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A moving boundary model for food isothermal drying and shrinkage is applied to predict the time decay of water content and
sample volume, as well as water diffusivity for chayote discoid slices in the temperature range 40–70°C.(e core of the model is the
shrinkage velocity v, assumed equal to the water concentration gradient times a shrinkage function α representing the constitutive
equation of the food material under investigation. (e aim is to provide a case study to analyze and quantify differences and
accuracies of two different approaches for determining the shrinkage function α from typical experimental data of moisture
content X/X0 vs. rescaled volume V/V0: a fully analytical approach and a shortcut numerical one.

1. Introduction

Mathematical modeling in chemical engineering historically
provided the necessary support for understanding physics
and transport phenomena that underlie the chemical pro-
cesses. Mathematical models are also useful tools for the
optimization of experimental campaigns and for scale-up
from laboratory to industrial scale. During decades, more
and more mathematical modeling techniques have been
developed [1, 2] bridging different spatial and temporal
scales from the microscopic to the macroscopic ones [2, 3]
through the mesoscale [4–6]. (e translation of chemical
processes into equations has always been the unavoidable
step for efficient plant design, process analysis, or control.

Food process engineering represents one of the most
promising research fields in chemical engineering that
could benefit the enhancements of the theoretical re-
search. It was quite intentionally forgotten, in the past,
due to the complexity of food materials and of related
transformation processes. Among them, drying is

undoubtedly one of the most investigated, probably for its
huge industrial impact [7–9]. Actually, the drying process
is very complex as it implies material transformation at
several spatial scales (e.g., porous structure variation and
volume changes).

Far from accomplishing a multiscale mathematical
formulation able to account for the complexity of the all the
phenomena involved [10–12], mathematical models for
drying try to capture those features that are more important
from the technological point of view. Shrinkage is the
most relevant phenomenon connected to drying since it
influences consumer quality perception, costs for trans-
portation, and storage [13]. Among the wide literature on
this topic, it is worth mentioning some works: [14] in which
shrinkage kinetic laws are discussed; [15–17] in which ap-
plications of mathematical modeling techniques to food
drying can be found; [10] in which a general discussion on
advanced computational modeling for drying can be found;
[13, 18–20] in which different advanced approaches for
linking water content evolution to shrinkage can be found.
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In particular, Adrover et al. [21, 22] recently developed a
mathematicalmodel withmoving boundary for drying of food
materials by suitably modifying a classical moving boundary
model originally developed in [23, 24] for mass transport,
swelling, and dissolution in polymers [25, 26]. (e novelty
consists in the introduction of a new constitutive equation
linking the boundary movement to the water concentration
gradient through a proportionality factor α representing the
fingerprint of the food material under investigation.

In [21, 22], the authors were able to predict both water
content evolution and volume reduction following two dif-
ferent approaches for the determination of the proportion-
ality factor α from experiments: a fully analytical approach
and a shortcut one. Reasonably, from a computational point
of view, the first one could be more difficult to apply in many
cases of practical interest, e.g., for very complex geometries of
food samples, while the second one could not be accurate.

In this paper, the comparison between the two approaches
is carried out by using literature experimental data [27] on
chayote discoid slices. In this case, due to both the regular
shape and the aspect ratio of the samples, both approaches can
be easily adopted. (e aim is to provide a case study to test
differences in terms of accuracy of prediction of water content
evolution, volume reduction, and other significant physical
quantities such as the water diffusivity.

2. Moving BoundaryModel for Discoid Samples

We briefly recall the model equations derived in [21, 22].
Let Lr be a characteristic length of the food sample, ϕ the

point-wise water volume fraction, ϕ0 the uniform initial
water volume fraction, and D the water diffusivity at the
operating temperature.

By introducing the dimensionless space and time vari-
ables τ � tD/L2

r , x⟶ x/Lr, V⟶ V/L3
r , and S⟶ S/L2

r
and the dimensionless differential operators ∇⟶ ∇/Lr and
∇· ⟶∇/Lr·, the moving boundary model equations for the
normalized water volume fraction ψ � ϕ/ϕ0 attain the form:

zψ
zτ

� ∇ · (∇ψ − vψ)

� ∇ · ∇ψ 1− α(ψ)ϕ0ψ( 􏼁( 􏼁, x ∈ V(τ),

(1)

−∇ψ · n|xb
� Bim ψ|xb

−ψeq􏼐 􏼑, xb ∈ S(τ), (2)

dxb

dτ
�v|xb

� α(ψ)ϕ0∇ψ􏼂 􏼃
􏼌􏼌􏼌􏼌xb

, xb ∈ S(τ), (3)

v � α(ψ)ϕ0∇ψ,

Bim �
hmLr

D
Keq

ρair
ρs

,
(4)

V(0) � V0,

S(0) � S0,

ψ(x, 0) � 1,

(5)

where Bim is the mass transfer Biot number, hm is a mass
transfer coefficient, ρs is the solid (pulp) density, ρair is the air

density at the operating temperature, Keq is the water
partition ratio between the gas and the solid phases
H � Keq(ρw/ρs)ϕ, H being the absolute air humidity (kg
water/kg dry air).

