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Roma 00184, Italy
2INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti 9, Firenze 50121, Italy

Correspondence should be addressed to Antonio Brasiello; antonio.brasiello@uniroma1.it

Received 28 March 2020; Accepted 28 July 2020; Published 25 August 2020

Academic Editor: Jitendra Kumar

Copyright © 2020 Antonio Brasiello and Alessandra Adrover. %is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

%e article addresses the extended Graetz–Nusselt problem in finite-length microchannels for prescribed wall heat flux boundary
conditions, including the effects of rarefaction, streamwise conduction, and viscous dissipation. %e analytical solution proposed,
valid for low-intermediate Peclet values, takes into account the presence of the thermal development region. %e influence of all
transport parameters (Peclet Pe, Knudsen Kn, and Brinkman Br) and geometrical parameters (entry length and microchannel
aspect ratio) is investigated. Performances of different wall heat flux functions have been analyzed in terms of the averaged Nusselt
number. In the absence of viscous dissipation Br � 0, the best heating protocol is a decreasing wall heat flux function. In the
presence of dissipation Br> 0, the best heating protocol is a uniform wall heat flux.

1. Introduction

A correct estimation of heat and mass transfer coefficients is
a powerful tool in the design of heat exchangers [1], mass
transfer equipment and reactors [2], and microdevices [3, 4]
for chemical [5], biomedical [6, 7], and pharmaceutical
applications [8, 9].

Focusing on laminar forced convection of an incom-
pressible fluid in a duct, the estimation of transport co-
efficients requires the solution of the classical
Graetz–Nusselt problem [2, 10]. Originally proposed for a
sudden step change of the wall temperature at some po-
sitions along the duct and no axial diffusion, the
Graetz–Nusselt problem is valid for both heat and mass
transfer. It has been solved in transient and steady-state
[11], for Dirichlet and Neumann boundary conditions
[12], for different wall shape and curvature [9, 13, 14], for
non-Newtonian fluids [15], and for counterflow streams
[16], in the presence of high viscous dissipation [17], axial

diffusion [18, 19], and simultaneous heat and mass transfer
[20, 21].

As the size of the channel is reduced, the no-slip
boundary condition needs to be modified because velocity
slippage [22–25] and temperature jump may occur at the
wall. %e so-called “extended” Graetz problem in micro-
tubes, accounting for rarefaction and viscous dissipation, has
been recently investigated by Cetin et al. [26, 27] and by
Jeong and Jeong [28, 29] by means of eigenfunction ex-
pansion (including streamwise conduction) and by Tunc and
Bayazitoglu [30] using an integral transform technique
(neglecting streamwise conduction).

In all the above-mentioned papers, it is assumed that the
fluid enters the semi-infinite microchannel (z≥ 0) as a fully
developed isothermal flow, that is, T � T0 at z � 0. However,
this boundary condition at z � 0 may be extremely re-
strictive, especially in the case of laminar conditions and low
Peclet values [31]. If axial conduction is important, then a
sizeable amount of heat is conducted upstream the entrance
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cross section z � 0 into the hydrodynamic development
region z< 0.%erefore, a temperature distribution is built up
for z< 0 and this may significantly affect the temperature
downstream. For this reason, Barletta and Magyari [32]
addressed the problem of the thermal entrance forced
convection in a circular duct with a prescribed wall heat flux
distribution, including the effect of viscous dissipation but
neglecting heat axial conduction. %e presence of an up-
stream insulated region in microchannels has been also
accounted for also by Knupp et al. [33–35] by combining the
Generalized Integral Transform Technique (GITT) and a
single domain reformulation strategy, aimed at providing
hybrid numerical/analytical solutions to convection/diffu-
sion problems. No viscous dissipation effects or slip
boundary conditions are accounted for while wall conju-
gation effects are taken into account.

%e present paper presents an analytical solution of the
extended Graetz problem in finite-length microtubes in-
cluding the effects of rarefaction, streamwise conduction,
and viscous dissipation. %e solution, taking into account
the presence of the thermal development region, is valid for
low-intermediate Peclet values Pe and for the prescribed
heat flux boundary conditions (no wall conjugation effects).

In dealing with finite-length channels, in the presence of
axial dispersion and wall heat flux, one issue to be addressed is
the proper boundary conditions at the inlet and outlet sections.
For this reason, in the problem formulation, three distinct
regions along the microchannel have been considered (see
Figure 1): a thermally insulated region (lengthL− , wall heat flux
Qw � 0), followed by a heat transfer region with length L and
prescribed wall heat flux Qw(z), followed by a third thermally
insulated region (length L+, wall heat flux Qw � 0).

%e analytical solution is compared with the numerical
results obtained by means of the finite elements method
(FEM Comsol 3.5) in a wide range of Pe and for different
wall heat flux profiles. %e range of validity of the analytical
solution is investigated in detail.

From the temperature field, the local Nusselt axial profile
and the average Nusselt number are obtained as a function of
the transport parameters, that is, the Peclet number Pe, the
Knudsen number Kn, and the Brinkman number Br. %e
influence of geometrical parameters, that is, the aspect ratio
diameter-over-length D/L and the length of the upstream
section L− /L, is also addressed.

%e solution, valid for small-intermediate values of Pe, is
presented for cylindrical and flat rectangular microchannels
(see Appendix A). A list of symbols is reported in Appendix
B.

