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In this paper, we will consider the existence of a strong solution for stochastic differential equations with discontinuous drift
coefficients.More precisely, we study a class of stochastic differential equations when the drift coefficients are an increasing function
instead of Lipschitz continuous or continuous.Themain tools of this paper are the lower solutions and upper solutions of stochastic
differential equations.

1. Introduction

There are many works [1–3] about the existence and unique-
ness of strong or weak solutions for the following stochastic
differential equation (denoted briefly by SDE):

𝑑𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡) 𝑑𝑡 + 𝜎 (𝑡, 𝑋𝑡) 𝑑𝑊𝑡 𝑡 ≥ 0, (1)

where 𝑏(𝑡, 𝑥) : R+ × R 󳨀→ R and 𝜎(𝑡, 𝑥) : R+ × R 󳨀→ R

are called drift and diffusion coefficients, respectively. 𝑊𝑡 is
standard Brownian motion. Usually, the drift and diffusion
coefficients are Lipschitz or local Lipschitz continuous or at
least are continuous with respect to 𝑥when the existence and
uniqueness of solutions are investigated. In fact, the solutions
of stochastic differential equations may exist when their drift
and diffusion coefficients are discontinuous with respect to 𝑥.
Therefore, many authors discussed the existence of solutions
for SDE with discontinuous coefficients. For example, L.
Karatzas and S. E. Shreve [1] (Proposition 3.6 of §5.3) consid-
ered the existence of aweak solutionwhen the drift coefficient
of SDE need not be continuous with respect to 𝑥. A. K.
Zvonkin [4] considered the following stochastic differential
equation with a discontinuous diffusion coefficient:

𝑋𝑡 = ∫
𝑡

0
sgn (𝑋𝑠) 𝑑𝑊𝑠; 0 ≤ 𝑡 < ∞, (2)

where

sgn (𝑥) = {
{
{
1, 𝑥 > 0;
−1, 𝑥 ≤ 0. (3)

The weak solution of this stochastic differential equation
exists, but there is not the strong solution. N. V. Ktylov
[5] and N. V. Ktylov and R. Liptser [6] also discussed
existence issues of SDE when their diffusion coefficients
are discontinuous with respect to 𝑥. And many authors
also considered the approximation solutions of SDE with
discontinuous coefficients, such as [7–11].

In this paper, we will consider the existence of a strong
solution of SDE (1) when the drift coefficient 𝑏(𝑡, 𝑥) is an
increasing function but need not be continuous with respect
to 𝑥 and the diffusion coefficient 𝜎(𝑡, 𝑋𝑡) satisfies (𝐶𝜎)
condition. Section 1 is an introduction. In Section 2, we will
show a comparison theorem by using the upper and lower
solutions of SDE. We will prove our main result by using the
above comparison theorem in Section 3.

2. The Setup and a Comparison Theorem

In our paper, we just consider a 1-dimensional case.We always
assume that (Ω,F,P) is a completed probability space,𝑊 =:
{𝑊𝑡 : 𝑡 ≥ 0} is a real-valued Brownian motion defined on
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(Ω,F,P), and {F𝑡 : 𝑡 ≥ 0} is natural filtration generated by
the Brownian motion𝑊; i.e., for any 𝑡 ≥ 0

F𝑡 = 𝜎 {𝑊𝑠 : 𝑠 ≤ 𝑡} . (4)

We consider SDE (1) with coefficients 𝑏(𝑡, 𝑥) : R+×R 󳨀→
R and 𝜎(𝑡, 𝑥) : R+ ×R 󳨀→ R, whereR+ and R are a positive
real number and real number, respectively. And we use ‖ ⋅ ‖ to
denote norm of R. The following is the definition of a strong
solution for SDE.

Definition 1. An adapted continuous process 𝑋𝑡 defined on
(Ω,F,P) is said to be a strong solution for SDE (1) if it satisfies
that

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑋𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) 𝑑𝑊𝑠, 𝑡 ≥ 0, (5)

holds with probability 1.
Moreover, 𝑋𝑡 and 𝑋𝑡 are two strong solutions of SDE (1);

then 𝑃[𝑋𝑡 = 𝑋𝑡; 0 ≤ 𝑡 < ∞] = 1. Under this condition, the
solution of SDE (1) is said to be unique.

