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A fractional version of logistic equation is solved using new iterative method proposed by
Daftardar-Gejji and Jafari (2006). Convergence of the series solutions obtained is discussed.
The solutions obtained are compared with Adomian decomposition method and homotopy
perturbation method.

1. Introduction

The following model describing growth of population was first studied by Pierre Verhulst in
1938 [1]

dN

dt
= rN

(
1 − N

K

)
, (1.1)

whereN(t) is population at time t, and r > 0 is Malthusian parameter describing growth rate
and K is carrying capacity. Defining x = N/K gives the following differential equation:

dx

dt
= rx(1 − x) (1.2)

which is called as logistic equation.
Logistic equation of fractional order has been discussed in the literature [2, 3]. El-

Sayed et al. [2] have investigated the equation Dαx(t) = rx(t)(1 − x(t)), where Dα is Caputo
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fractional derivative of order 0 < α ≤ 1. Momani and Qaralleh [3] have employed Adomian
decomposition method (ADM) for solving fractional population growth model in a closed
system.

In the present paper we use New Iterative Method (NIM) introduced by Daftardar-
Gejji and Jafari [4] to solve fractional version of logistic equation.

NIM is useful for solving a general functional equation of the form

u = f + L(u) +N(u), (1.3)

where f is a given function, L and N linear and nonlinear operators, respectively. The
NIM has fairly simple algorithm and does not require any knowledge of involved concepts
such as Adomian polynomials, homotopy, or Lagrange multipliers. Rigorous convergence
analysis of NIM has been worked out recently [5]. This method has been applied by present
authors successfully for solving partial differential equations [6], evolution equations [7],
and fractional diffusion-wave equations [8].

NIM has been further explored by many researchers. Several numerical methods with
higher order convergence can be generated usingNIM.M. A. Noor and K. I. Noor [9, 10] have
developed a three-step predictor-corrector method for solving nonlinear equation f(x) = 0.
Further, they have shown that this method has fourth-order convergence [11]. Some new
methods [12, 13] are proposed by these authors using NIM. Mohyud-Din et al. [14] solved
Hirota-Satsuma coupled KdV system using NIM. These authors [15] also have applied NIM
in solutions of some fifth order boundary value problems. Noor and Mohyud-Din [16]
have used NIM to solve Helmholtz equations. NIM is applied to solve homogeneous and
inhomogeneous advection problems [17], diffusion equations [18], Schrödinger equations
[19], time fractional partial differential equations [20], and so on. Yaseen and Samraiz [21]
proposed modified NIM and used it to solve Klein-Gordon equations. Srivastava and Rai
[22] have proposed a new mathematical model for oxygen delivery through a capillary to
tissues in terms of multiterm fractional diffusion equation. They have solved the multi-term
fractional diffusion equation using NIM and ADM and have shown that the results are in
perfect agreement.

Recently Usman et al. [23] have solved a wide range of physical problems using NIM
and various other methods and have shown that NIM has better performance as compared
to other methods.

In the present paper, we solve fractional-order logistic equation. We compare the
results obtained by NIM, ADM [3], and homotopy perturbation method (HPM) with exact
solution. Further, we propose sufficient condition for the convergence of NIM solution of
fractional order logistic equation.

2. Preliminaries and Notations

In this section, we set up notation and recall some basic definitions from fractional calculus
[24].

Definition 2.1. Riemann-Liouville fractional integration of order α is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(
t − y

)α−1
f
(
y
)
dy, t > 0. (2.1)
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Definition 2.2. Caputo fractional derivative of order α is defined as

Dαf(t) = Im−α
(
dmf(t)
dtm

)
, 0 ≤ m − 1 < α ≤ m. (2.2)

Note that for 0 ≤ m − 1 < α ≤ m, a ≥ 0 and γ > −1

Iα(t − b)γ =
Γ
(
γ + 1

)
Γ
(
γ + α + 1

) (t − b)γ+α,

(
IαDαf

)
(t) = f(t) −

m−1∑
k=0

f (k)(0)
tk

k!
.

(2.3)

3. Fractional-Order Logistic Equation

Consider

Dαx(t) = rx(t)(1 − x(t)), t > 0, r > 0, 0 < α ≤ 1 (3.1)

with initial condition

x(0) = x0. (3.2)

Operating Iα on both sides of (3.1) and using (3.2), we get

x(t) = x0 + rIα(x(t)) − rIα
(
x2(t)

)
. (3.3)

3.1. Adomian Decomposition Method

Adomian decomposition method [25] is one of the most powerful methods used to solve
(1.3). In this method, solution u is assumed to be of the form

∑∞
i=0 ui, and the nonlinear

operator N is represented as

N

( ∞∑
i=0

ui

)
=

∞∑
i=0

Ai, (3.4)

where

An =
1
n!

dn

dλn
N

(
n∑

k=0

ukλ
k

)

λ=0

, n = 0, 1, 2, . . . (3.5)

are the Adomian polynomials. The terms of the series are given as

un+1 = L(un) +An, n = 0, 1, 2, . . . . (3.6)
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For convergence of this series, we refer the reader to [26]. Fractional order logistic equation
is solved using ADM in [3].