(e core of the model is the shrinkage velocity v, pro-
portional to the water concentration gradient times a pro-
portionality function α(ψ) tuning, at each point of the system,
the relationship between water flux and volume reduction.
(e shrinkage velocity v evaluated at the boundary S(τ)

controls the movement of the boundary itself. (e time
evolution of the sample boundary, as described by equation
(3), is consistent with the classical description of boundary
movement induced by the transfer of a diffusing substance
across the interface [23, 24, 28]. In point of fact, equation (3)
represents a generalization of a classical Stefan condition
because it accounts for structural changes of the material
during the drying process through the introduction of the
shrinkage function α(ψ).

In dealing with a discoid sample (radius R0, thickness
L0) with R0 > L0, we choose as a reference length Lr � L0
so that the dimensionless initial domain is (ρ, ζ) ∈
[0, R0/L0] × [−1/2, 1/2], R0/L0 being the discoid aspect ratio.

For high values of the aspect ratio R0/L0, a one-
dimensional model can be readily adopted, describing the
time evolution of the rescaled water volume fraction ψ(ζ, τ)

along the axial coordinate (associated with the smallest
initial dimension L0) and the time evolution of the di-
mensionless sample thickness 􏽥L(τ) � L(τ)/L0 (uniform
along the radial direction):

zψ
zτ

�
z

zζ
zψ
zζ

1− α(ψ)ϕ0ψ( 􏼁􏼠 􏼡,

ζ ∈ −
􏽥L(τ)

2
,
􏽥L(τ)

2
􏼠 􏼡,

(6)

−
zψ
zζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�􏽥L/2
� Bim ψ|􏽥L/2 −ψeq􏼐 􏼑, (7)

zψ
zζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�−􏽥L/2
� Bim ψ|−􏽥L/2 −ψeq􏼐 􏼑,

or equivalently
zψ
zζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�0
� 0,

(8)

d(􏽥L/2)

dτ
� α(ψ)ϕ0

zψ
zζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏽥L/2
, 􏽥L(0) � 1. (9)

In this 1-d approach, both radial shrinkage and water
flux from the discoid lateral surface are neglected.

3. Estimation of the Shrinkage Factor α(ψ)

If we adopt a 1-d model for describing the drying process
of a discoid sample, the shrinkage factor α(ψ) can be
assumed a priori or it can be estimated from the thickness
calibration curve [29, 30], i.e., from experimental data of
rescaled thickness L/L0 vs. the moisture ratio as follows:
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d X/X0( 􏼁

dτ
�

1
ϕ0α ψP( 􏼁

d L/L0( 􏼁

dτ
⟶ α ψP( 􏼁 ≃

1
ϕ0

dL/L0

dX/X0
,

(10)

where ψP � ψ(xP) is the rescaled water volume fraction
evaluated, at each time instant t, in a suitable point xP, called
probe point P, placed on the sample surface and evolving in
time together with the surface itself. (e moisture ratio (or
rescaled moisture content) is defined as X/X0 �

Mw/M0
w � (W−Wd)/(W0 −Wd), where Mw is the amount

of water at time t, M0
w � ρwV0ϕ0 is the initial amount of

water in the sample,W is the sample weight (water + pulp) at
time t, and Wd is the dry sample weight. In terms of di-
mensionless variables the moisture ratio is X/X0 �

􏽒
V
ψ(x)dV � 􏽒

􏽥L/2
−􏽥L/2 ψ(ζ)dζ) X/X0.

In Adrover et al. [21, 22], we have shown that a proper
choice of the probe point is a point exhibiting the maximum
displacement (shrinkage). In this 1-d problem, since ψ is
exclusively a function of ζ, the probe point is necessarily the
surface point located at ζP � 􏽥L(τ)/2 and evolving in time
together with sample thickness 􏽥L(τ).

From equation (10), it is evident that the thickness
calibration curve G and, more specifically, its derivative G′
actually furnish an experimentally derived shrinkage factor
αX(X/X0):

αX �
G′ X/X0( 􏼁

ϕ0
,

L

L0
� G

X

X0
􏼠 􏼡,

G′
X

X0
􏼠 􏼡 �

dG

d X/X0( 􏼁
,

(11)

that depends on the integral quantity X/X0 and not on the
required probe point concentration ψP.

In order to recover α(ψP) from αX(X/X0), it is necessary
to identify a function g(ψP,Bim) relating X/X0 to ψP, thus
obtaining

X/X0 � g ψP,Bim( 􏼁⟶ α ψP( 􏼁 � αX g ψP,Bim( 􏼁( 􏼁

�
G′ g ψP,Bim( 􏼁( 􏼁

ϕ0
.

(12)

By considering that ψP explores the entire range of values
of ψ (from ψP � 1 at t � 0 to ψP � ψeq for t⟶∞), once
α(ψP) has been derived, we can adopt the same expression
for α(ψ) to evaluate the shrinkage velocity at each point in
the domain.

(e simplest model that can be adopted for the
g(ψP,Bim) function is a linear model, i.e., X/X0 � ψP that
implies α(ψP) � αX(ψP) � G′(ψP)/ϕ0 on the boundary and
consistently

α(ψ) �
G′(ψ)

ϕ0
, (13)

at each point in the sample domain.

By observing that

X

X0
� ψav

L

L0
􏼠 􏼡,

ψav �
1
􏽥L

􏽚

􏽥L/2

−􏽥L/2
ψ(ζ)dζ ≥ψP ∀t, ∀Bim,

(14)

it is easy to see that the linear approximation X/X0 � ψP
underestimates X/X0 at short time scales, when L/L0 ≃ 1,
while it overestimates X/X0 at large time scales, when
ψav ≃ ψP and L/L0≪ 1 (Figure 8 in Appendix). However, the
linear approximation g(ψP,Bim) � ψP, independent of Bim,
and the resulting shrinkage function equation (13) repre-
sents an acceptable compromise between simplicity and a
reasonable physical description of the drying process.
Moreover, equation (13) represents a good starting point for
a more accurate estimate of the shrinkage factor α(ψ).