The following is the conception of upper and lower
solutions for stochastic differential equations, which are given
byN.Halidias and P. E. Kloeden [12].Many authors discussed
the upper and lower solutions of the stochastic differential
equation by using the other name which is the solutions of
the stochastic differential inequality, for example, S. Assing
and R. Manthey [13] and X. Ding and R. Wu [14].

Definition 2. An adapted continuous stochastic process 𝑈𝑡
(resp., 𝐿 𝑡) is an upper (resp., lower) solution of SDE (1) if the
inequalities

(1) 𝑈𝑡 ≥ 𝑈𝑠 + ∫𝑡
𝑠
𝑏(𝑢,𝑈𝑢)𝑑𝑢 + ∫𝑡

𝑠
𝜎(𝑢,𝑈𝑢)𝑑𝑊𝑢, 𝑡 ≥ 𝑠 ≥ 0;

(2) 𝐿 𝑡 ≤ 𝐿 𝑠 + ∫𝑡𝑠 𝑏(𝑢, 𝐿𝑢)𝑑𝑢 + ∫
𝑡

𝑠
𝜎(𝑢, 𝐿𝑢)𝑑𝑊𝑢, 𝑡 ≥ 𝑠 ≥ 0,

hold with probability 1.

Remark 3. It is not an easy thing to calculate the exact
upper and lower solution of the general stochastic differential
equations. However, one can discuss the existence of upper
and lower solutions. S. Assing and R. Manthey [13] discussed
the “maximal/minimal solution” of the stochastic differential
inequality. They proved the existence of a “maximal/minimal
solution” under some conditions. However, it is easy to
show there exist the upper solutions of stochastic differential
equations if theminimal solution of the stochastic differential
inequality exists. In fact, theminimal solution is special upper
solutions of stochastic differential equations. Similarly, we
can show the existence of the lower solution by using the
maximal solution of the stochastic differential inequality.

Usually, the existence and uniqueness of solutions of
SDE (1) are investigated under the conditions in which the
diffusion coefficient satisfies Lipschitz condition and liner
growth condition. In fact, the Lipschitz condition can be
generalized. In this paper, the diffusion coefficient satisfies the
(𝐶𝜎) condition.

(𝐶𝜎): For 𝑁 > 0, there exist an increasing function 𝜌𝑁 :
R+ 󳨀→ R+ and a predictable process 𝐺𝑁(𝑡, 𝜔) such that

󵄨󵄨󵄨󵄨𝜎 (𝑡, 𝜔, 𝑥) − 𝜎 (𝑡, 𝜔, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐺𝑁 (𝑡, 𝜔) 𝜌𝑁 (󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨) ,

∫
𝑡

0
𝐺𝑁 (𝑡, 𝜔) 𝑑𝑡 < ∞ 𝑎.𝑠.,

∫
0+
𝜌−2𝑁 (𝑢) 𝑑𝑢 = ∞,

(6)

for all 𝑡 ≥ 0, and 𝑥, 𝑦 ∈ R with ‖𝑥‖, ‖𝑦‖ ≤ 𝑁.
Note that the Lipschitz condition satisfies the (𝐶𝜎) condi-

tion. The following lemma is an important tool of this paper
and had to be proved in proposition 2.3 of X. Ding and R.Wu
[14].

Lemma4. In SDE (1), we assume𝜎 satisfies (𝐶𝜎) and 𝑏 satisfies
that, for each𝑁 > 0, there exists a measurable process 𝐿𝑁(𝑡, 𝜔)
such that

󵄩󵄩󵄩󵄩𝑏 (𝑡, 𝜔, 𝑥) − 𝑏 (𝑡, 𝜔, 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝐿𝑁 (𝑡, 𝜔) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ,

∫
𝑡

0
𝐿𝑁 (𝑡, 𝜔) 𝑑𝑡 < ∞, 𝑎.𝑠.,

(7)

for all 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ R with ‖𝑥‖, ‖𝑦‖ ≤ 𝑁. �en SDE (1) has
a unique local (explosion in the finite time) strong solution.