2. Statement of the Problem and
Analytical Solution

Let us consider a Newtonian fluid with constant thermo-
dynamic properties entering, at z � − L− , into a finite-length
microtube of radius R, diameter D, and total axial length
(L+ + L + L− ), that is, L− ≤ z≤L + L+. (πR2)(ρfcpU)T0 is
the inlet convective flux at z � L− , U being the average cross
section velocity. %e microtube is thermally insulated for
L− ≤ z< 0 and for L< z≤ L + L+ . Let us indicate with Qw(z)

the prescribed wall heat flux for the heat transfer region 0≤ z≤L

and with Qav � (1/L) 􏽒
L

0 Qw(z)dz≠ 0 its average value.
Let Vz(r) be the fully developed first-order velocity

profile in slip-flow regime. In terms of the dimensionless
radial coordinate, ρ � r/R, Vz(r) attains the form

Vz(ρ) � 2U
1 − ρ2 + 4(2 − F/F)Kn

1 + 8((2 − F)/F)Kn
� 2U

1 − ρ2 + 4Kn
1 + 8Kn

� U 2 1 − ρ2􏼐 􏼑χ + 1 − χ􏼐 􏼑,

χ �
1

1 + 8Kn
,

Kn �
λ
D

,

(1)

where Kn is the Knudsen number.
A first-order model for rarefaction effects is adopted,

being valid for 0.001≤Kn≤ 0.1 [36] with a tangential mo-
mentum accommodation coefficient F � 1 [30]. %e velocity
profile reduces to the classical no-slip parabolic velocity
profile for Kn � 0.

By introducing the dimensionless space variables ρ � r/R,
ζ � z/L, temperature θ � (T − T0)k/(QavR), and velocity
v(ρ) � Vz/U, the starting point of the subsequent analysis is
the steady state heat-balance equation, accounting for radial
conduction, axial conduction, and convection and viscous
dissipation:

−
Peα
4

v(ρ)
zθ
zζ

+
1
ρ

z

zρ
ρ

zθ
zρ

􏼠 􏼡 +
α2

4
z2θ
zζ2

+ 32Brχ2ρ2 � 0,

− β− < z< 1 + β+
,

(2)

where the Peclet number Pe and the Brinkman number Br
appear as

Pe �
U D

k/ρfcp

,

Br �
μU2

QavD
,

(3)

together with the geometric dimensionless parameters α, β+,
and β−

α �
D

L
,

β−
�

L−

L
,

β+
�

L+

L
.

(4)

By further introducing the dimensionless axial con-
vective flux

Jc(ρ, ζ) �
Peα
4

v(ρ)θ(ρ, ζ), (5)

the following boundary conditions apply
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Jc

􏼌􏼌􏼌􏼌ζ�− β − � 0,

z

zζ
􏽚
1

0
Jc2πρ dρ � 16πBrχ2, at ζ � 1 + β+

,

(6)

zθ
zρ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ρ�0
� 0,

zθ
zρ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ρ�1
� Fw(ζ),

(7)

Fw(ζ) �

0, for − β− ≤ ζ < 0,

qw(ζ) � Qw(ζ)/Qav( 􏼁, for 0≤ ζ ≤ 1,

0, for 1< ζ ≤ 1 + β+.

⎧⎪⎪⎨

⎪⎪⎩
(8)

%e outlet boundary condition equation (6) at ζ � 1 +

β+ is an integral version of the Danckwerts outlet
boundary condition, usually adopted for finite-length
channels, and implies zero conductive axial heat flux at the
outlet section. Its integral version [37] (integral over the
radial cross-section) allows us to take into account the
heat generated by viscous dissipation and is in agreement
with the asymptotic condition usually adopted for infi-
nitely long channels.

2.1. Analytical Solution. At low-intermediate values of the
Peclet number, the temperature profile exhibits a weak
dependence on the radial coordinate ρ so that it can
reasonably assumed that the dimensionless temperature
can be written as the linear combination of two
functions:

θ(ρ, ζ) � θb(ζ) + ϕ(ρ, ζ),

θb(ζ) �
1
π

􏽚
1

0
θv(ρ)2πρdρ,

(9)

where θb(ζ) is the dimensionless bulk temperature (mixing
cup temperature) and ϕ(ρ, ζ) is an auxiliary function sat-
isfying the integral constrain:

1
π

􏽚
1

0
ϕ(ρ, ζ)v(ρ)2πρdρ � 0. (10)

%e auxiliary function ϕ(ρ, ζ) accounts for the tem-
perature dependence on the radial coordinate, that is,
(zθ/zρ) � (zϕ/zρ), and is a slowly varying function of the
axial coordinate ζ, so that

zϕ
zζ
≪

dθb

dζ
,

z2ϕ
zζ2
≪

d2θb

dζ2
.

(11)

By substituting (9) into the balance equation (2) and into
the boundary conditions equations (6)–(8) and making use
of the simplifying assumption equation (11), one obtains

zϕ
zζ
≪

dθb

dζ
,

z2ϕ
zζ2
≪

d2θb

dζ2
,

(12)

θb

􏼌􏼌􏼌􏼌ζ�− β � 0,

Peα
4

dθb

dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�1+β+
� 16Brχ2,

(13)

zϕ
zρ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ρ�0
� 0,

zϕ
zρ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ρ�1
� Fw(ζ).

(14)

In (12), both θb and ϕ still appear. However, an inde-
pendent equation for the bulk temperature θb(ζ) can be
obtained as follows. By integrating the balance equation (2)
over the entire radial cross section, one obtains

−
Peα
4

dθb

dζ
+
α2

4
d2θb

dζ2
+

z2ϕ
zζ2

􏼠 􏼡 + 16Brχ2 + 2Fw(ζ) � 0.