In order to derive a more accurate explicit expression for
g(ψP,Bim), we can adopt two different strategies: (i) a fully
analytical approach [21] that can be easily applied for foods
characterized by linear of quadratic calibration curves
G(X/X0) and (ii) a shortcut numerical approach [22] that
can handle any nonlinear function G(X/X0).

In order to compare the two different approaches, we
focus on experimental data of convective hot-air drying of
chayote discoid samples characterized by a high initial aspect
ratio R0/L0 > 5 so that the 1-dmodel, described above, can be
reasonably applied.

4. Chayote Discoid Samples Air-Drying

We analyze experimental data of convective hot-air drying
of chayote discoid samples (data from [27]). Fruits were
washed and peeled. Cylindrical slices with initial radius
R0 � 35 mm and initial thickness L0 � 6 mm were prepared.
(e discoid aspect ratio is R0/L0 ≃ 5.83. Chayote drying (at
T � 40, 50, 60, 70°C) was carried out in a convective dryer
with air velocity 2 (m/s). (e initial moisture content was
93.38 ± 1.03 g water/100 g product. (e initial water volume
fraction was ϕ0 � 0.525 [31]. Available experimental data are
themoisture ratio X/X0 vs. time (min) and and the thickness
calibration curves L/L0 vs. X/X0 at the four temperatures
analyzed.

In [21, 22], Adrover et al. have shown that low values of
Bim lead to a smoother and flat boundary profile of the
sample, while higher values lead to pronounced cusps. By
considering the air velocity in the convective dryer and since
no information are reported in [27] regarding significant
nonuniformities of the sample thickness along the radial
direction, we assume in the further analysis a low value for
Bim, namely, Bim ∈ [1, 2].

Figures 1(a) and 1(b) show experimental data for L/L0 vs.
X/X0 and two different approximating functions, both valid
in the entire range of temperature analyzed: a second-order
polynomial function G2nd(X/X0) (Figure 1(a)) and a more
accurate fourth-order polynomial function G4th(X/X0)

(Figure 1(b)):
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G2nd X

X0
( ) � 1−∑

j�1

2

cj 1−
X

X0
( )

j

,

c1 � 0.460,

c2 � 0.378,

(15)

G4th X

X0
( ) � 1−∑

j�1

4

βj 1−
X

X0
( )

j

,

β1 � 0.411,
β2 � 1.155,
β3 � −2.131,
β4 � 1.445.

(16)

�e fourth-order polynomial function G4th(X/X0)
better captures the initial linear behaviour (for large
values of X/X0 ) as well as the signi�cant increase of the
volume reduction rate for larger time scales (small X/X0
values). Although both functions G4th and G2nd approx-
imate well the global behaviour (R2 � 0.9811 for G2nd and
R2 � 0.9887 for G4th), the two di�erent approximations
lead to very di�erent experimental shrinkage functions
αX(X/X0) � G′(X/X0)/ϕ0 as shown in Figure 2.

We adopt the G2nd quadratic function for applying the
fully analytical approach and the more accurate fourth-order
function G4th for the shortcut numerical approach. �e �nal
goal is to estimate with both approaches the e�ective water
di�usion coe�cient D and its dependence on temperature T
and to compare the results.

It should be observed that there is no physical di�er-
ence between the shrinkage function α(ψ) obtained with
the fully analytical approach and that obtained from the
shortcut approach. �e two approaches furnish di�erent

approximations of the shrinkage function α(ψ) that is an
intrinsic property, a sort of �ngerprint, of the material under
investigation.

In point of fact, during dehydration, the material exhibits
structural changes. As a consequence, sample volume can be
reduced by an amount that can be greater, less, or equal to the
volume of released water. �e introduction of the shrinkage
function α(ψ) allows us to take this feature into account because
α represents the proportionality factor between the pointwise
shrinkage velocity and the local water �ux.�is proportionality
factor changes with the water content in a nonlinear fashion for
many materials as can be deduced, in a straightforward way,
from the nonlinear behaviour of G(X/X0) or, better to say,
from the nonconstant behaviour of G′(X/X0).

For a material exhibiting a linear calibration curve
G(X/X0) � 1−ϕ0δ(1−X/X0), the corresponding shrinkage
function is constant α(ψ) � G′(X/X0)/ϕ0 � δ. If δ � 1, the
material exhibits ideal shrinkage because volume reduction
equals, at each time instant, the volume of released water.

However, in most cases,G(X/X0) is a nonlinear function
of X/X0. In the speci�c case of the chayote, G(X/X0) is an
increasing nonlinear function of X/X0, better approximated
by a fourth-order polynomial if we want to accurately de-
scribe its behaviour for small values ofX/X0, that is, on long
time scales of the dehydration process. �is implies that
while sample volume reduction and volume of released
water are comparable with each other at short time scales, on
the contrary, on longer time scales, when the rescaled
moisture contentX/X0 is below 40%, a structural collapse of
the sample occurs and the volume reduction is two to three
times larger than the volume of release water (Figure 2).

