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+e sensitivity analysis of molybdenum disulfide nanoparticles synthesis process is studied using Aspen Plus with the aim of
investigating the effect of reactants’ amounts on the production of molybdenum disulfide nanoparticles. +e adopted approach
consists in simulating the synthesis process based on experimental data, obtained at laboratory scale followed by sensitivity
analysis with respect to the following precursors: ammonium heptamolybdate, elemental sulfur, and hydrazine used as a reducing
agent. +e sensitivity analysis revealed that the precursors have more significant impact on the obtained amount of molybdenum
disulfide compared to hydrazine. +e obtained result showed that the approach adopted in the study might be of interest for
further investigation of the process design and scaling-up.

1. Introduction

+e solvothermal synthesis is among the widely used
methods for nanomaterials production through chemical
reactions in a closed system involving appropriate solvent at
temperatures higher than its boiling point. +e technique
was inspired from a natural production of many minerals in
the earth’s crust under the conditions of high temperature
and pressure permitting the formation of many minerals [1].
+is technique was used afterward for the production of
innovative nanomaterials of interest for different fields, such
as catalysis [2–8] and environment protection and energy
[9–11], as well as medicine [12] and mechanics [13]. As
known, nanomaterials are obtained using various methods
following bottom-up and top-down approaches [14]. +e
top-down method consists in breaking down large pieces of
material to generate the required nanostructures, whereas
bottom-up approach implies assembling single atoms and
molecules into larger nanostructures. +e bottom-up ap-
proach is more advantageous than the top-down approach
with respect to nanomaterial production, particularly, the
solvothermal method. Its application was found to be

efficient for obtaining a variety of structures, sizes, and
morphologies that drew attention for applications in het-
erogeneous catalysis, electrochemistry, and tribology [15–
17]. On the other hand and as reported in our previous work,
the solvothermal approach proves to be more eco-friendly in
comparison with other technics [18].

Among the most studied nanomaterials, molybdenum
disulfide has shown interesting properties regarding various
applications, among which it is used as wind turbines lu-
bricants additive [19]. As reported in our previous work, the
preparation of molybdenum disulfide via the solvothermal
method is quite easy and consists in mixing reactants in a
Teflon-lined stainless steel autoclave filled with a solvent up
to 40%–80% of its total volume [8]. +e autoclave is
maintained at an appropriate temperature and time needed
to allow reaction process to occur following either one or
two steps. +e use of surfactant, phase transferring agent, or
templates such as silicon dioxide was found to help the
control of molybdenum disulfide nanomaterials size and
shape [20–22]. Indeed, the micellar structures are formed
from self-assembling of surfactant molecules and yield to
nanometre size droplets with insoluble cores and soluble
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shells. +e process provides an interesting template con-
tribution as nanoreactors for the synthesis of nanoparticles
with controllable diameter. +us, selection of appropriate
surfactant type and amount is required, considering their
determining role with respect to the chemical composition
of the final product [23, 24]. On the other hand, even though
the surfactants have the ability to help in the growth of
nanoparticles as well as their size and shape, the obtained
materials might exhibit nonhomogeneity in their chemical
composition and crystallinity [13]. Hence, solvothermal
synthesis proceeds generally, via three steps: first, the for-
mation of a supersaturated solution, then nucleation, and
finally nuclei growth. Note that the powder formation is
controlled also by fluctuations phenomena in the super-
saturated solution occurring during synthesis process [11].
+us, it is important to study the correlation of pressure and
temperature as well as the nature of solvent that affects the
dielectric constants permitting higher supersaturation de-
gree, in addition to the role of enhanced nucleation sites and
rate, occurring under supercritical conditions. So far less
data are available to provide comprehensive understanding
of molybdenum disulfide solvothermal synthesis mecha-
nism. Also, further kinetic and thermodynamic data are still
lacking so as to help the scaling-up study. Nevertheless, this
issue can be addressed through process simulation making
use of available data obtained at laboratory scale. +e ap-
proach can be of interest with respect to cost estimation and
evaluation of the potential of process transfer at industrial
scale, as reported in several studies [25, 26].