(15)

By further enforcing solely the second-order simplifying
assumption (z2ϕ/zζ2)≪ (d2θb/dζ

2
), one arrives at the fol-

lowing equation for the dimensionless bulk temperature
θb(ζ):

z = L + L+

�ermally insulated�ermally insulated

z = Lz = 0

Inlet Outlet
To T (r, z)

z = –L–

Inlet flux Qw (z)

Inlet flux Qw (z)

Viscous dissipation

Slip/no−slip laminar flow

Figure 1: Schematic representation of the physical domain and boundary conditions.
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−
Peα
4

dθb

dζ
+
α2

4
d2θb

dζ2
+ 16Brχ2 + 2Fw(ζ) � 0, (16)

θb(− β) � 0,

Peα
4

dθb

dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�1+β+
� 16Brχ2.

(17)

Equations (16) and (17) can be analytically solved, thus
obtaining

θb(ζ), (18)

g(ζ < 0) �
Pe
α

e
Peζ/α

􏽚
1

0
e

− Peζ′/αqw ζ′( 􏼁dζ′, (19)

g(0≤ ζ ≤ 1) �
Pe
α

e
Peζ/α

􏽚
1

ζ
e

− Peζ′/α
qw ζ′( 􏼁dζ′, (20)

g(ζ > 1) � 0, (21)

IFw(ζ < 0) � 0,

IFw(ζ > 1) � 1,
(22)

IFw(0≤ ζ ≤ 1) � 􏽚
ζ

0
qw ζ′( 􏼁dζ′. (23)

It can be observed that, by neglecting the viscous dis-
sipation, that is, by setting Br � 0, the bulk temperature
profile is independent of the velocity profile, resulting in the
same for slip (Kn≠ 0, χ ≠ 1) and for no-slip flows
(Kn � 0, χ � 1).

By substituting the expression for θb, (18) into the
transport equation (12), one arrives at the following equation
for the auxiliary function ϕ(ρ, ζ):

1
ρ

z

zρ
ρ

zϕ
zρ

􏼠 􏼡 � 2 g(ζ) + 8Brχ2􏼐 􏼑(v(ρ) − 1)

+ 2 Fw(ζ) + 8Brχ2􏼐 􏼑 − 32Brχ2ρ2.

(24)

By solving (24) along the radial coordinate, one arrives at
the following expression for ϕ(ρ, ζ) satisfying the boundary
conditions equation (14):

ϕ(ρ, ζ) � Fw(ζ) + 8Brχ2(1 + χ) + g(ζ)χ􏽨 􏽩
ρ2

2
+

− 8Brχ2(1 + χ) + g(ζ)χ􏽨 􏽩
ρ4

4
+ C(ζ).

(25)

%e function C(ζ) can be determined by enforcing the
integral constraint equation (10):

C(ζ) � g(ζ)χ
χ
24

−
1
6

􏼒 􏼓 + Fw(ζ)
χ
12

−
1
4

􏼒 􏼓

+ Brχ2
χ2

3
− χ −

4
3

􏼠 􏼡.

(26)

It can be observed that, in the case of very long-thin
channels, that is, for α⟶ 0, the analytical solution,
equations (18)–(23),(25)–(26), strongly simplifies because

lim
Pe/α⟶∞

g ζ,
Pe
α

􏼒 􏼓 � Fw(ζ), (27)

and the dimensionless temperature profile attains the form

θ∞(ρ, ζ) �
8
Pe2

Fw(ζ) +
Pe
α

IFw(ζ) + 8Brχ2 ζ + β−
(( 􏼁􏼐 􏼑􏼔 􏼕

􏽼√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√􏽽
θb(ζ)

+

+(1 + χ) Fw(ζ) + 8Brχ2􏽨 􏽩
ρ2

2
− 8Brχ2(1 + χ) + Fw(ζ)χ􏽨 􏽩

ρ4

4􏽼√√√√√√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√√√√√√􏽽
ϕ(ρ,ζ)

+

+ Fw(ζ) −
1
4

−
χ
12

+
χ2

24
􏼠 􏼡 + Brχ2 −

4
3

− χ +
χ2

3
􏼠 􏼡

􏽼√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√􏽽
C(ζ)

,

(28)

representing the asymptotic (infinite length of the heating
section) fully developed temperature profile.

For qw(ζ) � 1 (i.e., constant wall heat flux) and for β− �

0 (i.e., no upstream section) one recovers the fully developed
temperature profile θ∞ for a constant wall heat flux [26, 27],
usually written in terms of the dimensionless axial coor-
dinate ξ � z/(PeR):

θ∞(ρ, ζ) � 4 1 + 8Brχ2􏽨 􏽩ξ + 1 + 8Brχ2􏽨 􏽩(1 + χ)
ρ2

2
+

− 8Brχ2(1 + χ) + χ􏽨 􏽩
ρ4

4
+

8
Pe2

+

+ −
1
4

−
χ
12

+
χ2

24
􏼠 􏼡 + Brχ2 −

4
3

− χ +
χ2

3
􏼠 􏼡.

(29)
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3. Comparison with Numerical Results

In order to verify the correctness of the analytical solution
equations (18)–(23),(25)–(26) and to identify the limits of
validity in terms of Pe and α, the transport problem
equations (2)–(8) have been solved with finite elements
method (FEM, Comsol 3.5 a).

%e convection-diffusion package in stationary condi-
tions has been used. Lagrangian quadratic elements are
chosen. %e linear solver adopted is UMFPACK, with rel-
ative tolerance 10− 12.

%e number of finite elements is 3 × 105 with a non-
uniform mesh. %e maximum element size in all the three
subdomains (ζ < 0, 0≤ ζ ≤ 1, and ζ > 1) is 1 × 10− 2. Smaller
elements have been located close to the boundaries. Spe-
cifically, a maximum element size of 2 × 10− 4 is chosen at the
external boundary (0≤ ζ ≤ 1, ρ � 1) and at the internal cross
sections (ζ � 0, 1, 0≤ ρ≤ 1), that is, at the internal bound-
aries between the insulated and the heated regions.

