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In this work, glass-ceramics were produced with mechanical and physical properties, using recycled glass powder from
windshields as raw material. /e glass powder was formed and sintered at temperatures 600, 650, 700, 750, and 800°C. Pieces
were also produced with the addition of niobium oxide to the glass powder. /e flexural strength and the Archimedes
density of the produced parts were determined. /e reliability of the results was evaluated by the Weibull statistic. X-ray
diffraction was performed. Maximum flexural strength was 77.64MPa at 750°C, with the addition of niobium oxide at
43.86MPa at 700°C. X-ray diffraction showed crystalline structures in the specimens with the addition of the nucleating
agent, confirming the production of glass-ceramics in this composition. /e pure glass powder only crystallized from 750°C.
/e Nb2O5 favors the formation of crystalline structures in the vitreous matrix at low temperatures and with
piezoelectric structures.

1. Introduction

Because the consumption habits of the population have
generated environmental problems such as the growth of
landfills and depletion of natural resources [1, 2], scientific
research has been much requested regarding the recycling
of discarded materials, for finding new utilities and gen-
erating value from the waste [2–5]. Glass, despite being
recyclable, occupies large volumes in landfills [6]. Con-
sidering the scope of the windshields, 40 million vehicles in

the world reach the end of life every year [1] and
throughout the useful life of vehicles, they may be changed
and discarded. In addition, the windshields are more la-
borious to recycle. /is is due to the PVB (polyvinyl
butyral) film, which exists between layers of glass, whose
function is to protect the occupants, preventing the glass
from shattering when breaking on impact [7]. Several
studies have proposed the use of glass for the production of
glass-ceramics, adding value and targeting a discarded
material [2, 8–10].
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/e silicates, which are the basis of the glasses, can be
used for the production of profitable products such as
glass-ceramics [2]. When compared to glass, it has greater
stability, durability, superior mechanical properties, re-
sistance to thermal shock, low coefficients of thermal ex-
pansion, and fracture toughness [11, 12]. It features a range
of applications, including the manufacture of artificial
bones and teeth, heat shock-resistant transparent pans,
heat-resistant windows for stoves or ovens, building walls,
and cooktops [13–15]. /ere is a considerable amount of
research focused on the production of glass-ceramics with
industrial waste [2, 10, 16–19]. /e work of Lu et al. may be
highlighted, which studied the influence of sintering and
crystallization on the mechanical properties of glass-
ceramics produced by glass and fly ash from thermal
power plants.

/e addition of a nucleating agent to the glass powder is
used to induce volumetric crystallization and reduce
crystallization temperatures./e nature of crystallinity and
the distribution of the crystalline phase formed during
crystallization are dependent on the type and amount of
the nucleating agent used. /e presence of nucleating
agents, such as TiO2 and various oxides, in the glass-
ceramic composition favors nucleation and crystal
growth. Since the surface tension decreases, the nucleation
rate increases in the vitreous system [13, 20, 21]. /e
addition of niobium oxide in addition to promoting
crystallization also enables the formation of crystals of the
perovskite group. /e piezoelectric properties exhibited by
perovskite glass-ceramics have been extensively studied
[22].

In this work, glass-ceramics were produced from dis-
carded glass with properties compatible with those found
in the literature for this material. /e produced glass-
ceramics were studied in terms of their flexural strength,
mass density, crystallinity, microstructure formation, and
biocompatibility for medical applications. In addition, this
work also investigated the chemical composition and stat-
ically measured the particle sizes of the raw material pro-
duced before the sinterization procedure.

2. Methodology

/e experimental and characterization methodologies fol-
lowed in this work are presented./e production of the glass
powder and the obtaining of the glass-ceramics are detailed.
According to each experimental step, the procedures asso-
ciated with the adopted characterization techniques are
presented.

2.1. Production and Characterization of Glass Powder.
Windshield slices, glass blade, and PVB were milled and
separated in a ball mill./e glass powder was passed through
a 65-mesh sieve. /e granulometric distribution was mea-
sured (Mastersizer Hydro 2000MU, Malver, United King-
dom), and the chemical elements of the glass powder were
quantified by X-ray fluorescence (S8 Tiger Spectrometer,
Bruker X-ray, United States).

2.2. Production and Characterization of the Specimens.
/e glass powder was mixed with 10% water by weight,
introduced in a rectangular metal matrix (28.31mm
length× 7.30mm wide), and a 11.59MPa load was applied
with a hydraulic press for one minute (P10 ST 10 ton,
Bovenau, Brazil). /e specimens were extracted from the
matrix and dried at 110°C for one hour (400/3ND, Nova
Ética, Brazil). /ey were then heated at 5°C/min rate and
sintered for one hour at 600, 650, 700, 750 and 800°C
temperatures. Some specimens were produced with the
addition of 4% of niobium oxide during the mix process
under the same conditions.

