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For a neutral differential equation with positive and changeable sign coefficients
[x(t) − a(t)x(δ(t))]′ + p(t)F(x(τ(t))) − q(t)G(x(σ(t))) = 0, oscillation criteria are established,
where q(t) is not required as nonnegative. Several new results are obtained.

1. Introduction

Consider the delay neutral differential equation with positive and changeable sign coeffi-
cients

[x(t) − a(t)x(δ(t))]′ + p(t)F(x(τ(t))) − q(t)G(x(σ(t))) = 0, t ≥ t0, (1.1)

where the following conditions are assumed to hold throughout this paper:

(A1) p, q, a ∈ C([t0,∞), R), p ≥ 0, a ≥ 0;

(A1) δ ∈ C([t0,∞), R), τ, σ ∈ C1([t0,∞), R), and τ ′(t) ≥ 0, σ ′(t) ≥ 0, τ(t) ≤ σ(t) ≤
t, δ(t) ≤ t, limt→∞τ(t) = ∞, and limt→∞δ(t) = ∞;

(A3) F,G ∈ C(R,R) and xF(x) > 0, xG(x) > 0, |F(x)| ≥ |x|, |G(x)| ≤ |x| for all x /= 0.

Recently, oscillation of first-order differential equations and difference equations with
positive and negative coefficients has been investigated by many authors. Several interesting
results have been obtained. We refer to [1–12] and the references cited therein. However, to
the best of our knowledge, up to now, there are not works on oscillation of solutions of (1.1)
with q(t) able to change sign. The purpose of this paper is to study oscillation properties of
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(1.1) by some new technique. Our results improve and extend several known results in the
literature. In particular, our results can be applied to linear neutral differential equation

[x(t) − a(t)x(δ(t))]′ + p(t)x(τ(t)) − q(t)x(σ(t)) = 0. (1.1)′

By a solution of (1.1) we mean a function x(t) ∈ C([t0,∞), R) for some t0 ≥ t0 such
that x(t) − a(t)x(δ(t)) is continuously differentiable on [t0,∞) and satisfies (1.1) for t ≥ t,
where t = inft≥t0{δ(t), τ(t)}. As is customary, a solution of (1.1) is said to be oscillatory if it
has arbitrarily large zeros. Otherwise the solution is called nonoscillatory.

In the sequel, unless otherwise specified, when we write a functional inequality on t it
will hold for all sufficiently large t.

First, we establish the following lemma. It extends and improves in [3, Lemma 3.7.1],
[4, Lemma 2.6.1], [7, Lemma 2.1], and [9, Lemma 1].

Lemma 1.1. Assume that

p(t) − q+
(
σ−1(τ(t))

)
τ ′(t)

σ ′(σ−1(τ(t))
) ≥ 0 is not identically zero, (1.2)

a(t) +
∫σ(t)

τ(t)

q+
(
σ−1(s)

)

σ ′(σ−1(s)
)ds ≤ 1, a(t)/= 1, (1.3)

where q+(t) = max{q(t), 0}, and σ−1(t) is the inverse function of σ(t). Let x(t) be a nonoscillatory
solution of (1.1) and

y(t) = x(t) − a(t)x(δ(t)) −
∫σ(t)

τ(t)

q+
(
σ−1(s)

)

σ ′(σ−1(s)
) x(s)ds. (1.4)

Then

x(t)y(t) > 0, y(t)y′(t) ≤ 0. (1.5)

Proof. Let x(t) be an eventually positive solution. The casewhen x(t) is an eventually negative
solution is similar and its proof is omitted. Thus we have

x(τ(t)) > 0, x(σ(t)) > 0, x(δ(t)) > 0. (1.6)

By (A3), (1.4), and (1.2), we obtain

y′(t) = −p(t)F(x(τ(t))) + q(t)G(x(σ(t))) − q+(t)x(σ(t)) +
q+
(
σ−1(τ(t))

)
τ ′(t)

σ ′(σ−1(τ(t))
) x(τ(t))

≤ −
[

p(t) − q+
(
σ−1(τ(t))

)
τ ′(t)

σ ′(σ−1(τ(t))
)

]

x(τ(t)),

(1.7)
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which implies that y(t) is decreasing. Hence, if (1.5) does not hold, then eventually y(t) < 0,
and there exist T ≥ t0 and positive constant α such that y(t) ≤ −α < 0 for all t ≥ T , that is,

x(t) ≤ −α + a(t)x(δ(t)) +
∫σ(t)

τ(t)

q+
(
σ−1(s)

)

σ ′(σ−1(s)
) x(s)ds, t ≥ T. (1.8)

We consider the following two possible cases.
The first case. x(t) is unbounded, that is, lim supt→∞x(t) = ∞. Thus there exists a

sequence of points {sn}∞n=1 such that limn→∞x(sn) = ∞ and x(sn) = max{x(t) : T ≤ t ≤
sn, n = 1, 2, . . .}. From (1.8)we have

x(sn) ≤ −α + a(sn)x(δ(sn)) +
∫σ(sn)

τ(sn)

q+
(
σ−1(s)

)

σ ′(σ−1(s)
) x(s)ds

≤ −α + x(sn)

[

a(sn) +
∫σ(sn)

τ(sn)

q+
(
σ−1(s)

)

σ ′(σ−1(s)
) ds

]

≤ −α + x(sn).