Figure 2 shows the computational domain and the mesh
element size adopted for the entire set of simulations with
β− � β+ � 1. %e mesh adopted guarantees an accurate
description of temperature gradients for all the wall heat flux
functions adopted (continuous or discontinuous at ζ � 0, 1)
and for all the values of Pe analyzed.

As test cases, three different expressions for the wall heat
flux function qw(ζ) have been considered.

(1) A triangular function:

qw(ζ) �
4ζ, for ≤ ζ < 1/2,

qw(ζ) � 4 − 4ζ , for 1/2≤ ζ ≤ 1,
􏼨 (30)

for which the corresponding integral functions g(ζ)

and IFw(ζ) can be easily computed (nonreported
here for the sake of brevity).

(2) An exponential function [19], decreasing along ζ for
n> 0 and increasing along ζ for n< 0:

qw(ζ) �
ne− nζ

1 − e− n
. (31)

%e corresponding integral functions g(ζ) and IFw(ζ)

attain the form

g(ζ < 0) �
nePeζ/α

1 − e − n

Pe/α
(Pe/α) + n

􏼠 􏼡 1 − e
− ((Pe/α)+n)

􏽨 􏽩,

g(ζ > 1) � 0,

g(0≤ ζ ≤ 1) �
ne− nζ

1 − e− n

Pe/α
(Pe/α) + n

􏼠 􏼡 1 − e
− ((Pe/α)+n)(1− ζ)

􏽨 􏽩,

IFw(ζ < 0) � 0,

IFw(ζ > 1) � 1,

IFw(0≤ ζ ≤ 1) �
1 − e− nζ

1 − e − n
.

(32)

(3) %e uniform wall heat flux function qw(ζ) � 1 that
can be obtained as a limiting case of the exponential
function for n⟶ 0.

3.1. Temperature Profiles. Figure 3 shows the excellent
agreement between numerical and analytical results for the
temperature profiles in both the upstream and downstream
sections for the triangular wall heat flux function. In this
case, the function Fw(ζ) is continuous at ζ � 0 and ζ � 1 so
that the simplifying assumption equation (11)fd11 works
well in the entire transport domain. %e results are shown
for a high Pe value Pe � 100 at the limit of validity of the
assumption equation (9)fd9.

It can be observed that there is a significant effect of the
upstream thermally insulated section because the bulk
temperature is order of unity, for Br � 0.1, when the fluid
enters the heated section. Even in the case of low dissipation,
that is, Br � 0.01, the temperature profile is significantly
affected by the presence of the upstream section. %e be-
haviour in the thermal development region (close to ζ � 0) is
well described by the analytical solution.

Figures 4(a)and 4(b) show the comparison between
analytical and numerical results for increasing values of Pe
in terms of the dimensionless bulk temperature θb(ζ) and
wall temperature θw(ζ) for the constant wall heat flux
function.

%e wall temperature θw(ζ), accounting for the tem-
perature jump induced by the rarefaction effect, is given by

Max: 0.0125

Min: 1.794e – 4

0.012

0.01

0.008

0.006

0.004

0.002

–0.5

–1

–0.5

0

0.5

Ze
ta

1

1.5

2

0.5
rho

Mesh element size

1 1.50

Figure 2: Color plot of the mesh element size [dimensionless units]
for the computational domain (− β− ≤ ζ ≤ 1 + β+, 0≤ ρ≤ 1) for
β− � β+ � 1.
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θw(ζ) � θ(1, ζ) + 2bKn
zθ
zρ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ρ�1
� θb(ζ) + ϕ(1, ζ) + 2bKnFw(ζ),

b �
2 − FT

FT

2c

c + 1
1
Pr

,

(33)

where FT � 1 (thermal accommodation coefficient), c � 1.4,
and Pr � 0.7 are assumed to be the typical values for air
[26–28].

It can be observed that model predictions for θb(ζ) are
actually very accurate in the whole range of Peclet values
Pe ∈ [10− 2, 105] because (1), at low Pe values, the simplifying
assumption (z2ϕ/zζ2)≪ (d2θb/dζ

2
) holds true and (2), at

high Pe values, the entire axial conduction term (z2θ/zζ2)

becomes negligible with respect to the axial convective
contribution (Peα/4)v(ρ)(zθ/zζ) [38–40].

Model predictions for the wall temperature θw are ac-
curate for small-intermediate values of Pe, Pe≤ 100. Indeed,
the analytical solution for θw follows quite closely the nu-
merical solution also for Pe � 103, but small errors (related
to the simplifying assumption equation (11)fd11 that fails at
ζ � 0 and ζ � 1 for the uniform wall heat flux) are not
negligible and are amplified when focusing on the spatial
behaviour of local Nusselt number close to ζ � 0, 1.

3.2. Local Nusselt Number. %e local Nusselt number Nu(ζ)

in the heating section (0≤ ζ ≤ 1) attains the form

Nu(0≤ ζ ≤ 1) �
2qw

θw − θb

�
2qw(ζ)

ϕ(1, ζ) + 2bKnqw(ζ)

�
2qw(ζ)

qw(ζ)((1/4) +(χ/12) + 2bKn) + 8Brχ2(1 + χ) + g(ζ, (Pe/α))χ( 􏼁((1/12) +(χ/24))􏼂 􏼃
,

(34)

and is a function solely of the ratio Pe/α and not of Pe and α
separately. Moreover, the local Nusselt number is inde-
pendent of the lengths β− and β+ of the upstream and
downstream thermally insulated regions.