Groups 1, 2, and 3 are the glass powder (GP) specimens
sintered at temperatures of 650, 700, and 750°C, respectively.
Groups 4, 5, and 6 are the glass powder and niobium oxide
(GPN) specimens sintered at temperatures of 650, 700, and
750°C, respectively. Group 7 is a GPN composition specimen
sintered at 600°C, while Group 8 is a GP specimen sintered at
800°C.

/e thermodifferential and thermogravimetric analyses
(Simultaneous /ermal Analyzer STA 6000, PerkinElmer,
United States) were carried out on specimens in an air at-
mosphere with a heating rate of 5°C/min and a temperature
range between 30 and 900°C. /e densities were determined
by the Archimedes method, according to standard NBR
6220:2011 [23].

/e flexural tests were performed at three points
according to ASTM C1161-13 [24] in thirteen specimens
from each group with thickness from 2.23 to 3.96mm. /e
distance between the supports was 20mm, and the loading
rate was 0.2mm/min (Shimadzu AGX-PLUS, Japan). /e
reliability of the flexural strength results was determined by
the Weibull method [25]. Scanning electron microscopy
(SEM) was performed on each group on a fracture surface
(UltraDry EDS JEOL JSM6510LV, /ermo Fisher Scientific,
United States).

X-ray diffraction (XRD) analysis was performed
(Bruker-D8 Endeavor diffractometer, United States) on each
group after ground on CuKa 40 kV/40mA parameters. /e
scan range of diffractogram was 4–80° with a scan speed of
0.02°·2°/2 s. /e qualitative spectrum interpretations were
performed by comparison with standards contained in the
PDF02 database (ICDD, 2006) in Bruker Diffrac Plus
software.

For in vitro static biofilm tests, the overnight culture of a
multivirulent methicillin resistant wild-type strain
(USA300) was diluted 1 :100 in TSB supplemented with
0.5% glucose (TSB-G). Diluted bacteria were mixed with
20% pooled human plasma and used for assessment of
biofilm formation on fragments of rat mandible (CEUA
740), commercial bone grafts (Aloboneporos–Osseocon
1.0 g, Clonos Dental, Lumina Bone-Criteria Biomaterials,
Brazil), and Groups 1–8.

/e specimens were fixed to the bottom of a 12-well
polystyrene plate with Lubriseal grease (/omas Scientific,
United States) and sterilized by ultraviolet irradiation.
Multiwell plates were incubated at 37°C with shaking at
100 rpm for one hour and then further incubated at 37°C
without shaking for 24 h. /e wells were washed three times
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with phosphate buffered saline to remove nonadherent cells.
Adherent biofilms were fixed with methanol, stained with
crystal violet and washed three times with sterile water.
Biofilm biomass formed on the mandible, bone grafts, and
specimens from Groups 1–8 was determined by solubilizing
crystal violet with 33% acetic acid [26] and measured at
490 nm light wavelength using a microtiter plate reader
(Biorad, United States). All biofilm biomass experiments
were performed in triplicates.

/e unpaired Student’s t-test with the Tukey multiple
comparison post hoc test was used to assess the statistical
significance of between-group differences in bacterial count
in vitro biofilm biomass with 95% confidence interval
(p< 0.05).

3. Results and Discussion

/e granulometric distribution of the glass powder resulted
in a monomodal distribution with d (10) of 2.001 μm, d (50)
of 14.658 μm, and d (90) 57.234 μm. Cho and Kim [11]
separated three particle average sizes for the production of
glass-ceramics. It was observed that the smaller particle size
favors densification, especially in the lower sintering tem-
peratures. /ese smaller particles favored the coalescence
process during the sintering. In this study, the mean particle
size was higher than the average particle size of Cho and Kim
[11].

Table 1 shows the result of X-ray fluorescence spec-
troscopy of the glass powder. It is noted that the glass
powder is composed primarily of silicon oxide, with about
80% by weight of the total composition. Sodium, calcium,
and magnesium oxides are present in the composition at
much lower levels. Aluminum oxide comprises the lowest
content in the composition.