Remark 5. Moreover, if 𝑏 and 𝜎 satisfy the liner growth
condition (cf. J. Jacod and J. Memin [15])

‖𝑏 (𝑡, 𝜔, 𝑥)‖ + ‖𝜎 (𝑡, 𝜔)‖ ≤ 𝐻 (𝑡, 𝜔) (1 + ‖𝑥‖) , (8)

where 𝐻(𝑡, 𝜔), 𝑡 ≥ 0, is a predictable process such that
∫𝑡
0
𝐻2(𝑠, 𝜔)𝑑𝑠 < ∞, 𝑎.𝑠. Then SDE (1) has a unique global

strong solution.

The following theoremcan be considered as a comparison
theorem, and we will use it to arrive at our main result.

Theorem 6. Let 𝑏 : R+ × Ω 󳨀→ R be predictable such that
∫𝑡
0
𝑏2(𝑠, 𝜔)𝑑𝑠 < ∞, 𝑎.𝑠. 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ≥ 0, and let 𝜎 : R+ × Ω ×

R 󳨀→ R be predictable. Suppose that 𝜎 satisfies (𝐶𝜎) and there
exists a predictable process 𝐻(𝑡, 𝜔), 𝑡 ≥ 0 such that

‖𝜎 (𝑡, 𝜔)‖ ≤ 𝐻 (𝑡, 𝜔) (1 + ‖𝑥‖) , (9)

where ∫𝑡
0
𝐻2(𝑠, 𝜔)𝑑𝑠 < ∞, 𝑎.𝑠.And suppose that𝑈𝑡 and 𝐿 𝑡 are

upper and lower solutions of the following SDE:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝜔) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠,𝑋𝑠) 𝑑𝑊𝑠, 𝑡 ≥ 0, (10)

such that 𝐿0 ≤ 𝑋0 ≤ 𝑈0, 𝑎.𝑠.
�en there is a unique strong solution 𝑋𝑡 which satisfies

that 𝐿 𝑡 ≤ 𝑋𝑡 ≤ 𝑈𝑡 for any 𝑡 ≥ 0 holds with probability 1.
Proof. Obviously, we have that SDE (10) has a unique strong
solution𝑋𝑡 by using Lemma 4 andRemark 5. In the following
we will show

P {𝐿 𝑡 ≤ 𝑋𝑡 ≤ 𝑈𝑡, ∀𝑡 ≥ 0} = 1. (11)
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We only prove P{𝑋𝑡 ≤ 𝑈𝑡, ∀𝑡 ≥ 0} = 1, because we can prove
P{𝐿 𝑡 ≤ 𝑋𝑡, ∀𝑡 ≥ 0} = 1 by using the similar way.

Define the stopping time

𝑇𝑁 š inf {𝑡 ∈ [0,∞) : 󵄨󵄨󵄨󵄨𝑋𝑡󵄨󵄨󵄨󵄨 ∨ 󵄨󵄨󵄨󵄨𝐿 𝑡󵄨󵄨󵄨󵄨 ∨ 𝑡 > 𝑁} ∧ 𝑁. (12)

Obviously, 𝑇𝑁 󳨀→ ∞ when 𝑁 󳨀→ ∞. And define the
stopping time 𝜏 š inf{𝑡 ∈ [0,∞) : 𝑋𝑡 < 𝐿 𝑡}. IfP{𝜏 < 𝑇𝑁} = 0
for𝑁 ≥ 1, then P{𝜏 < ∞} = 0; that is, P{𝐿 𝑡 ≤ 𝑋𝑡, ∀𝑡 ≥ 0} =
1. Indeed, ∀𝑞 ∈ 𝑄+ and 𝑁 ≥ 1, we define 𝛼 š (𝜏 + 𝑞) ∧ 𝑇𝑁
and Ω𝛼 š {𝑋𝛼 < 𝐿𝛼}. Note that

P {Ω𝛼} = 0, ∀𝑞 ∈ 𝑄+, 𝑁 ≥ 1 󳨐⇒ P {𝜏 < 𝑇𝑁} = 0. (13)

In fact, by P{Ω𝛼} = 0 and 𝑋,𝐿 being continuous and the
denseness of the rational number in R, we have

𝑋(𝜏+𝑡)∧𝑇𝑁 ≥ 𝐿 (𝜏+𝑡)∧𝑇𝑁 𝑎.𝑠. on {𝜏 < 𝑇𝑁} (14)

for all 𝑡 ≥ 0. That is for 𝑎.𝑠. 𝜔 ∈ {𝜏 < 𝑇𝑁} and 𝑡 ∈
[𝜏(𝜔), 𝑇𝑁(𝜔)] one has 𝑋𝑡 ≥ 𝐿 𝑡. However, by the definition
of 𝜏 and 𝐿𝜏 ≤ 𝑋𝜏, 𝑎.𝑠. we have P{𝜏 < 𝑇𝑁} = 0.