%e two limiting cases Nu0 for (Pe/α)⟶ 0 (no axial
convection) and Nu∞ for (Pe/α)⟶∞ (Nusselt based on

the fully developed temperature profile θ∞) can be easily
recovered from (34)fd35 by considering that

lim
Pe/α⟶0

g(ζ ,Pe/α) � 0,

lim
Pe/α⟶∞

g(ζ ,Pe/α) � qw(ζ),
(35)

–1

–0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

ζ

ρ

0.05

3

10

13

(a)

–1

–0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

ζ

ρ

0.05

0.3

4.55

4.9

(b)

Figure 3: Contour plot of the dimensionless temperature θ(ρ, ζ) for the triangular wall heat flux for Pe � 100, α � 0.02, and β− � β+ � 1.
Comparison between numerical results (black lines with dots) and analytical results (continuous red lines). (a) Br � 0.1, Kn � 0.0; (b)
Br � 0.01, Kn � 0. Labels indicate some reference temperature values.
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thus obtaining

Nu0 �
2qw(ζ)

qw(ζ)((1/4) +(χ/12) + 2bKn) + 8Brχ2(1 + χ)((1/12) +(χ/24))􏼂 􏼃
, (36)

Nu∞ �
2qw(ζ)

qw(ζ) (1/4) +(χ/6) + χ2/24( 􏼁 + 2bKn( 􏼁 + 8Brχ2(1 + χ)((1/12) +(χ/24))􏼂 􏼃
. (37)

Figures 5(a)and 5(b) show the comparison between
numerical results (curves with dots) and analytical re-
sults for the local Nusselt number Nu(ζ) for low-in-
termediate values of Pe � 10− 2, 10− 1, 100, 101 for the
triangular wall heat flux (continuous at ζ � 0, 1) and for
the uniform wall heat flux (discontinuous at ζ � 0, 1). %e
analytical solution is very accurate for the triangular
function in the whole ζ range while deviations from the
numerical solution can be observed for ζ < 0.015 and
ζ > 0.99 for the uniform wall heat flux due to the sim-
plifying assumption (11)fd11 that fails at discontinuity
points ζ � 0, 1.

However, the low accuracy of the analytical solution
close to ζ � 0, 1 for a discontinuous wall heat flux has a very
small impact of the average Nusselt number:

〈Nu〉 � 􏽚
1

0
Nu ζ′( 􏼁dζ′. (38)

Figures 6(a)and 6(b) show the excellent agreement be-
tween numerical and analytical results for 〈Nu〉 as a
function of Pe for the exponential wall heat flux function
(discontinuous at ζ � 0, 1) in the presence of dissipation
Br> 0, for constant n � 0, axially increasing (n< 0) and
decreasing (n> 0) wall heat flux. All data refers to an aspect
ratio α � 0.02 (long-thin channel and long preheating sec-
tion) and show an excellent agreement with numerical data
up to Pe≃20 − 40.

4. Limits of Validity of the Analytical Solution

%e analytical expression proposed is reliable also for larger
values of the aspect ratio (finite-length channel). Figure 7
shows the comparison between numerical and analytical
results for α � 0.02 and α � 0.1.

It can be observed that different curves, corresponding to
different values of the aspect ratio, saturate towards the same
limiting value, corresponding to the average Nusselt number
〈Nu∞〉 evaluated on the basis of the fully developed tem-
perature profile θ∞. However, the larger is the value of α, the
smaller is the range of validity, in terms of Pe values, of the
fully developed profile, and the influence of the thermal
developing region must be necessarily accounted for (like in
the analytical solution proposed) in order to have an ac-
curate estimate of the average Nusselt number.

%is observation becomes more evident by plotting the
same data as in Figure 7 as a function of Pe/α instead of Pe
(see Figure 8(a)).

Indeed, numerical (and analytical) results for 〈Nu〉

collapse onto an invariant curve when plotted as function of
Pe/α for low-intermediate Peclet values Pe< 100; see Fig-
ure 8 (A), and the asymptotic behaviour sets for Pe/α≃102.

On the other hand, for high Peclet values, streamwise
conduction becomes negligible and numerical results for
〈Nu〉, for different aspect ratios, collapse onto a unique
invariant curve for (Peα/4)> 10− 1 when plotted as a
function of (Peα/4) (see Figure 8(b)).
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Figure 4: Comparison between numerical (blue dots) and analytical results (red continuous lines) for the constant wall heat flux qw(ζ) � 1,
Br � 0.1, Kn � 0.0, α � 0.02, β− � β+ � 1. (a) θb versus ζ for Pe � 100, 101, 102, 103, 104, 105; (b) θw versus ζ for Pe � 10− 2,

10− 1, 100, 101, 102, 103. %e arrows indicate increasing values of Pe.
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Figure 6: Comparison between numerical (red curves with dots) and analytical results (blue continuous lines) for the average Nusselt 〈Nu〉

as a function of Pe for the exponential wall heat flux function qw(ζ) � (ne− nζ/1 − e− n), Br � 0.1, Kn � 0.0, α � 0.02, β+ � β− � 2. (a)
Constant wall heat flux n � 0 and exponentially increasing wall heat flux n � − 1, − 2, − 3, − 5. (b) Constant wall heat flux n � 0 and ex-
ponentially decreasing wall heat flux n � 1, 2, 3.
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Figure 5: Comparison between numerical (blue curves with dots) and analytical results (red continuous lines) for Nu(ζ) versus ζ. %e
arrows indicate increasing values of Pe. Br � 0.1, Kn � 0.0, α � 0.02, β+ � β− � 1, Pe � 10− 2, 10− 1, 100, 101. (a) Triangular wall heat flux. (b)
Uniform wall heat flux.
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From these observations, it follows that the analytical
solution proposed is actually reliable for 0< (Peα/4)≤ 10− 1

that implies for 0<Pe≤ (4 · 10− 1/α) (see Figure 8(b)). On
the other hand, the solution 〈Nu∞〉 based on the fully
developed temperature profile θ∞ is valid only in the range
(Pe/α)≥ 102 and (Peα/4)≤ 10− 1 that implies
102α≤Pe≤ (4 · 10− 1/α).