5. Analytical Approach

�e analytical approach can be easily applied when the
calibration curve L/L0 � G(X/X0) is well approximated by

L/
L 0

G2nd(X/X0)
T = 40°C
T = 50°C

T =  60°C
T =  70°C

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 10
X/X0

(a)

G4th(X/X0)
T = 40°C
T = 50°C

T = 60°C
T = 70°C

0
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0.4

0.6

0.8

1

L/
L 0

0.2 0.4 0.6 0.8 10
X/X0

(b)

Figure 1: Experimental data L/L0 vs.X/X0 for chayote discoid samples at four di�erent temperatures T � 40, 50, 60, and 70°C. Least-square
best �t with (a) a second-order polynomial function G2nd (equation (15)) and (b) a fourth-order polynomial function G4th (equation (16)).
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a linear or a quadratic function because the �rst step is to
enforce equation (14) that can be rewritten as

X

X0
� ψav

L

L0
� ψavG

X

X0
( ). (17)

By solving equation (17) with respect toX/X0, we obtain
an analytic expression for X/X0 as a function of ψav.

For a linear G function G(X/X0) � 1− c(1−X/X0),
equation (17) reads as

X

X0
� ψav 1− c 1−

X

X0
( )( ), (18)

that can be solved with respect to X/X0, thus obtaining
X

X0
� q ψav( ) �

ψav(1− c)
1−ψavc

. (19)

Analogously, for a quadratic G function, e.g., equations
(15) and (17) read as

X

X0
� ψav 1− c1 1−

X

X0
( )− c2 1−

X

X0
( )

2
 , (20)

that, solved with respect to X/X0, gives the following ex-
pression for q(ψav):

X

X0
� q ψav( ) �

−b +
��������
b2 − 4ac( )

√

2a
,

a ψav( ) � c2ψav,

b ψav( ) � 1− c1 + 2c2( )ψav,

c ψav( ) � c1 + c2 − 1( )ψav.

(21)

In the case of the calibration curve being an n-th order
polynomial, then the identi�cation of the q(ψav) function
would require the solution of an n-th order equation in
X/X0 and this would be extremely di�cult if not analytically
impossible.

�e second step in the analytical approach is to relate ψav
to ψP by adopting the following model that has been spe-
ci�cally derived for a one-dimensional drying and shrinkage
process (Appendix) and that explicitly takes into account the
in�uence of Bim as follows:

ψav ψP;Bim( ) � 1−
θ Bim( ) 1−ψP( )/ 1−ψeq( )( )

2

1 + θ Bim( )/ 1−ψeq( )( )− 1− δ Bim( )[ ] 1−ψP( )/ 1−ψeq( )( )
1/2 + δ Bim( ) 1−ψP( )/ 1−ψeq( )( )

2, (22)

θ Bim( ) �
1−ψeq

Bim
, (23) δ Bim( ) �

1−ψeq( ) + θ Bim( ) 3− 2σ Bim( )( )
3 1−ψeq( )

, (24)

2nd order
4th order

0.5
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1.5

2

2.5

3

3.5

4

4.5

α X
 (X

/X
0)

0.2 0.4 0.6 0.8 10
X/X0

Figure 2: Experimental shrinkage functions αX(X/X0) � G′(X/X0)/ϕ0 obtained from G2nd(X/X0) (equation (15)) and from G4th(X/X0)
(equation (16)).
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where

σ Bim( 􏼁 �
Bim Leq/L0􏼐 􏼑

2λ20
, (25)

2λ0tan λ0( 􏼁−Bim Leq/L0􏼐 􏼑 � 0. (26)

(e symbol λ0 represents the smallest positive root of
equation (26), and Leq/L0 is the asymptotic rescaled thick-
ness. (e analytic derivation of the equations (22)–(26)
relating ψav to ψP and Bim is reported in Appendix and is
independent of the shrinkage function α(ψ).

By making use of the analytic expression X/X0 � q(ψav),
equations (19) or (21) (the latter in the case of chayote
discoid samples), and the analytical expression for
ψav(ψP;Bim), equations (22)–(26), the more accurate ex-
pression for the shrinkage factor is obtained:

α(ψ) �
1
ϕ0

G′ q ψav ψ;Bim( 􏼁( 􏼁( 􏼁. (27)

(is can be used to solve the moving boundary model
equations (6)–(9).

Figure 3(a) shows the behaviour of α(ψ) obtained with
the linear approximation X/X0 � ψP, i.e., α(ψ) � G′(ψ)/ϕ0
(equation (13), red dashed line) and with the nonlinear
model equation (27) (blue curve) for chayote discoid
samples with thickness calibration curve G2nd(X/X0)

(equation (15)).
Figure 3(b) shows the corresponding 1-d moving

boundary model predictions for L/L0 vs. X/X0 and the
comparison with experimental data. We observe that the
model prediction for L/L0 vs. X/X0 with α(ψ) obtained with
the linear approximation (red dotted curve) is already sat-
isfactory (R2 � 0.935), but the improvement in model
predictions obtained by adopting the nonlinear model
equation (27) is significant (blue curve, R2 � 0.980) and
leads to a more accurate estimate of water diffusivity.

6. Shortcut Numerical Approach

In Section 5, we have shown that the analytical approach
requires two steps in order to evaluate an accurate ex-
pression for the g(ψP,Bim) function, directly relating X/X0
to ψP and Bim.(e first step is to evaluate the q(ψav) function
relating X/X0 to ψav. (e second step is to evaluate the
function ψav(ψP,Bim) relating ψav to ψP and Bim.