In the following we shall prove P{Ω𝛼} = 0, ∀𝑞 ∈
𝑄+, 𝑁 ≥ 1. Set 𝛽 š sup{𝑡 ∈ [0, 𝛼) : 𝐿 𝑡 ≤ 𝑋𝑡}. By continuity
of 𝑋 and 𝐿 we have 𝑋𝛽 ≥ 𝐿𝛽, 𝑎.𝑠. Obviously, {𝑋𝛼 ≥ 𝐿𝛼} ={𝛽 = 𝛼}. So, we have Ω𝛼 š {𝑋𝛼 < 𝐿𝛼} = {𝛽 < 𝛼}. Hence, for
𝜔 ∈ Ω𝛼 and 𝑡 ∈ (𝛽(𝜔), 𝛼(𝜔)] we have 𝑋𝑡 < 𝐿 𝑡. Using 𝐿 as a
lower solution of SDE (10), we have

𝐿 𝑡 − 𝑋𝑡 ≤ ∫
𝑡

𝛽
[𝜎 (𝑠, 𝐿 𝑠) − 𝜎 (𝑠, 𝑋𝑠)] 𝑑𝑊𝑠 š 𝑀𝑡. (15)

Hence,

[𝐿 𝑡 − 𝑋𝑡] 𝐼Ω𝛼𝐼(𝛽,𝛼] (𝑡) ≤ 𝑀𝑡𝐼Ω𝛼𝐼(𝛽,𝛼] (𝑡) . (16)

Let us take 𝑀+ š max{𝑀, 0}. By the Tanaka formula (refer
to [3]) we have

𝑀+𝑡 𝐼Ω𝛼 = 𝑀+𝛽𝐼Ω𝛼 + 𝐼Ω𝛼 ∫
𝑡

𝛽
𝐼{𝑀𝑠>0}𝑑𝑀𝑠

+ 1
2𝐼Ω𝛼 [𝐿

0
𝑡 (𝑀) − 𝐿0𝛽 (𝑀)] ,

(17)

where 𝐿𝑥𝑡 (𝑀) denotes local time at the point 𝑥 for𝑀. By the
definition of local time, one can prove easily that 𝐿0𝑡(𝑀) −
𝐿0𝛽(𝑀) = 0, for 𝑡 ∈ (𝛽, 𝛼] onΩ𝛼. So, by𝑀+𝛽𝐼Ω𝛼 = 0 (using the
definition𝑀) we have

𝑀+𝐼Ω𝛼 = ∫
𝑡

𝛽
𝐼{𝑀𝑠>0}𝐼Ω𝛼 [𝜎 (𝑠, 𝐿 𝑠) − 𝜎 (𝑠, 𝑋𝑠)] 𝑑𝑊𝑠

š 𝑁𝑡.
(18)

Since for 𝜔 ∈ Ω𝛼 and 𝑡 ∈ (𝛽(𝜔), 𝛼(𝜔)] we have 𝑋𝑡 < 𝐿 𝑡, by
(18) we have

𝑀+𝐼Ω𝛼 ≤ 𝑁𝑡 + ∫
𝑡

𝛽
𝐼{𝑀𝑠>0}𝐼Ω𝛼 [𝐿 𝑠 − 𝑈𝑠] 𝑑𝑠. (19)

Using (16), we have

𝑀+𝐼Ω𝛼 ≤ 𝑁𝑡 + ∫
𝑡

𝛽
𝐼Ω𝛼𝑀+𝑑𝑠. (20)

By the stochastic Gronwall inequality (e.g., Lemma 2.1 [14]),
we have

𝐼Ω𝛼𝑀+𝛼𝑒−𝑡 ≤ 𝑁𝛽𝑒−𝑡 + ∫
𝛼

𝛽
𝑒−𝑡𝑑𝑁𝑠. (21)

By𝑁𝛽 = 0 we have

𝐸 (𝐼Ω𝛼𝑀+𝛼𝑒−𝑡) ≤ 𝐸∫
𝛼

𝛽
𝑒−𝑡𝑑𝑁𝑠 = 0. (22)

So, using (16) once again we have

𝐼Ω𝛼 [𝐿𝛼 − 𝑋𝛼] ≤ 𝐼Ω𝛼𝑀+𝛼 = 0 𝑎.𝑒. (23)

That is 𝐿𝛼 ≤ 𝑋𝛼 on Ω𝛼 a.s. Hence, P{Ω𝛼} = 0. The proof is
completed.