(1.9)

This is a contradiction.
The second case. x(t) is bounded, that is, lim supt→∞x(t) < ∞. Choose a sequence of

points {sn}∞n=1 such that sn → ∞ and x(sn) → l as n → ∞. Let ξ(t) = min{δ(t), τ(t)}, η(t) =
max{δ(t), σ(t)}, and x(tn) = max{x(s) : ξ(sn) ≤ s ≤ η(sn), tn ∈ [ξ(sn), η(sn)], n = 1, 2, . . . , }.
Then lim supn→∞x(tn) ≤ l. Thus, in view of (1.8)we obtain

x(sn) ≤ −α + x(tn)

[

a(sn) +
∫σ(sn)

τ(sn)

q+
(
σ−1(s)

)

σ ′(σ−1(s)
) ds

]

≤ −α + x(tn). (1.10)

Therefore l ≤ −α + l,which is also a contradiction. Hence (1.5) holds. The proof of Lemma 1.1
is complete.

2. Main Results

In this section, we will prove a comparison theorem on oscillation for (1.1). For convenience
of discussions, in the rest of this paper we will use the following notations:

P(t) := p(t) − q+
(
σ−1(τ(t))

)
τ ′(t)

σ ′(σ−1(τ(t))
) , Q(t) :=

q+
(
σ−1(t)

)

σ ′(σ−1(t)
) , δ(t) is increasing for t ≥ t0,

δ0(t) = t, δk+1(t) = δ
(
δk(t)

)
, t ≥ δ−(k+1)(t0), k = 1, 2, . . . ,

(2.1)

where δ−k(t) is the inverse function of δk(t).
The following comparison theorem is the main result of this paper.
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Theorem 2.1. Assume that (1.2) and (1.3) hold and there exists a nonnegative integer m such that
all solutions of the following delay differential equation:

y′(t) + P(t)

{

y(τ(t)) + a(τ(t))

[

y(δ(τ(t))) +
m∑

k=0

k∏

i=0

a
(
δi+1(τ(t))

)
y
(
δk+2(τ(t))

)]

+
∫σ(τ(t))

τ2(t)
Q(s)

[

y(s) +
m∑

k=0

k∏

i=0

a
(
δi(s)

)
y
(
δk+1(s)

)]

ds

}

= 0

(2.2)

are oscillatory. Then all solutions of (1.1) are also oscillatory.

Proof. Suppose that x(t) is an eventually positive solution of (1.1). The proof of the case where
x(t) is eventually negative is similar and will be omitted. By Lemma 1.1, we have

y(t) > 0, y′(t) ≤ 0, (2.3)

where y(t) is given by (1.4). Thus

x(t) ≥ y(t) + a(t)x(δ(t)) ≥ y(t) + a(t)
[
y(δ(t)) + a(δ(t))x

(
δ2(t)

)]
. (2.4)

By induction, we see that

x(t) ≥ y(t) +
m∑

k=0

k∏

i=0

a
(
δi(t)

)
y
(
δk+1(t)

)
. (2.5)

From (1.4), (2.3), and (2.5), we obtain

x(t) = y(t) + a(t)x(δ(t)) +
∫σ(t)

τ(t)
Q(s)x(s)ds

≥ y(t) + a(t)

[

y(δ(t)) +
m∑

k=0

k∏

i=0

a
(
δi+1(t)

)
y
(
δk+2(t)

)]

+
∫σ(t)

τ(t)
Q(s)

[

y(s) +
m∑

k=0

k∏

i=0

a
(
δi(s)

)
y
(
δk+1(s)

)]

ds.

(2.6)

It follows from (1.7) that

y′(t) ≤ − P(t)

{

y(τ(t)) + a(τ(t))

[

y(δ(τ(t))) +
m∑

k=0

k∏

i=0

a
(
δi+1(τ(t))

)
y
(
δk+2(τ(t))

)]

+
∫σ(τ(t))

τ2(t)
Q(s)

[

y(s) +
m∑

k=0

k∏

i=0

a
(
δi(s)

)
y
(
δk+1(s)

)]

ds

}

.

(2.7)
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By a well-known result (see, e.g., [4, Corollary 3.2.2]) we can conclude that (2.2) has also an
eventually positive solution. This is a contradiction. The proof of Theorem 2.1 is complete.