In this regard, the use of Aspen Plus V9 can be of interest
considering its ability to model complex processes using
simple graphical interface [27]. +e software allows, also, the
use of available broad database of chemicals and physical
parameters that permit built-in operation units suitable for
sensitivity analysis and modelling of various processes re-
lated to petrochemicals [28], catalysts [29], hydrogen pro-
duction [30], and carbon dioxide capture [31]. +e
application of Aspen Plus was reported in the field of
nanotechnology [32, 33]; however, it should be pointed out
that, to the best of our knowledge, this approach has never
been used for investigating such nanomaterials synthesis.
Hence, the present work is devoted to sensitivity analysis and
simulation of large-scale production of molybdenum
disulfide nanoparticles, using Aspen Plus. +e study is
carried out based on our data concerning the solvothermal
preparation of molybdenum disulfide nanoparticles under
mild conditions at laboratory scale [17].

2. Materials and Methods

2.1. Experimental. For the synthesis technique adopted in
this work, we have used the one-pot solvothermal process
developed by Akram et al. allowing the preparation of well-
dispersed molybdenum disulfide nanospheres [17]. +e used
reagents were purchased from Sigma-Aldrich and used
without further purification (Table 1). +e synthesis process
is as follows: putting 0.14 g of ammonium heptamolybdate
((NH4)6Mo7O24, H2O), 0.05 g of elemental sulfur (S), 1.15 g
of lithium hydroxide (LiOH·H2O), 0.06 g of ammonium

carbonate ((NH4)2CO3), and 8ml of hydrazine (N2H4·H2O)
in a Teflon-lined stainless steel autoclave. Ethylenediamine
was used (as solvent) to fill the autoclave up to 80% of its
total volume (200ml). +e autoclave was kept at 180°C
during 24 h. Finally, the solid phase (nanoparticles) is re-
covered by centrifugation, washed with water and acetone,
and then dried under vacuum at 60°C for 3 h. +e choice of
Ethylenediamine as solvent is justified by its ability to remain
liquid, under the solvothermal conditions allowing reactants
solubilisation.+is is due to its appropriate polarity enabling
better nucleation and growth of molybdenum disulfide
nanoparticles, helping better control of their morphology
and their sizes [15, 34].

Further details of the used equipment for the synthesis,
drying, and recovery of molybdenum disulfide nanoparticles
are presented in Table 2.

As reported, the synthesis of molybdenum disulfide
nanoparticles is assumed to occur following three steps [15]:

(i) Formation of a supersaturated solution as a result of
reactants decomposition in the solvent under the
aforementioned operating conditions

(ii) Nucleation and production of stables nuclei
(iii) Growth of the nuclei

2.2. Process Simulation. +e adopted approach for the
process simulation consists in using purpose-built software
to define a system with interconnected components that are
solved in either steady state or dynamic mode. Note that the
software uses thermodynamic models available in the da-
tabase and processes flow sheet diagrams so that the various
involved unit operations are appropriately positioned and
connected. +is allows obtaining stable operating point of
system behaviour with respect to balance calculation.

Generally, for process modelling, the adopted approach
consists in choosing the property method before the creation
of the process flowsheet and, then, solving it using Aspen
Plus. Note that the choice of property method is crucial
because of its influence on the accuracy of material and
energy balances [35]. +is choice depends on process pa-
rameters, such as reactants’ amounts, temperature, and
pressure in addition to other relevant parameters available in
the software database.

In the present study, the ELECNRTL model and the
Redlich–Kwong state equations were used together to cal-
culate the involved mixture properties. +e ELECNRTL
model has been applied mainly in electrolyte systems to
represent the solid-liquid equilibrium (SLE) of aqueous
multicomponent [36] and phase equilibrium of the mixture
of solvents in a wide temperature range [37], while
Redlich–Kwong equation is used for vapour phase prop-
erties [38].

Flow sheeting is a complete description of material and
energy streams needed for process simulation of interest for
sizing calculation and cost estimation of chemical process
[39, 40]. +e flowsheet creation starts by selecting involved
operation units and related equipment interconnects in-
tegration within a working system. Accordingly, the flow
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diagram of the overall process describing the studied mo-
lybdenum disulfide nanoparticles synthesis is shown in
Figure 1 while the corresponding flowsheet obtained using
Aspen Plus is given in Figure 2.

As shown, the process involves two main operation units
corresponding to the reactor and the separator. Further
descriptions of the major blocks of process flowsheet and the
involved streams are given in Tables 3 and 4.

So far, it is assumed for the studied process that the re-
action occurs in a stoichiometric reactor “RStoich,” chosen
among the seven built-in models provided by Aspen Plus
database. +is reactor seems to fit better the used autoclave
device and usually selected when relevant kinetic data are
lacking [41]. +e input flows correspond to reagents and
solvent, whereas the output flows are associated with products
and by-products, which are obtained following the separation
steps that involve centrifugation, washing, and drying in
vacuum in order to separate the solid phase (molybdenum
disulfide nanoparticles) from liquid phase (Waste).