(e basic idea behind the shortcut numerical approach is
to make a direct use of numerical data obtained with the
moving boundary model in order to obtain an accurate
expression directly for X/X0 � g(ψP,Bim).

(e shortcut numerical approach stems from the fol-
lowing observation. In Section 5, we have shown that the
shrinkage function α(ψ) � G′(ψ)/ϕ0 (equation (13)) ob-
tained with the linear approximation X/X0 � ψP gives
reasonably good results in terms of model predictions of
experimental data for L/L0 vs. X/X0. Figure 4 supports this
observation as it shows the good agreement between the
experimental thickness calibration data for chayote discoid
samples and 1-d moving boundary model predictions (red

dotted curve) with α(ψ) given by equation (13) adopting, in
this case, the fourth-order more accurate approximating
function G4th(X/X0) (equation (16)).

(erefore, the first step in the shortcut approach is the
numerical integration of the moving boundary model with
the shrinkage function equation (13) obtained with the
linear approximation X/X0 � ψP (and with the more ac-
curate G4th(X/X0) function) in order to obtain a nu-
merical accurate estimate of the g(ψP,Bim) function,
i.e., X/X0 � g(ψP,Bim) (Figure 5(a), dots).

(e second step is to obtain an analytic expression for the
g(ψP,Bim) function by a least-square best fit of numerical
data X/X0 vs. ψP by means of the versatile sigmoid function:

g ψP,Bim( 􏼁 ≃ S ψP,Bim( 􏼁

� 1−
κ1 1−ψP( 􏼁

2

1 + κ1 − 1− κ2􏼂 􏼃 1−ψP( 􏼁
n

+ κ2 1−ψP( 􏼁
2,

(28)

where κ1, κ2, and n< 2 are best fit values (Figure 5(a),
continuous line).

(e more accurate expression for the shrinkage function
α(ψ) reads as

α(ψ) � αX S ψ,Bim( 􏼁( 􏼁 �
G′ S ψ,Bim( 􏼁( 􏼁

ϕ0
. (29)

Figure 5(b) shows the significant difference between the
shrinkage function α(ψ) obtained with the linear approxi-
mation X/X0 � ψP, i.e., α(ψ) � G′(ψ)/ϕ0 (equation (13), red
dashed line) and with the nonlinear model equations (28)
and (29) (blue curve) for chayote discoid samples with
thickness calibration curve G4th(X/X0) (equation (16)).

Figure 4 shows the corresponding 1-d moving boundary
model predictions for L/L0 vs. X/X0 and the comparison
with experimental data. Like for the fully analytical ap-
proach, we observe that the model prediction for L/L0 vs.
X/X0 with α(ψ) obtained with the linear approximation (red
dotted curve) is quite satisfactory but the adoption of the
nonlinear more refined model for α(ψ), equations (28) and
(29), permits the model to perfectly reproduce the experi-
mental thickness calibration data in the entire range of X/X0
values.

7. Estimation of Water Diffusivity

All the above analysis is independent of the water diffusivity
D as the thickness calibration curve L/L0 vs. X/X0 is time
independent.

(e moving boundary model is a time-dependent model
usually written in terms of dimensionless space and time
variables. Specifically, the dimensionless time adopted is τ �

tD/L2
0, L0 being the initial sample thickness, i.e., L0 � 6mm.
Once the shrinkage factor α(ψ) has been determined,

resulting the same for the four temperatures under in-
vestigation, since no significant differences have been ob-
served in the thickness calibration curves at the different
temperatures, the moving boundary model furnishes
a unique time-dependent curve X/X0 � f(τ) as well as
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a unique time-dependent curve L/L0 vs. τ for the four
temperatures.

�e value of water di�usivity D(T) at each operating
temperature is determined by means of a least-square best �t
of the model curve X/X0 � f(τL20/D(T)) onto the experi-
mental data for time decay of the moisture ratioX/X0 vs. t at

the corresponding temperature T, for the same value of Bim,
namely, Bim � 2, adopted for the estimate of the shrinkage
function α(ψ).

We followed two di�erent approaches for estimating the
shrinkage function α(ψ): the analytical and the shortcut
numerical approaches leading to two di�erent expressions
for α(ψ), namely, α2nd(ψ) (equation (27)) for the fully
analytical approach and α4th(ψ) (equation (29)) for the
shortcut numerical approach, and therefore to two di�erent
time-dependent curves X/X0 � f(τ), f2nd(τ) and f4th(τ),
respectively.

Figures 6(a) and 6(b) show the comparison between
experimental data for X/X0 vs. (t) (min) for chayote discoid
samples and the two model curves.

f2nd(τL20/D2nd(T)) and f4th(τL20/D4th(T)) with the best
�t di�usivity values are shown in Figure 7. Speci�cally, from
the analytical approach, one obtains D2nd(40°C) � 6.92×
10−10 (m2/s),D2nd(50°C) � 9.27× 10−10 (m2/s),D2nd(60°C) �
1.09× 10−9 (m2/s), and D2nd(70°C) � 1.35× 10−9 (m2/s), with
an Arrhenius correlation functionD(T) �D0 exp [−E/(RT)]
with D2nd

0 � 1.318 × 10−6 (m2/s) and E/R � 2358.38 (K).
From the shortcut numerical approach, one obtains D4th

(40°C) � 6.71×10−10 (m2/s), D4th(50°C) � 9×10−10 (m2/s),
D4th(60°C) � 1.06×10−9 (m2/s), and D4th(70°C) � 1.31 ×
10−9 (m2/s) with an Arrhenius correlation function with
D4th

0 � 1.28×10−6 (m2/s) and the same activation energy
E/R� 2358.38(K).