3.2. New Iterative Method

Recently Daftardar-Gejji and Jafari [4, 8] have used a different decomposition of the term
N(u). They have decomposed N(u) as follows:

N

( ∞∑
i=0

ui

)
= N(u0)︸ ︷︷ ︸

G0

+N(u0 + u1) −N(u0)︸ ︷︷ ︸
G1

+N(u0 + u1 + u2) −N(u0 + u1)︸ ︷︷ ︸
G2

+ · · · . (3.7)

The terms of the series u =
∑∞

i=0 ui are determined by the following recurrence relation:

u0 = f,

u1 = L(u0) +G0,

un+1 = L(un) +Gn, n = 1, 2, 3, . . . .

(3.8)

Discussion regarding convergence of this series and comparison of ADM and NIM can be
found in [5].

In view of NIM, the solution of (3.3) is given by x(t) =
∑∞

i=0 xi where

x1 = rIα(x0) − rIα
(
x2
0

)
,

xn+1 = rIα(xn) − rIα
(

n∑
i=0

xi

)2

+ rIα
(

n−1∑
i=0

xi

)2

, n = 1, 2, . . . .
(3.9)

The k-term approximate solution is given by

uk =
k−1∑
i=0

xi. (3.10)

3.3. Homotopy Perturbation Method

Homotopy perturbation method (HPM) proposed by He [27, 28] is a useful technique to
solve nonlinear problems. In view of HPM, we construct the following homotopy for solving
fractional order logistic equation (3.1):

Dαx = prx(1 − x), (3.11)
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where p ∈ [0, 1] is an embedding parameter. For p = 0, the homotopy (3.11) gives a linear
equationDαx = 0 and for p = 1, it gives the original equation (3.1). The solution of homotopy
equation (3.11) is assumed to be

x(t) = x0 + px1 + p2x2 + p3x3 + · · · . (3.12)

The solution of (3.1) is obtained from series (3.12) by substituting p = 1. Substituting (3.12)
in (3.11) and equating like powers of p, we get

Dαx0 = 0,

Dαx1 = r
(
x0 − x2

0

)
,

Dαx2 = r(x1 − 2x0x1),

Dαx3 = r
(
x2 − x2

1 − 2x0x2

)
,

(3.13)

and so on. The linear equations given in (3.13) give

x1 = r
(
x0 − x2

0

) tα

Γ(α + 1)
,

x2 = 0,

x3 = −r3
(
x0 − x2

0

)2 t3α

Γ(α + 1)2Γ(3α + 1)
,

x4 = 0,

(3.14)

and so forth. It can be seen from (3.11) that the HPM solutions are the same as ADM solutions
given in [3].

4. Convergence of NIM Solutions

In this section, we provide sufficient condition for the convergence of NIM solution series
(3.10).

Let f(t, x) = rx(1 − x) be defined on a rectangle

R : |t| ≤ a, |x − x0| ≤ b, (a > 0, b > 0). (4.1)

It is clear that |f | is bounded on R. We have |f(t, x)| ≤ M, for some real number M
on R.
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Lemma 4.1. For the initial value problem

Dαx(t) = f(t, x(t)), 0 < α ≤ 1,

x(0) = x0

(4.2)

the m-term approximate NIM solution (3.10) exists on the interval I = [−χ, χ], where χ =
min{a, (Γ(α + 1)b/M)1/α}, on rectangle R. Moreover, the points (t, um(t)) ∈ R, for all m = 1, 2, . . .
whenever t ∈ I.

Proof. We prove the lemma by induction onm.
Clearly, the result is true for m = 1. Now,

u2(t) = x0(t) + x1(t). (4.3)

Since the points (t, x0(t)) ∈ R, for all t ∈ I,

|u2(t) − x0(t)| ≤
∣∣Iαf(t, x0(t))

∣∣

≤ M
|t|α

Γ(α + 1)
≤ b.

(4.4)

Thus, (t, u2(t)) ∈ R.
We assume that the result is true for positive integer m − 1 and proves for m. Using

NIM solutions, we get

|um(t) − x0(t)| ≤
∣∣∣∣∣∣I

αf

⎛
⎝t,

m−2∑
j=0

xj(t)

⎞
⎠
∣∣∣∣∣∣

=
∣∣Iαf(t, um−1(t))

∣∣.
(4.5)

Induction hypothesis implies that the points (t, um−1(t)) ∈ R, for all t ∈ I. Hence

|um(t) − x0(t)| ≤ M
|t|α

Γ(α + 1)
≤ b. (4.6)

This implies that the points (t, um(t)) ∈ R, for all m = 1, 2, . . . when t ∈ I.