In Aspen Plus, the centrifuge is modelled as CFuge block
located at the reactor outlet. +e output flow contains two
flows corresponding to liquid phase (C-waste) and the
output stream (C-output) of centrifugation and input of
separator block SEP, simulating the washing and drying
units. +e pure molybdenum disulfide is contained in the
Product stream, while all the other impurities are in the
Waste stream.

+e sensitivity analysis was carried out to study the effect
of the variation of the amount of some reactants (precursors
and hydrazine) on the final molybdenum disulfide nano-
particle production. +us, according to base-case re-
quirement, the adopted approach consists in changing the
amounts of each reactant (starting with ammonium hep-
tamolybdate, sulfur, and then hydrazine) while keeping the
amount of the other reactants and the experimental con-
ditions unchanged, and, afterwards, the amounts of two
reactants were changed simultaneously.

3. Results and Discussion

+e composition of the involved different streams, as
simulated by Aspen Plus, is summarized in Table 5. +e
results show that the synthesized molybdenum disulfide
with by-products is present in the reactor output. +e
centrifugation allows separation of almost all of the liquid
phase containing ethylenediamine from the solid phase
containing the synthesized nanoparticles, which are
subsequently purified after multiple washing and drying
steps.

+e amount of molybdenum disulfide estimated by
simulated process was about 100mg, which is in agreement
with the experimentally obtained data at laboratory scale
using similar reagents amount and operating conditions
[17]. Moreover, the simulation revealed that about 78% of
the initial amounts of both precursors (sulfur and ammo-
nium heptamolybdate) reacted during the synthesis process.
Also, it is shown that very small amount of hydrazine (0.5%)
was involved in the simulated process, which is in agreement
with its role as reducing agent. Indeed, under solvothermal
conditions, the use of hydrazine generates gaseous species
(ammonia, nitrogen) [42], which may lead to an autoge-
nously pressure inside the reactor as a result of supersatu-
ration phenomena. In this regard, it should be pointed out
that specific attention must be given to the use of hydrazine
because of its instability due to its low autoignition tem-
perature and low explosive limits, in addition to its severe
toxicity. On the other hand, the solvent ethylenediamine is
almost completely separated by centrifugation process with
recovery value about 98% (Table 5), which agrees with the
experimental result. +is is due to the fact that the used
solvent remains liquid under the operating conditions
making its recuperation easier for further recycling.

+e process sensitivity analysis, investigated using Aspen
Plus, is considered as an important task usually carried out
prior to the scaling-up study, so as to assess the effect of the
amounts of precursors and reducing agent on the final
product yield [43]. As mentioned earlier, the amount of each
precursor was changed in the input stream, starting first with
ammonium heptamolybdate, then sulfur, and finally hy-
drazine. As shown in Figures 3 and 4, the variation of the
precursor and hydrazine amount yields to a linear increase
of the molybdenum disulfide production until reaching a
stable maximal value. +is maximum amount of molyb-
denum disulfide obtained is equal to 0.13 g for 0.18 g am-
monium heptamolybdate, 0.10 g for 0.04 g of sulfur, and
0.10 g for 0.03 g of hydrazine while maintaining the same
amount of the other reagents.

Table 1: Summary of the amount and the role of all used reagents.

Reagent Amount Role CAS number
Ammonium heptamolybdate ((NH4)6Mo7O24, H2O) 0.14 g Precursor 12054-85-2
Sulfur (S) 0.05 g Precursor 7704-34-9
Lithium hydroxide (LiOH·H2O) 1.15 g Strong base 1310-65-2
Ammonium carbonate ((NH4)2CO3) 0.06 g Electrolyte 506-87-6
Hydrazine (N2H4·H2O) 8ml Reducing agent 7803-57-8
Ethylenediamine 144ml Solvent 107-15-3

Table 2: Summary of brand and models of instruments used in the
synthesis of molybdenum disulfide.