3. Existence of Strong Solutions

In this section, we will show the existence of the solution
for SDEs with discontinuous drift coefficients. Themethod of
the proof of our main result is based on Amann’s fixed point
theorem (e.g., Theorem 11.D [16]), so we introduce it in the
following.

Lemma 7. Suppose that
(1) the mapping 𝑓 : 𝑋 󳨀→ 𝑋 is monotone increasing on an

ordered set 𝑋
(2) every chain in𝑋 has a supremum
(3) there is an element 𝑥𝑜 ∈ 𝑋 for which 𝑥0 ≤ 𝑓(𝑥0)
�en 𝑓 has a smallest fixed point in the set {𝑥 ∈ 𝑋 : 𝑥0 ≤𝑥}.
The following theorem is our main result.

Theorem 8. Let 𝑏, 𝜎 : R+ × Ω × R 󳨀→ R be predictable.
Suppose that 𝑏 is an increasing function in 𝑥 and 𝜎 satisfies
(𝐶𝜎) and there exists a predictable process𝐻(𝑡, 𝜔), 𝑡 ≥ 0, such
that

‖𝑏 (𝑡, 𝜔, 𝑥)‖ + ‖𝜎 (𝑡, 𝜔, 𝑥)‖ ≤ 𝐻 (𝑡, 𝜔) (1 + ‖𝑥‖) , (24)

where ∫𝑡
0
𝐻2(𝑠, 𝜔)𝑑𝑠 < ∞, 𝑎.𝑠.Moreover, suppose that 𝑈𝑡 and𝐿 𝑡 are upper and lower solutions of the SDE

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑋𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) 𝑑𝑊𝑠, 𝑡 ≥ 0, (25)

such that 𝐿0 ≤ 𝑋0 ≤ 𝑈0, 𝑎.𝑠.
�en there is at least a strong solution 𝑋𝑡 which satisfies

that 𝐿 𝑡 ≤ 𝑋𝑡 ≤ 𝑈𝑡 for 𝑡 ≥ 0 holds with probability 1.
Proof. LetX be a space of adapted and continuous processes
and define the order relation ⪯:

𝑋 ⪯ 𝑌 ⇐⇒ P {𝑋𝑡 ≤ 𝑌𝑡, ∀𝑡 ≥ 0} = 1, (26)
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for𝑋,𝑌 ∈ X. We consider a subset of the space (X, ⪯)
D š [𝐿, 𝑈]

š {𝑋 ∈ X : P {𝐿 𝑡 ≤ 𝑋𝑡 ≤ 𝑈𝑡, ∀𝑡 ≥ 0} = 1} . (27)

For arbitrary fixed 𝑍 ∈ D, we consider the following
equation:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑍𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) 𝑑𝑊𝑠; (28)

byTheorem6 there exists a unique strong solution𝑋∗𝑡 . Define
a mapping 𝑆 : D 󳨀→ X and 𝑆(𝑍) = 𝑋∗. To complete the
proof it is enough to show 𝑆 has a fixed point.

Since 𝑏 is an increasing function and 𝑈 is an upper
solution of SDE (25), we have that

𝑈𝑡 ≥ 𝑈𝑠 + ∫
𝑡

𝑠
𝑏 (𝑢, 𝑍𝑢) 𝑑𝑢 + ∫

𝑡

𝑠
𝜎 (𝑢, 𝑈𝑢) 𝑑𝑊𝑢 (29)

holds with probability 1 for 𝑡 ≥ 𝑠 ≥ 0. Then𝑈 is also an upper
solution of SDE (28). Similarly, we have that