Figure 1 shows the differential thermal analysis (DTA),
thermogravimetric analysis (TG), and derivative thermog-
ravimetric analysis (DTG). A peak is observed in DTA
between 700°C and 800°C for GP and GPN groups./is peak
is not associated with mass loss, as can be seen in DTG. It
indicates physical phenomena in the temperature range
between 600°C and 900°C. Any variation was observed with
the amount of niobium oxide added to the glass powder,
even though it is considered a nucleating agent. In these
analyses, important parameters can be obtained for the
production of glass-ceramics, such as the glass transition
temperature (tg) and the crystallization temperature (tc) of
the glass powder. /e nucleation of the crystals in the glass
matrix will only occur in temperatures higher than the glass
transition temperature. /e tg is found when a slight en-
dothermic depression begins, followed by a strong release of
heat, corresponding to the crystallization peak of the dif-
ferential thermal analysis (DTA).

Figure 2 shows the X-ray diffractogram of the GP and
GPN specimens. In the samples with only glass powder,
produced in the temperatures of 650°C and 700°C, the
structure remains totally amorphous. At the temperature of
750°C, some peaks began to form already, with imperfect
crystalline structures, indicating the presence of crystals of
albite, quartz, and diopsite. /e addition of niobium oxide

favored the formation of crystalline structures, confirming
the production of glass-ceramics at temperatures of 650, 700,
and 750°C (Figure 2). /e peak intensities of zeolite and
stilbite were lower than those of isolueshite crystal structure,
which is a sodium niobate, NaNbO3.

/e burning temperatures used are higher than those
used for the synthesis of sodium niobate by solid reaction of
niobium oxide and sodium hydroxide [26]. It is important
to note that all the crystalline structures have chemical
elements coherent with those found in X-ray fluorescence.
Given these results, two other groups were made and added
to be studied./e possibility of producing glass-ceramics at
different sintering temperatures according to the compo-
sition on the specimens was considered. Hence, one group
consists of GPN specimens sintered at 600°C (Group 7) and
the other of GP specimens sintered at 800°C (Group 8).
Table 2 and Figure 3 show the mean density value for each
group. /e GP specimens showed a decrease in the mass
density, with the sintering temperature increasing up to
750°C. After this value, there is no significant change in the
density of the specimens with increasing temperature, as
can be observed in Figure 3, from the densities obtained
through sintering at 750°C and 800°C. When crystallization
occurs before completion of the sintering, the viscous flow
viscosity increases rapidly and prevents the sintering
process resulting in less dense materials [27]. /is occurred
at the temperatures 750°C and 800°C, where the crystalli-
zation of the glass powder occurred before completed
sintering.

/e GPN specimens showed density values between
2,115 and 2,339 g/cm3. Increasing the sintering temperature
from 600°C to 650°C resulted in increased density due to
coalescence of the particles. However, at 700°C, the density
decreases due to the better crystallization of the stilbite,
which causes a reduction of sintering by viscous flow,
making the densification difficult. After 700°C, the density is
maintained in a close value when the sintering temperature
increased to 750°C, with the formation of a new crystalline
structure, albite, occurring.

At the sintering temperature of 650°C, it can be observed
that the density was higher for the GP specimens. /ere was
crystallization of the specimens with the addition of niobium
oxide at 650°C, rapidly increasing the viscosity, preventing
the sintering, and producing less dense specimens. No
crystalline phase formation occurred in the GP specimens at
650°C, which favored sintering and densification.

/e fracture surface of the GP specimens is presented in
Figure 4. It is possible to observe that there is an increase in
the number and size of the pores with the increasing sin-
tering temperature, justifying the density decrease. /e size
of the pores seems smaller and more homogeneous in the
GPN specimens (Figure 5).

/e mean flexural strength at different sintering tem-
peratures is shown in Table 3 and in Figure 6. /ese results

Table 1: Composition and concentration of pure glass powder.

Composition SiO2 Na2O CaO MgO Al2O3

Percentage (%) 80.10 8.86 7.97 2.34 0.75
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showed that the niobium oxide decreases the �exural
strength of specimens, comparing the results of the GPN and
GP groups. Despite this, the results are satisfactory since the
obtained �exural strengths are within the usual values for
glass-ceramics [28].

Cho and Kim [11] obtained an average of 84.00MPa
for the �exural strength of the sintered specimens at a

temperature of 900°C, when the largest mean particle size
used was 4.8 μm. In this text, glass powder particles with a
wide range of granulometric distribution were used, with
similar results, 77.64 MPa, in lower sintering temperatures.
�e similar mechanical properties were obtained due to the
use of the wide-ranged granulometric normal distribution
instead of the separation in narrow bands of particle sizes. In
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Figure 1: �ermal analysis of the (a) OGP group and (b) GPN group using DTA, TG, and DTG.
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Figure 2: X-ray di�ractogram of Groups 1–6.