Following the proof of Theorem 2.1 and taking into account in (2.7) the positivity of
the functions P andQ and the properties of the delay functions δ and τ , we state as corollary
the following claim.

Corollary 2.2. Assume that (1.2) and (1.3) hold and there exists a nonnegative integer m such that
all solutions of the delay differential equation

y′(t) + P(t)

{

1 + a(τ(t))

[

1 +
m∑

k=0

k∏

i=0

a
(
δi+1(τ(t))

)]

+
∫σ(τ(t))

τ2(t)
Q(s)

[

1 +
m∑

k=0

k∏

i=0

a
(
δi(s)

)]

ds

}

y(τ(t)) = 0.

(2.8)

are oscillatory. Then all solutions of (1.1) are also oscillatory.

Corollary 2.3. Consider (1.1) with q(t) ≡ 0. Assume that there exists a nonnegative integer m such
that all solutions of the delay differential equation

y′(t) + P(t)

{

1 + a(τ(t))

[

1 +
m∑

k=0

k∏

i=0

a
(
δi+1(τ(t))

)]}

y(τ(t)) = 0 (2.9)

are oscillatory. Then all solutions of (1.1) are also oscillatory.

Remark 2.4. Corollaries 2.2 and 2.3 extend and improve [3, Theorems 3.7.1 and 3.2.1].

3. Explicit Oscillation Conditions

In this section, we will give several explicit oscillation conditions for (1.1). Let

Rm(t) := P(t)

{

1 + a(τ(t))

[

1 +
m∑

k=0

k∏

i=0

a
(
δi+1(τ(t))

)]

+
∫σ(t)

τ(t)
Q(s)

[

1 +
m∑

k=0

k∏

i=0

a
(
δi(s)

)]

ds

}

,

In(Rm, τ(t)) :=
∫ t

τ(t)
Rm(s1)

∫ s1

τ(s1)
Rm(s2)

∫sn−1

τ(sn−1)
Rm(sn)dsndsn−1 · · ·ds2ds1,

(3.1)

where n ≥ 1 and s0 := t.
By [11, Corollary 2.1 and Theorem 1] with a well-known oscillation criterion for first-

order linear delay differential equations, we have the following result.
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Theorem 3.1. Assume that (1.2) and (1.3) hold and there exists a nonnegative integer m and n ≥ 1
such that

lim inf
t→∞

In(Rm, τ(t)) >
1
en

, (3.2)

or there exists a nonnegative integerm such that

lim sup
t→∞

∫ t

τ(t)
Rm(s)ds > 1. (3.3)

Then all solutions of (1.1) are oscillatory.

Remark 3.2. Theorem 3.1 extends and improves [4, Theorem 2.6.1], [2, Theorem 3], and the
relative results in [12].

Consider the autonomous neutral differential equation

(x(t) − ax(t − δ))′ + px(t − τ) − qx(t − σ) = 0, t ≥ 0, (3.4)

where p, δ, τ , and σ are positive constants, a and q are real number, and

τ > σ, 0 ≤ a + q+(τ − σ) ≤ 1, p − q+ > 0, q+ = max
{
q, 0

}
. (3.5)

Theorem 3.3. Assume that (3.5) holds and there exists a nonnegative integerm satisfying

(
p − q+

)[
1 + a + q+(τ − σ)

]
(

1 +
m∑

k=0

ak+1

)

τ >
1
e
. (3.6)

Then all solutions of (3.4) are oscillatory.

Proof. By (3.2), we find that for (3.4)

In(Rm, τ) =
(
p − q+

)n
[

1 + a

(

1 +
m∑

k=0

ak+1

)

+ q+(τ − σ)

(

1 +
m∑

k=0

ak+1

)]n

τn >
1
en

, (3.7)

which implies that (3.6) holds. By Theorem 3.1, (3.6) leads to that all solutions of (3.4) are
oscillatory. The proof of Theorem 3.3 is complete.

Corollary 3.4. Assume that (3.5) with 0 ≤ a < 1 holds and

(
p − q+

)[
1 + a + q+(τ − σ)

] τ

1 − a
>

1
e
. (3.8)

Then all solutions of (3.4) are oscillatory.
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Remark 3.5. When a = 0, (3.8) reduces to

(
p − q+

)[
1 + q+(τ − σ)

]
τ >

1
e
. (3.9)

Equation (3.9) improves conditions (2) and (4) in [1, Corollary 2.3] where the following two
oscillation criteria for the solutions of (3.4) with a = 0 and p > q > 0 are obtained:

(
p − q

)[
τ + σq(τ − σ)

]
>

1
e
,

(
p − q

)[
1 + q(τ − σ)

]
σ >

1
e
.

(3.10)

Obviously, since τ > σ, it follows that (3.9) is respectively better than (3.10).
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