𝐿 𝑡 ≤ 𝐿 𝑠 + ∫
𝑡

𝑠
𝑏 (𝑢, 𝑍𝑢) 𝑑𝑢 + ∫

𝑡

𝑠
𝜎 (𝑢, 𝐿𝑢) 𝑑𝑊𝑢 (30)

holds with probability 1 for 𝑡 ≥ 𝑠 ≥ 0 such that 𝐿 is also a
lower solution of SDE (28). Hence, using Theorem 6 we have

P {𝐿 𝑡 ≤ 𝑆 (𝑍𝑡) ≤ 𝑈𝑡, ∀𝑡 ≥ 0} = 1. (31)

Since 𝑍 is arbitrary, we have 𝑆 : D 󳨀→ D and 𝐿 ⪯ 𝑆(𝐿) and
𝑆(𝑈) ⪯ 𝑈. If 𝑆 is an increasing mapping, by Lemma 7 𝑆 has a
fixed point on D. In fact, take 𝑍1, 𝑍2 ∈ D and 𝑍1 ⪯ 𝑍2 and
set𝑋𝑖 š 𝑆(𝑍𝑖); that is,

𝑋𝑖𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑍𝑖𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑖𝑠) 𝑑𝑊𝑠,

𝑖 = 1, 2.
(32)

Since 𝑏 is an increasing function, we have that

𝑋2𝑡 ≥ 𝑋𝑠 + ∫
𝑡

𝑠
𝑏 (𝑢,𝑍1𝑢) 𝑑𝑢 + ∫

𝑡

𝑠
𝜎 (𝑢,𝑋2𝑢) 𝑑𝑊𝑢 (33)

holds with probability 1 for 𝑡 ≥ 𝑠 ≥ 0. Hence 𝑋2 is an upper
solution of the following equation:

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑍1𝑠) 𝑑𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) 𝑑𝑊𝑠. (34)

And by (29)𝑈 is an upper solution of (34). Using Theorem 6
again, we have

P {𝑆 (𝑍1𝑡 ) ≤ 𝑆 (𝑍2𝑡 ) ≤ 𝑈𝑡, 𝑡 ≥ 0} = 1; (35)

that is, 𝑆(𝑍1𝑡 ) ⪯ 𝑆(𝑍2𝑡 ). Hence 𝑆 is an increasing function. The
proof is completed.

Example 9. We consider the following SDE:

𝑑𝑋𝑡 = sgn (𝑋𝑡) 𝑑𝑡 + 𝑑𝑊𝑡, ∀𝑡 ≥ 0, (36)

with initial value 𝑋0. Obviously, 𝑋0 − 𝑡 + 𝑊𝑡 ≤ 𝑋0 +
∫𝑡
0
sgn(𝑋𝑠)𝑑𝑠 + 𝑊𝑡 ≤ 𝑋0 + 𝑡 + 𝑊𝑡. By Theorem 8, there

exists at least one solution 𝑋𝑡 such that 𝑋0 − 𝑡 + 𝑊𝑡 ≤ 𝑋𝑡 ≤𝑋0 + 𝑡 +𝑊𝑡, 𝑡 ≥ 0 holds with probability 1.

Example 10. We have the SDE

𝑑𝑋𝑡 = 𝑓 (𝑋𝑡, 𝑡) 𝑑𝑡 + 𝜎𝑑𝑊𝑡, ∀𝑡 ≥ 0, (37)

with initial value𝑋0, where𝑓(𝑥, 𝑡) is a bounded function and
is defined as

𝑓 (𝑥, 𝑡) =
{{{{{{{
{{{{{{{
{

𝑀+ 1, 𝑥 ≥ 𝑀;
𝑥 + 1, 0 ≤ 𝑥 < 𝑀;
𝑥 − 1, −𝑀 ≤ 𝑥 < 0;
−𝑀 − 1, 𝑥 ≤ −𝑀.

(38)

It is easy to show𝑋𝑡 = 𝑋0−(𝑀+1)𝑡+𝜎𝑊𝑡 and𝑋𝑡 = 𝑋0+(𝑀+
1)𝑡 + 𝜎𝑊𝑡 are the lower solution and upper solution of (37),
respectively. And 𝑓(𝑥, 𝑡) is an increasing function in 𝑥 but is
not continuous in 𝑥, so we have that SDE (37) has a strong
solution by using Theorem 8.
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