Table 2: Average density and standard deviation of the groups.

Group Composition Sintering temperature (°C) Average density (g/cm3) Standard deviation (g/cm3)
1 Glass powder 650 2.433 0.157
2 Glass powder 700 2.216 0.273
3 Glass powder 750 2.091 0.130
4 Glass powder +Nb2O5 650 2.339 0.148
5 Glass powder +Nb2O5 700 2.219 0.219
6 Glass powder +Nb2O5 750 2.173 0.028
7 Glass powder +Nb2O5 600 2.115 0.180
8 Glass powder 800 2.060 0.057
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this case, the adopted methodology may have facilitated the
compaction factor of the shaped specimens and thereby have
improved the densi�cation, justifying the similarity of the
results.

Since crystallization in�uences the densi�cation of the
material, it also in�uences the strength of the material be-
cause both the internal and external porosity act as stress
concentrators. �us, the bulk crystallization promoted by
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Figure 3: Variation of the density with the sintering temperature.

(a) (b)

Figure 4: SEM of OGP: (a) Group 2 and (b) Group 3.

(a) (b)

Figure 5: SEM of GPN: (a) Group 5 and (b) SE Group 6.

Table 3: Flexural strength and Weibull modulus of all groups.

Group Flexural strength (MPa) Standard deviation (MPa) Weibull modulus (m) R2

1 74.67 21.09 2.50 0.83
2 77.64 14.54 5.41 0.81
3 52.47 7.06 6.87 0.93
4 43.86 5.85 7.42 0.86
5 38.25 6.81 5.66 0.94
6 40.10 6.71 5.96 0.93
7 29.15 5.41 5.15 0.92
8 52.57 6.47 8.03 0.96
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niobium oxide increases the viscosity that prevents the exit
of gases making the material porous [29]. On the other hand,
the presence of niobium oxide promotes the formation of
isolueshite, the structure with piezoelectric properties and
high dielectric constant. �erefore, despite the reduction of
resistance, the existence of isolueshite allows for the ex-
ploration of electrical applications of glass-ceramics [30, 31].

Zhang and Liu [8] also realized that crystallization in-
creases viscosity and hinders densi�cation. In addition, it
was observed that, in higher temperatures, the surface
densi�cation is improved, because resistance of the viscous
�ow of the glass is smaller on the surface than in the interior
part. �is is a fact that favors mechanical resistance. In the
glass-ceramics of this work, the improvement of the me-
chanical properties, provided by the surface densi�cation, is
not perceived since the internal porosity is increased with
the increase of temperature.

�e Weibull modulus (m) was determined to evaluate
the reliability of the �exural strength results (Table 3).
Figure 7 shows the slope of the line which was used to
determine theWeibull modulus, obtained from the results of
�exural strength of the thirteen specimens. In this case, the
specimens were sintered at the temperature of 800°C and the
composition was glass powder. �e acceptable range of the
Weibull parameter, m, is between 3 and 15 for fragile
materials [25], but Group 1 was not satisfactory. �e higher
the value of m, the more reliable is the results of the me-
chanical properties [32] (Figure 8). �e correlation factors,
R2, presented in Table 2, were higher than 0.800, which can
be considered as satisfactory [33].

�e in vitro bio�lm formed on themandible was reduced
when compared to the biomass bio�lm formed on com-
mercial bone grafts. Glass-ceramics Groups 1–8 showed less
bio�lm formation (∗p � 0.0477) when compared to man-
dible bone, indicating that these groups of glass-ceramics
severely attenuated Staphylococcus aureus attachment. �ese
results suggest that these glass-ceramics were biocompatible
and can be used as dental prostheses (Figure 9).

4. Conclusions

�emonomodal distribution contributed to obtaining better
mechanical properties at lower temperatures compatible
with those in the literature, even with a larger average
particle size. �e recycled glass powder of windshield pre-
sented chemical composition like other glass-ceramics
produced with raw material of greater cost. �ermal ana-
lyses showed crystallization temperatures close to 700°C in
the two compositions. �e addition of niobium oxide fa-
vored the formation of crystals at the temperatures at which
sintering occurred. On the other hand, it made it di¦cult to
densify specimens at lower temperatures. However, pure
glass powder favors densi�cation at lower temperatures and
higher porosity at higher temperatures. �e addition of
niobium oxide decreased the �exural strength compared to
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pure glass powder specimens. Even so, such results agree
with the literature. �e glass-ceramics produced in this work
presented smaller biomass formation than the mandible and
bone grafts, suggesting a possible application for dental
prostheses and oral rehabilitation, after performing other
tests for biocompatibility.
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