Figure 9 shows the range of validity, in terms of Pe and α
values, of the analytical solution proposed in (34)fd35 (re-
gion with vertical bars) and of that based on the fully de-
veloped temperature profile Nu∞ (triangular region
indicated by arrows), the latter reducing to an empty set for
α⟶ 0.063.

Data reported in Figures 8(a), 8(b), and 9 refer to a case
in which the rarefaction effect is not present since Kn � 0.
%e same analysis can be performed by including the effect
of rarefaction (Kn≠ 0). %e region of stability of the ana-
lytical solution for Kn≠ 0 almost coincides with that for
Kn � 0.

%e next section analyzes the influence of different pa-
rameters and of different wall heat flux functions on the
average Nusselt number 〈Nu∞〉, focusing exclusively on the
range of validity of the analytical expression equation (34)fd35.

5. Influence of Wall Heat Flux Function and
Transport Parameters Br and Kn

From a preliminary analysis of data reported in Figures 6(a)-
6(b), it can be observed that, in presence of dissipation, that
is, Br> 0, the uniform wall heat flux function represents the
best heating protocol (larger value of 〈Nu∞〉 for low-in-
termediate values of Pe ) with respect to both monotonically
increasing or monotonically decreasing (exponential) wall
heat flux functions.

For the axially increasing wall heat flux, the average
Nusselt number exhibits a minimum for Pe≃5α (see
Figure 6(a)) and the minimum is more pronounced for
increasing values of n, corresponding to an increasing

amount of energy furnished close to the channel outlet ζ � 1.
For Br> 0, no minimum is observed for decreasing wall heat
flux functions (see Figure 6(b)).

For a constant wall heat function qw � 1, 〈Nu∞〉 is a
monotonically decreasing function of Pe/α, attaining values
in the range [〈Nu∞〉, 〈Nu0〉].

Figures 10(a)and 10(b) show the upper bound 〈Nu0〉

and the lower bound 〈Nu∞〉 as a function of Kn for
Br � 0, 0.05, 0.1.%e effect of dissipation is to lower 〈Nu〉 by
decreasing both the upper and lower bound.%e effect of Kn

is to monotonically lower both the upper and the lower
bounds in the absence of dissipation Br � 0 while, for Br> 0,
the upper and lower bounds exhibit a maximum as a
function of Kn.

In the absence of dissipation, that is, Br � 0, both
Nu0(ζ) and Nu∞(ζ) become constant and independent of
the wall heat flux function (see (37) and (38) for Br � 0). For
this reason, the values of 〈Nu0〉 and 〈Nu∞〉 reported in
Figures 10 A-B for Br � 0 represent the asymptotic limits
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Figure 8: Comparison between numerical (red dotted lines) and analytical results (blue continuous lines) for the average Nusselt 〈Nu〉 as a
function of Pe/α (a) and Peα/4 (b) for qw(ζ) � 1. Two different values of α are considered, α � 0.02 and α � 0.1. Figures 8(a)-8(b) refer to
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valid for any other wall heat flux function. However, 〈Nu∞〉

may not be the minimum value attained by 〈Nu〉 because it
may exhibit a minimum for intermediate value of Pe,
depending on the wall heat flux function.

In order to investigate the role of the wall heat flux
function, the following analysis focuses on the exponential

function equation (31)fd31 that represents a decreasing
function of ζ for n> 0 and an increasing function of ζ for
n< 0. For n � 0, it reduces to the constant function qw � 1.
For this exponential heat function, 〈Nu〉 can be evaluated
analytically for Br � 0, thus obtaining

〈Nu〉 �
2

(n +(Pe/α))A(Kn) +(Pe/α)B(Kn)
n +

Pe

α
+ log 1 +

1 − e− (n − (Pe/α))( 􏼁(Pe/α)B(Kn)

(n +(Pe/α))A(Kn)
􏼠 􏼡􏼢 􏼣,

A(Kn) �
1
4

+
χ
12

+ 2bKn􏼒 􏼓,

B(Kn) �
χ
12

+
χ2

24
􏼠 􏼡.

(39)
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Figure 10: Upper bound 〈Nu0〉 and lower bound 〈Nu∞〉 for 〈Nu〉 as a function of Kn for Br � 0, 0.05, 0.1. Constant wall heat flux
qw(ζ) � 1.
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Figures 11(a)and 11(b) show the behaviour of 〈Nu〉 as a
function of Pe/α for Br � 0 and for Kn � 0, 0.1. %e arrow
indicates increasing values of n, in the range n ∈ [− 3, 3]. %e
larger is n, the larger is the value of 〈Nu〉 for low-inter-
mediate values of Pe. For n< 0, 〈Nu〉 exhibits a neat
minimum.

%erefore, in the absence of dissipation, a decreasing wall
heat flux function (n> 0) has to be preferred to a constant
heat flux function and the larger part of energy must be
provided at the entrance of the heating section. On the
contrary, in the presence of viscous dissipation, a constant
wall heat flux represents the best heating protocol, as shown
in Figures 6(a)-6(b) and Figures 12(a) and 12(b) for Br � 0.1.
High values of Kn amplify differences between increasing
and decreasing wall heat flux functions.

