 𝐶2[0, 1]. The
essential point of the proof of (27) in this case is to show
Lemma 2.24 in [7] (see also [7, Lemma 2.25]). Namely, as𝜇 󳨀→ ∞,

Φ (𝜇) fl ∫1
0
𝑓 (𝑥) 𝑒−𝑖𝜇𝑥2𝑑𝑥

= 12√𝜋𝜇𝑒−𝑖(𝜋/4)𝑓 (0) + 𝑂(1𝜇) .
(A.2)

We put ℎ(𝑥) = (𝑓(𝑥) − 𝑓(0))/𝑥. Then we have 𝑓(𝑥) = 𝑓(0) +𝑥ℎ(𝑥). We know from [7, Lemma 2.24] that, for 𝜇 ≫ 1,
∫1
0

𝑒−𝑖𝜇𝑥2𝑑𝑥 = 12√𝜋𝜇𝑒−𝑖𝜋/4 + 𝑂(1𝜇) . (A.3)

By (A.2) and (A.3), we obtain

Φ(𝜇) = 𝑓 (0) ∫1
0

𝑒−𝑖𝜇𝑥2𝑑𝑥 + ∫1
0

𝑥𝑒−𝑖𝜇𝑥2ℎ (𝑥) 𝑑𝑥
= 12𝑓 (0)√𝜋𝜇𝑒−𝑖𝜋/4 + 𝑂(1𝜇)

+ ∫1
0
𝑥𝑒−𝑖𝜇𝑥2ℎ (𝑥) 𝑑𝑥.

(A.4)

We put

Φ1 (𝜇) fl ∫1
0
𝑥𝑒−𝑖𝜇𝑥2ℎ (𝑥) 𝑑𝑥. (A.5)

Now we prove that ℎ(𝑥) ∈ 𝐶1[0, 1], because if it is proved,
then by integration by parts, we easily show that Φ1(𝜇) =𝑂(1/𝜇) and our conclusion (A.2) follows immediately from
(A.4) and (A.5). For 0 ≤ 𝑥 ≤ 1, we have

ℎ (𝑥) = 𝑓 (𝑥) − 𝑓 (0)𝑥
= 𝑓2 (𝑥) 𝑓1 (𝑥) − 𝑓1 (0)𝑥

+ 𝑓1 (0) 𝑓2 (𝑥) − 𝑓2 (0)𝑥
fl 𝑓2 (𝑥) ℎ1 (𝑥) + 𝑓1 (0) ℎ2 (𝑥) .

(A.6)

Then we have ℎ2(𝑥) ∈ 𝐶1[0, 1]. Furthermore, by direct cal-
culation, we can show that ℎ1(𝑥) ∈ 𝐶1[0, 1]. It is reasonable,
because by Taylor expansion, for 0 < 𝑥 ≪ 1, we have

ℎ1 (𝑥) = −(2𝑘 + 1) 𝜋28 𝑥 + 𝑂 (𝑥3) . (A.7)

Thus the proof is complete.
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