Instrument Brand Model
Teflon lined
stainless steel autoclave Parr instrument 4748A

Centrifuge Hermal Z356k
Synthesis
oven Binder ED35

Vaccum dryer
oven +ermo scientific Heraeus VT6025

International Journal of Chemical Engineering 3



�e simultaneous variation of both precursors follows a
linear pro�le allowing the monitoring of the impact of each
precursor on the �nal product amount as shown in Figure 5.
�e variation of the sulfur amount and the production of
molybdenum disul�de follow a general linear trend, while
the variation of the ammonium heptamolybdate amount
increases quickly to reach the maximum stable point. �e
production of increased molybdenum disul�de nano-
particles is related obviously to the increased amounts of the
used starting precursors. Figure 5 indicates the presence of
an optimal point corresponding to the maximal production
of molybdenum disul�de of 0.25 g for 0.10 g of sulfur and
0.38 g of ammonium heptamolybdate. �e obtained results
revealed that both sulfur and ammonium heptamolybdate

Table 3: Description of the blocks of the created ­owsheet.

Block Description

B1: separator Separator of components into two streams: Product
and Waste

B2: centrifuge Separation of liquid phase of r-output stream from
the solid phase

B3: stoichiometric reactor �e autoclave reactants input and r-output streams

Autoclave reactor

Reactants
feed

200ml

Reactor system

180°C
24h

Oven Centrifuge
Centrifuge

Water + acetone

Waste: water, acetone, unreacted
reactants, by-products

Waste: solvent, unreacted
liquids, by-products, etc.

Centrifugation

Dryer

Final
product

Washing
Vaccum drying

Vaccum pump
60°C
3h

Figure 1: Flow diagram of the molybdenum disul�de nanoparticles solvothermal synthesis process at laboratory scale.

Input

C-output

R-output
B2

B3

B1

Waste

Product

C-waste

Figure 2: Flowsheet created for molybdenum disul�de synthesis process using Aspen Plus (Snapshot).

Table 4: Description of the ­ow sheet streams.

Stream Description

Input Input stream containing
the reagents

r-output
Output of the reactor, composed of solution
containing the �nal product feeding the

centrifugation

C-output
Output stream of centrifugation and input of

separator. It contains the solid phase with small
amount of liquid phase

C-waste Stream of the liquid phase containing mainly the
solvents

Waste �e stream contains the remaining from the
separation process

Product Stream containing the pure molybdenum disul�de
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have similar in­uence on the production of molybdenum
disul�de.

Figures 6 and 7 show that, as compared with the pre-
cursors, the hydrazine does not have an important e�ect on
the amount of produced molybdenum disul�de, due to its

low reactivity in agreement with its role as a reducing agent.
Indeed, the obtained result revealed that molybdenum
disul�de production is proportional to the amount of am-
monium heptamolybdate and sulfur, as shown in Figures 6
and 7, respectively. �is �nding proves the stability of the
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Figure 3: E�ect of the precursor amount variation on the obtained molybdenum disul�de.
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Figure 4: E�ect of the hydrazine amount variation on the obtained
molybdenum disul�de.
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Figure 5: E�ect of the simultaneous variation of the precursor
amount on the obtained amount of molybdenum disul�de
nanoparticles.

Table 5: Results of the simulation with Aspen Plus.

Involved weight (g) Input R-output CF-waste C-output Waste Product
Sulfur 0.05 0.01 0.01 1.89×10− 4 0 0
Molybdenum disul�de 0 0.10 1.60×10− 3 0.10 0 0.10
Hydrazine 6.19 6.16 6.06 0.10 0.10 0
Nitrogen 0 0.03 0.03 4.41× 10− 4 4.41× 10− 4 0
Ammonia 0 0.01 0.01 8.97×10− 3 1.53×10− 4 0
Ammonium heptamolybdate 0.14 0.03 4.98×10− 4 0.03 0.03 0
Ethylenediamine 80.91 80.91 79.55 1.36 1.36 0
Water 0 0.05 0.04 7.56×10− 4 7.56×10− 4 0
Ammonium carbonate 0.14 0.14 0.14 2.35×10− 3 2.35×10− 3 0
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adopted approach that might be useful for simulation of the
product yield by the process at a larger scale.

4. Conclusions

In this paper, Aspen Plus software was used for simulation
and sensitivity analysis of molybdenum disul�de synthesis
process. �e simulation was based on the result obtained by
designed experiments carried at our laboratory, alongside
the software’s database and property methods. Interestingly,
simulated results were found to be in good agreement with
our experimental �nding. �e sensitivity analysis revealed
that sulfur, ammonium heptamolybdate, and hydrazine have
comparable e�ects on molybdenum disul�de production,
whereas the simultaneous variation of the involved com-
ponents does not have similar impact.�e adopted approach
shows quite interesting modelling stability that might pave
the way to the scaling-up investigation of molybdenum

disul�de at larger scale, although more accurate simulation
might require further thermodynamic and kinetic
investigations.
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