6. Conclusions

%e paper proposes an analytical solution for the extended
Graetz–Nusselt problem in finite-length microchannels,
including the effects of rarefaction, streamwise conduction,
and viscous dissipation. %e solution takes into account the
presence of a thermally insulated upstream section. Different
wall heat functions are analyzed.

A classical approach to the problem (see Jeong and Jeong
[28, 29] and Tunc and Bayazitoglu [30]) suggested solving
the nonhomogeneous energy balance equation for the di-
mensionless temperature θ(ρ, ζ) by setting
θ � θ1(ρ, ζ) + θ∞(ρ), where θ∞ is the fully developed
temperature profile and θ1 satisfies an homogeneous partial
differential equation that can be solved by the method of
separation of variables or by integral transform.

In the present case, the analysis focuses on finite-length
channels. %erefore, a different “decoupling” of the problem
is proposed leading to a more convenient way to express the
temperature profile θ as the linear combination of the bulk
temperature θb(ζ) and of the auxiliary function ϕ(ρ, ζ),
accounting for the dependence of the temperature on the
radial coordinate ρ and slowly varying with the axial

coordinate ζ. %is represents the peculiarity and the strength
of our approach to the problem, valid for low-intermediate
Peclet values. A similar approach can be adopted to deal with
the same transport problem with prescribed wall tempera-
ture condition (instead of a prescribed wall heat flux). A
Dirichlet boundary condition would require a different
nondimensionalization of the transport equation and the
solution of an inverse problem; that is, given the analytic
expression of the wall temperature for prescribed wall heat
flux, find the wall heat flux function qw(ζ) that guarantees
the required wall temperature profile. %is problem is al-
ready under investigation.

%e range of validity of the analytical solution is in-
vestigated by comparing analytical and numerical results
obtained with finite elements method. By analyzing different
wall heating functions, different values of Pe, and different
channel aspect ratios α, it is possible to conclude that the
analytical solution is reliable for Pe< (1/α).

%e influence of various transport parameters, that is, Br

and Kn, is analyzed in detail.
%e solution proposed is valid in the whole range of

Brinkman values considered in the microfluidic literature, that
is, Br≤ 0.1, and therefore valid also in the absence of dissi-
pation effects.Moreover the solution is valid for slip (Kn> 0) as
well as for nonslip flows (Kn � 0) and therefore also for viscous
fluids for which dissipation effects may not be negligible.

Actually, a value of Brinkman less than 0.1 − 0.2 is rather
realistic for microfluidic applications and compatible with
Peclet numbers less than 100.

Performances of different wall heat flux functions have
been analyzed in terms of the averaged Nusselt number
〈Nu〉. In the absence of viscous dissipation, the best heating
protocol is a decreasing wall heat flux function, where the
larger part of energy is furnished at the entrance of the
downstream-heated section.

In the presence of dissipation, that is, Br> 0, the best
heating protocol is a uniform wall heat flux and decreasing
wall heat flux functions have to be preferred to increasing
wall heat flux functions.
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Figure 12: 〈Nu〉 versus Pe/α for qw(ζ) � (ne− nζ)/(1 − e− n) with viscous dissipation Br � 0.1. n � 0 (black broken line) corresponds to a
constant function qw(ζ) � 1. Blue lines with dots correspond to axially increasing wall heat flux, n< 0. Red continuous lines correspond to
axially decreasing wall heat flux, n> 0. (a) Kn � 0; (b) Kn � 0.1.
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In Appendix A the analytical solution proposed for
circular microchannels is extended to the case of flat 2-d
rectangular microchannels. %e influence of the cross sec-
tion aspect ratio for rectangular microchannels (three-di-
mensional problem) on slip-flow heat transfer [41, 42] is not
investigated.

Appendix

A. Flat Microchannels

%e analytical solution proposed for circular microchannels
(microtubes) can be extended to flat rectangular micro-
channels. Let 2H be channel height (the distance between
the two flat plates) and W the channel width with W≫H,
such that the hydraulic diameter Dh⟶ 4H.

%e laminar velocity profile, depending exclusively on
the cross section coordinate η � (y/H) ∈ [− 1, 1] and sat-
isfying the slip boundary condition Vz(y) � ∓[(2 − F)/
F]λ(zVz/zy) at y � ± H attains the form (for F � 1)

v(η) �
Vz(η)

U
�
3
2

1 − η2 + 4Kn( 􏼁

1 + 6Kn
�
3
2

1 − η2􏼐 􏼑χ +(1 − χ),

Kn �
λ
2H

,

χ �
1

1 + 6Kn
.

(A.1)

%e transport equation and boundary conditions for the
dimensionless temperature θ � (T − T0)k/(QavH) read as

−
Peα
4

v(η)
zθ
zζ

+
z2θ
zη2

+
α2

4
z2θ
zζ2

+ 18Brχ2η2 � 0, (A.2)

Jc

􏼌􏼌􏼌􏼌ζ�− β − � 0,

z

zζ
􏽚
1

− 1
Jc(η, ζ)dη􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�1+β+

� 12Brχ2,
(A.3)

zθ
zη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌η�0
� 0,

zθ
zη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌η�1
� Fw(ζ) �

0, for − β− ≤ ζ < 0,

qw(ζ), for 0≤ ζ ≤ 1,

0, for 1< ζ ≤ 1 + β+,

⎧⎪⎪⎨

⎪⎪⎩

(A.4)

where

Jc(η, ζ) �
Peα
4

v(η)θ(η, ζ), (A.5)

and all the dimensionless parameters are the same as defined
for microtubes by simply replacing the diameter D with the
channel height 2H

Pe �
U2H

k/ρfcp􏼐 􏼑
,

Br �
μU2

Qav2H
,

α �
2H

L
,

β−
�

L−

L
,

β+
�

L+

L
.