�e agreement between model curves and experimental
data for the time decay of the moisture ratio is extremely good
for both approaches, and di�erences between estimated dif-
fusivities are below 3% for all temperatures analyzed.

Di�usivities estimated from both approaches are
comparable with literature data for other vegetable prod-
ucts such as carrots (((2.58 × 10−10)/1.72) × 10−9 (m2/s),

Linear
Nonlinear

0.2 0.4 0.6 0.8 10
ψ

0.5

1

1.5

2

2.5

α

(a)

T = 40°C
T = 50°C
T = 60°C

T = 70°C
Linear
Nonlinear

0

0.2

0.4

0.6

0.8

1

L/
L 0

0.2 0.4 0.6 0.8 10
X/X0

(b)

Figure 3: (a) α(ψ) obtained with the linear approximation X/X0 � ψP, i.e., α(ψ) � G′(ψ)/ϕ0 (equation (13)) and with the nonlinear model
equation (27) for chayote discoid samples. (b) Comparison between experimental data for L/L0 vs.X/X0 for chayote discoid samples and the
1-d moving boundary model predictions obtained with the two di�erent models for α(ψ) shown in (a). For both �gures, the thickness
calibration curve adopted is G2nd(X/X0) (equation (15)) and Bim � 2.
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Figure 4: Comparison between experimental data for L/L0 vs.
X/X0 for chayote discoid samples and the 1-d moving boundary
model predictions obtained with the two di�erent models for α(ψ)
shown in Figure 5(b).�e red dotted curve shows model prediction
with the α function adopting the linear approximation X/X0 � ψP
(equation (13)). �e blue curve shows model predictions with the α
function adopting the nonlinear approximation equations (28) and
(29). �e thickness calibration curve adopted is G4th(X/X0)
(equation (16)) and Bim � 2.
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60–90°C), mango (((2.61 × 10−10)/1.30) × 10−9 (m2/s), 40–
70°C), and potatoes (((3.55 × 10−10)/1.92) × 10−9 (m2/s),
40–85°C) in which shrinkage has also been considered
[32–34].

�is result con�rms that both approaches are robust and
reliable and can be indi�erently adopted for predicting the
time decay of the moisture ratio as well as sample shrinkage
during the entire drying process.
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Figure 5: (a) X/X0 vs. ψP obtained from the numerical integration of the 1-d moving boundary model with α(ψ) � G′(ψ)/ϕ0 and Bim � 2.
Continuous lines represent the best �t curves S(ψP,Bim) (equation (28)) with κ1 � 0.247, κ2 � 0.243, and n � 0.044. (b) Shrinkage factor
α(ψ) obtained with the linear approximation X/X0 � ψP (equation (13)) and with the nonlinear approximation (equations (28) and (29)).
For both �gures, G(X/X0) � G4th(X/X0) (equation (16)).
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Figure 6: Experimental data X/X0 vs. (t) (min) for chayote discoid samples at four di�erent temperatures T � 40, 50, 60, and 70°C. Least-
square best �t with (a) f2nd(τL20/D2nd(T)) from the analytical approach and (b) f4th(τL20/D4th(T)) from the shortcut numerical approach.
L0 � 6mm. Bim � 2.
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8. Conclusions

In this paper, the comparison between the two ap-
proaches developed in [21, 22] for mathematical mod-
eling of food drying with shrinkage is carried out.

�e developed mathematical model consists of a mass
balance equation for water volume fraction evolution,
coupled to an equation for the movement of the
boundary. �e relationship between water concentra-
tion and boundary movement is introduced into the
system through the dependence of a shrinkage veloc-
ity on the concentration gradient times a shrinkage factor

α. �is represents the constitutive equation of the
material.

�e two developed approaches (fully analytical and
shortcut), precisely dealing with the determination of the
shrinkage factor α, were analyzed here and applied to the
literature data of chayote discoid sample drying.

We showed that, for the case discussed here, both ap-
proaches are able to provide accurate predictions of the
experimental data for moisture fraction and thickness re-
duction, as well as a good estimation of the physical
quantities involved (�rst of all, the water di�usion co-
e�cient) with almost the same computational e�orts.
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Figure 7: Estimated di�usivities D2nd(T) from the analytical approach and D4th(T) from the shortcut numerical approach. Continuous line
represents the Arrhenius correlation function D(T) � D0 exp [−E/(RT)] with D4th

0 � 1.28 × 10−6 (m2/s) and E/R � 2358.38 (K).
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Figure 8: Numerical results for ψav vs. ψP (a) and X/X0 vs. ψP (b) for the ideal shrinkage case α(ψ) � C � 1, ϕ0 � 0.5, and Bim � 1, 3, 5, 7.
Continuous lines represent the nonlinear model predictions (equation (C.1) for ψav and equations (19) and (C.1) for X/X0).
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However, this last consideration is true only in this
case. (e adoption of a one-dimensional simplified model
is, in fact, due to conditions of the samples (the sym-
metrical shape and the value of the aspect ratio) which,
as an instance, are in general not found in industrial
applications.