Theorem 4.2. The NIM solution series converges on the interval I = [−χ, χ] to a solution of the IVP
(4.2).
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Proof. Note that f(t, x) = rx(1 − x) is continuous function defined on a rectangle R and
|f | ≤ M on R. Further

∣∣f(t, x) − f
(
t, y
)∣∣ = |r|∣∣1 − (x + y

)∣∣∣∣x − y
∣∣

≤ (|r||1 − 2(b + x0)|)
∣∣x − y

∣∣
= K
∣∣x − y

∣∣.
(4.7)

Thus, f is Lipschitz in the second variable on Rwith Lipschitz constant K = |r||1 − 2(b + x0)|.
Now

|x1(t)| ≤ M
|t|α

Γ(α + 1)
,

|x2(t)| ≤ Iα
∣∣f(t, x0(t) + x1(t)) − f(t, x0(t))

∣∣
≤ IαK|x1(t)|

≤ MK
|t|2α

Γ(2α + 1)
.

(4.8)

It can be proved by induction that

|xm(t)| ≤ M

K

(|t|αK)m
Γ(mα + 1)

, (4.9)

m = 1, 2, . . ..
This shows that themth term of the NIM solution series is bounded by ((M/K)times)

the mth term of the Mittag-Leffler function

Eα

(
K|t|α). (4.10)

Thus, the NIM series is convergent under given conditions.

5. Illustrative Examples

Mathematica 8 has been used for solving the following problems.

Example 5.1. Consider a fractional-order logistic equation

Dαx(t) =
1
2
x(t)(1 − x(t)), t > 0, 0 < α ≤ 1,

x(0) =
1
2
.

(5.1)



8 International Journal of Differential Equations

Equivalent integral equation of (5.1) is

x(t) =
1
2
+
1
2
Iα(x(t)) − 1

2
Iα
(
x2(t)

)
. (5.2)

In view of NIM,

x0 = 0.5,

x1 = 0.5Iα(x0) − 0.5Iα
(
x2
0

)
=

0.125tα

Γ(α + 1)
,

x2 = 0.5Iα(x1) − 0.5Iα(x0 + x1)2 + 0.5Iα
(
x2
0

)
= −0.0078125t

3αΓ(1 + 2α)

Γ(1 + α)2Γ(1 + 3α)
,

x3 =
0.0009765625t5αΓ(1 + 2α)Γ(1 + 4α)

Γ(1 + α)3Γ(1 + 3α)Γ(1 + 5α)

− 0.000030517578125t7αΓ(1 + 2α)2Γ(1 + 6α)

Γ(1 + α)4Γ(1 + 3α)2Γ(1 + 7α)
,

(5.3)

and so on. Few terms of ADM [3] and HPM solution are

x0 = 0.5,

x1 =
0.125tα

Γ(α + 1)
,

x2 = 0,

x3 = −0.0078125t
3αΓ(1 + 2α)

Γ(1 + α)2Γ(1 + 3α)
,

x4 = 0,

x5 =
0.0009765625t5αΓ(1 + 2α)Γ(1 + 4α)

Γ(1 + α)3Γ(1 + 3α)Γ(1 + 5α)
.

(5.4)

Figure 1 shows the solutions of (5.2) for α = 1 by NIM (5-term solution), ADM, and HPM
(6-term solution) and exact solution x(t) = exp((1/2)t)/(1 + exp((1/2)t)). In Figures 2 and
3 we compare ADM, HPM, and NIM solutions of (5.2) for α = 0.5 and α = 0.7, respectively.
Figure 4 shows NIM solutions for different values of α.

Example 5.2. Consider the following logistic equation of fractional order

Dαx(t) =
1
4
x(t)(1 − x(t)), t > 0, 0 < α ≤ 1, (5.5)

x(0) =
1
3
. (5.6)
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t

Figure 1: (Example 5.1, α = 1).
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0.6

0.65

0.7

t

Figure 2: (α = 0.5, dashed = ADM & HPM, solid = NIM).

Applying Iα on both sides of (5.5) and using (5.6), we get

x(t) =
1
3
+
1
4
Iα(x(t)) − 1

4
Iα
(
x2(t)

)
. (5.7)

In Figure 5, we compare the solution of (5.7) for α = 1 by NIM (5-term solution), ADM [3],
and HPM (6-term solution) and exact solution exp((1/4)t)/(2+ exp((1/4)t)). Figure 6 shows
NIM solutions of (5.7) for different values of α.

6. Conclusions

Fractional-order logistic equation is solved using a new iterative method (NIM). From
Figures 1–6, it is clear that NIM solutions are more stable than ADM and HPM. Further the
condition for the convergence of NIM solution series is also provided. It can be concluded
that NIM is a useful technique for solving nonlinear problems.
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Figure 3: (α = 0.7, dashed = ADM & HPM, solid = NIM).
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Figure 4: (Example 5.1, NIM solutions).
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Figure 5: (Example 5.2, α = 1).
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Figure 6: (NIM solutions).
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