(A.6)

%e analytical solution θ(η, ζ) can be sought as the linear
combination of the bulk temperature θb(ζ) and of an
auxiliary function ϕ(η, ζ) satisfying the conditions

θb(ζ) �
1
2

􏽚

1

− 1

θv(η)dη,

1
2

􏽚

1

− 1

ϕ(η, ζ)v(η)dη � 0.

(A.7)

By assuming

zϕ
zζ
≪

dθb

dζ
,

z2ϕ
zζ2
≪

d2θb

dζ2
,

(A.8)

the transport equation (A.2) and the boundary conditions
equations (A.3) and (A.4) can be rewritten in terms of θb and
ϕ as follows:

−
Peα
4

v(η)
dθb

dζ
+

z2ϕ
zη2

+
α2

4
d2θb

dζ2
+ 18Brχ2η2 � 0, (A.9)

θb

􏼌􏼌􏼌􏼌ζ�− β− � 0,

Peα
4

dθb

dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�1+β+
� 6Brχ2,

(A.10)

zϕ
zη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌η�0
� 0,

zϕ
zη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌η�1
� Fw(ζ).

(A.11)

By integrating (A.2) over the entire cross section and by
enforcing the boundary conditions equation (A.4) at
η � 0, 1, one obtains the following equation for the bulk
temperature θb(ζ):
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−
Peα
4

dθb

dζ
+
α2

4
d2θb

dζ2
+ 6Brχ2 + Fw(ζ) � 0,

θb

􏼌􏼌􏼌􏼌ζ�− β− � 0,

Peα
4

dθb

dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�1+β+
� 6Brχ2,

(A.12)

which can be solved analytically, thus obtaining

θb(ζ) �
4

Pe2
g(ζ , (Pe/α)) − g(− β)􏼂

+
Pe

α
IFw(ζ) + 6Brχ2 z + β−

(( 􏼁􏼐 􏼑􏼕,

g(ζ < 0, (Pe/α)) �
Pe

α
e

(Peζ)/α
􏽚
1

0
e

− Peζ′( )/αqw ζ′( 􏼁dζ′,

g(0≤ ζ ≤ 1, (Pe/α)) �
Pe

α
e

(Peζ)/α
􏽚
1

ζ
e

− Peζ′( )/αqw ζ′( 􏼁dζ′,

g(ζ > 1, (Pe/α)) � 0,

IFw(ζ < 0) � 0,

IFw(0≤ ζ ≤ 1) � 􏽚
1

ζ
qw ζ′( 􏼁dζ ,

IFw(ζ > 1) � 1.

(A.13)

By substituting the expression for the bulk temperature
into the balance equation (A.9), one obtains the following
PDE for ϕ(η, ζ):

z2ϕ
zη2

� g(ζ , Pe/α) + 6Brχ2􏼐 􏼑((v(ρ) − 1)

+ Fw(ζ) + 6Brχ2􏼐 􏼑 − 18Brχ2η2,

(A.14)

which can be solved analytically for ϕ(η, ζ), thus
obtaining

ϕ(η, ζ) �
η2

4
6Brχ2(2 + χ) + g(ζ , (Pe/α))χ + 2Fw(ζ)􏽨 􏽩+

−
η4

8
6Brχ2(2 + χ) + g(ζ , (Pe/α))χ􏽨 􏽩 + C(ζ)

C(ζ) � −
7
20

Brχ2(2 + χ) −
7
120

g(ζ , (Pe/α))χ −
Fw(ζ)

6
.

(A.15)

%e analysis of the exact limits of validity of the ana-
lytical solution for a flat microchannel will be developed
elsewhere, by following the same approach presented for
microtubes.

B. List of Symbols

Br � μU2/(QavD): Brinkman number,
cp: fluid specific heat,
D: channel diameter,
F, FT: tangential momentum and thermal accommo-
dation coefficients,
g(ζ , (Pe/α)): integral function, (19)–(21),
h: heat transfer coefficient,
IFw(z): integral wall heat flux function, (22)-(23),
k: thermal conductivity,
Kn � (λ/D): Knudsen number,
L: length of the channel heated section,
L− , L+: upstream and downstream insulated channel
lengths,
Nu � (h D/k): Nusselt number,
〈Nu〉: average Nusselt number,
Nu0: Nusselt number for (Pe/α)⟶ 0,
Nu∞: Nusselt number for α⟶∞,
Pe � U D/(k/ρfcp): cross-sectional Peclet number,
qw(ζ) � (Qw(z/L))/Qav: dimensionless wall heat flux
function,
Qav: average wall heat flux,
r, z: radial and axial coordinates,
R: channel radius,
T: temperature,
T0: inlet temperature at z � − L− ,
U: average axial velocity,
Vz(r/R), v(ρ): dimensional and dimensionless axial
velocity profile, equation (1).

Greek symbols

α � D/L: channel aspect ratio,
β− � L− /L, β+ � L+/L: dimensionless insulated up-
stream and downstream section lengths,
θ � ((T − T0)k)/(QavR): dimensionless temperature,
θb(ζ): dimensionless bulk temperature,
λ: molecular mean free path,
ξ � z/(PeR): dimensionless axial coordinate entering
equation (29),
ϕ(ρ, ζ): auxiliary function, equation (9),
χ � 1/(1 + 8Kn)

ρ, ζ: dimensionless radial and axial coordinates,
ρf: fluid density.
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