For such complex cases, although it is reasonable to
assume no differences in terms of prediction capabilities, the
computational efforts connected to the fully analytical ap-
proach could be very huge compared to the shortcut one or,
worst, it could not be pursued at all. Hence, the adoption of
the shortcut approach, having demonstrated its efficiency
here, can be an attractive opportunity (the only one in the
worst cases) to have an accurate description of the evolution
of the system through a mathematical model based on
balance equations.

Appendix

In this appendix, equations (22)–(26) are derived. Equations
(22)–(26) relate ψav to ψP, P being the probe point located at
ζP � 􏽥L/2, 􏽥L(0) � 1.

(e model equations (22)–(26) are derived from the
analysis of ψav vs. ψP in the two limiting cases of short and
long (asymptotic) time scales and are independent of the
shrinkage function α(ψ).

A. Short Time Scales

At the beginning of the process, when the shrinkage is small
and therefore negligible, it can be assumed that the water
concentration is almost uniform in the inner part of the
sample and equal to the initial uniform value ψ(0) � 1.
Moreover, we can assume that the concentration gradient is
localized in a boundary layer of thickness δ close to the
boundary where the water volume fraction is ψP.

By assuming a linear concentration profile in the
boundary layer, the average water concentration in the
sample ψav reads as

ψav � (1− 2δ)􏽼√√√􏽻􏽺√√√􏽽
inner part

+ 2 δ
1 + ψP

2
􏼒 􏼓
􏽼√√√√􏽻􏽺√√√√􏽽
boundary layer

.
(A.1)

(e thickness δ of the boundary layer depends on Bim
and can be estimated by enforcing the linear concentra-
tion profile in the boundary layer and the boundary
condition:

−
zψ
zζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�1/2
� Bim ψP −ψeq􏼐 􏼑⟶ δ �

1−ψP

Bim ψP −ψeq􏼐 􏼑
.

(A.2)

By substituting equation (A.2) for δ into equation (A.1)
for ψav, one obtains an analytic expression for ψav as a
function of ψP and Bim:

ψav � 1−
1−ψP( 􏼁

2

Bim ψP −ψeq􏼐 􏼑
, (A.3)

that is, valid at short time scales, i.e., when ψP ≃ 1.

By expanding equation (A.2) in power series about the
point ψP � 1, one obtains

ψav � 1−
1−ψP( 􏼁

2

Bim 1−ψeq􏼐 􏼑
+ O 1−ψP( 􏼁

3
, (A.4)

and therefore, a quadratic behaviour is predicted for 1−ψav
vs. 1−ψP at the short time scales of the drying process,
i.e., for ψP ≃ 1.

B. Long Time Scales

When approaching the asymptotic behaviour, the sample
shrinkage has almost reached its asymptotic value
􏽥Leq � Leq/L0 and concentration gradients are very small.
Since the shrinkage velocity v is proportional to the
pointwise concentration gradient, its contribution becomes
negligible and therefore the water volume fraction profile
ψ(ζ, τ) can be evaluated by solving the following pure
diffusion problem in a 1-d fixed boundary domain
ζ ∈ ((−􏽥Leq/2), (􏽥Leq/2)):

z􏽥ψ
zτ

�
z2􏽥ψ
zζ2

,

ζ ∈
−􏽥Leq

2
,
􏽥Leq

2
􏼠 􏼡,

z􏽥ψ
zζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�0
� 0,

z􏽥ψ
zζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌ζ�􏽥Leq/2
+Bim􏽥ψ

􏼌􏼌􏼌􏼌ζ�􏽥Leq/2
� 0,

(B.1)

where 􏽥ψ � ψ −ψeq attains the form

􏽥ψ(ζ, τ) � 􏽘

∞

h�0
ah(τ)cos

2λhζ
􏽥Leq

⎛⎝ ⎞⎠, (B.2)

ah(τ) � ah(0)exp −λ2hτ􏼐 􏼑, (B.3)

2λj tan λj􏼐 􏼑−Bim􏽥Leq � 0, j � 0, 1, . . . ,∞, (B.4)

and the quantities 􏽥ψav(τ) and 􏽥ψP(τ) can be evaluated as

􏽥ψav(τ) �
2

􏽥Leq
􏽚
​ 􏽥Leq/2

0
􏽥ψdζ � 􏽘

∞

h�0
ah(τ)

sin λh

λh

,

􏽥ψP(τ) � 􏽥ψ
􏽥Leq

2
, τ􏼠 􏼡 � 􏽘

∞

h�0
ah(τ)cos λk( 􏼁.

(B.5)

In the asymptotic limit τ⟶∞, given the expo-
nential decay of ah(τ), the leading term is the zero-order
term h � 0 associated with the dominant eigenvalue λ0,
given by the smallest positive root of equation (B.4), so
that
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lim
τ⟶∞

􏽥ψav(τ) � a0(τ)
sin λ0( 􏼁

λ0
,

lim
τ⟶∞

􏽥ψP(τ) � a0(τ)cos λ0( 􏼁.

(B.6)

Bymerging together equation (B.6), the following relation
between 􏽥ψav and 􏽥ψb is obtained, valid only for long time scales:

􏽥ψav �
tan λ0
λ0

􏼠 􏼡􏽥ψP �
Bim􏽥Leq

2λ20
􏼠 􏼡

􏽼√√√√􏽻􏽺√√√√􏽽
σ Bim( )

􏽥ψP.
(B.7)

Equation (B.7), rewritten in terms of the original vari-
ables ψav and ψP, reads as

ψav � ψeq + σ Bim( 􏼁 ψP −ψeq􏼐 􏼑, (B.8)

highlighting a linear relationship between ψav and
(ψP −ψeq) at long time scales of the drying process,
i.e., for ψP ≃ ψeq.

C. A Connection between Short and Long
Time Scales

In order to have an expression for ψav vs. ψP reliable in the
whole range ψP ∈ (ψeq, 1), the following sigmoid function is
adopted (equation (22) in the main text)

ψav ψP,Bim( 􏼁 � 1−
θ Bim( 􏼁 1−ψP( 􏼁/ 1−ψeq􏼐 􏼑􏼐 􏼑

2

1 + θ Bim( 􏼁/ 1−ψeq􏼐 􏼑􏼐 􏼑− 1− δ Bim( 􏼁􏽨 􏽩 1−ψP( 􏼁/ 1−ψeq􏼐 􏼑􏼐 􏼑
1/2

+ δ Bim( 􏼁 1−ψP( 􏼁/ 1−ψeq􏼐 􏼑􏼐 􏼑
2, (C.1)

that satisfies the two physical constraints ψav(1) � 1 (uni-
form initial water concentration) and ψav(ψeq) � ψeq (uni-
form water concentration equal to the equilibrium
concentration ψeq in the asymptotic limit).

(e two parameters θ(Bim) and δ(Bim) entering equa-
tion (C.1) can be obtained by enforcing the two limit be-
haviours, equation (A.4) for ψP ≃ 1 and equation (B.8) for
ψP ≃ ψeq.

By expanding equation (C.1) in power series about the
point ψP � 1, one obtains

ψav � 1− θ Bim( 􏼁 1−ψP/1−ψeq􏼐 􏼑
2

+ O 1−ψP( 􏼁
5/2

. (C.2)

By comparing equation (C.2) with equation (A.4) valid
when ψP ≃ 1, one obtains for θ(Bim):

θ Bim( 􏼁 �
1−ψeq􏼐 􏼑

Bim
. (C.3)

By expanding equation (C.1) in power series about the
point ψP � ψeq, one obtains

ψav � ψeq +
1−ψeq􏼐 􏼑 + 3c Bim( 􏼁− 3δ Bim( 􏼁 1−ψeq􏼐 􏼑

2c Bim( 􏼁

· ψP −ψeq􏼐 􏼑.

(C.4)

By comparing equation (C.4) with the asymptotic be-
haviour equation (B.8), one obtains the following expression
for δ(Bim):

δ Bim( 􏼁 �
1−ψeq􏼐 􏼑 + c Bim( 􏼁 3− 2σ Bim( 􏼁( 􏼁

3 1−ψeq􏼐 􏼑
, (C.5)

where σ(Bim) is given by equation (B.7).
It is important to point out that the analytical expression

derived above is independent of the shrinkage factor α(ψ)

and only the asymptotic rescaled thickness Leq/L0 enters into

equations (C.1), (C.3), and (C.5). (erefore, it can be ap-
plied, in principle, to any food material characterized by a
dominant one-dimensional shrinkage.

(e analytic derivation proposed above is the one-
dimensional version of the two-dimensional relation de-
rived in [21] for 2-d square cross sections.

Reliability and accuracy of the analytical expression
equations (C.1), (C.3), and (C.5) containing no fitting
parameters are confirmed by direct comparison with
numerical results for ψav vs. ψP, shown in Figure 8(a),
obtained in the ideal shrinkage benchmark case
α(ψ) � C � 1, ϕ0 � 0.5, for Bim � 1, 3, 5, 7. Figure 8(b)
shows the good agreement between numerical data for
X/X0 vs. ψP and the model predictions in the ideal
shrinkage case C � 1 for which equation (19) holds true
with c � Cϕ0.

Nomenclature

Bim: Biot number (−), equation (4)
D: Water diffusion coefficient (m2/s)
D2nd: D estimated from G2nd (m2/s)
D4th: D estimated from G4th (m2/s)
g(ψP,Bim): Function relatingX/X0 to ψP (−), equation (12)
G(X/X0): (ickness calibration curve (−), equation (11)
G2nd(X/X0): 2nd order polynomial approx. of G(X/X0)

(−), equation (15)
G4th(X/X0): 4th order polynomial approx. of G(X/X0)

(−), equation (16)
􏽥L � L/L0: Dimensionless sample thickness (−)
L0: Initial sample thickness (m)
Lr: Reference length (m)
q(ψav): Function relating X/X0 to ψav (−), equations

(19) and (21)
R0: Initial sample radius (m)
S: Dimensionless sample surface (−)
S(ψP,Bim): Sigmoidal function (−), equation (28)
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T: Operating temperature (K)
v: Dimensionless shrinkage velocity (−),

equation (4)
V: Dimensionless sample volume (−).

Greek Symbols
α(ψ): Shrinkage function (−)
αX: Experimental shrinkage function (−), equation

(11)
βj, cj: Polynomial expansion coefficients (−),

equations (15)–(16)
∇: Dimensionless gradient operator (−)
τ � tD/L2

r : Dimensionless time (−)
ϕ: Water volume fraction (−)
ϕ0: Initial water volume fraction (−)
ψ � ϕ/ϕ0: Rescaled water volume fraction (−)
ψav: Average value of ψ (−), equation (14)
ψeq: ψ at equilibrium (−)
ψP: ψ at the probe point P (−).
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[27] I. I. Ruiz-López, H. Ruiz-Espinosa, P. Arellanes-Lozada,
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