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In line with the growing environmental awareness developed along the last decades, modern societies are urged to evolve into
sustainable economics where the reuse of organic wastes represents the key feedstock for a green transaction. (e oil phase obtained
from different biomasses has the potential to be a source of food supplements, medicines, cosmetics, or feedstock for biofuel production.
In the present work, the composition of 104 different biomasses including seeds, peels, flowers, plants, and leaves has been reviewed for
the lipid content. Based on the most frequent fatty acids screened, experimental data for normal boiling point temperature, normal
melting point, critical properties, and acentric factor were collected and compared with the most common estimation methods, which
are functions of the molecular structure and interaction between different functional groups. New predictive equations have been
proposed to reduce the estimation deviation and to provide simple correlations to be used in simulation software when dealing with
biomass processes. For all the properties, the estimations proposed have an absolute average deviation equal to or lower than 4.6%.

1. Introduction

(e development of sustainable processes can be pursued
through multiple paths, among which decreasing wastes,
increasing efficiency in industrial processes, mitigating en-
vironmental and human risks, reducing pollutant agents,
and fostering energy production from renewable sources
play unquestionable roles.

Within this context, biomass appears as a valuable
feedstock to recover several compounds and/or produce
energy to answer the global consumption growth without
creating a negative legacy to the next generations [1]. In fact,
the widespread employment of biomass not only bears the
potential of recovering industrial wastes as a valuable resource
but also leverages the energy and industrial productions
through efficient and less polluting engineering processes.

(is work is deemed to study the potential of fatty acids
in addressing significant multidisciplinary issues associated

with the chemical industry and petroleum exploration [2],
incorporated in the broader research initiative aiming to
develop integrated processes and product design for sus-
tainable biorefineries [3].

Fatty acids are long hydrocarbon chains with a terminal
carboxyl group. (ey can be obtained from rather abundant
organic compounds, including organic matter wastes [4, 5]
or nonedible oils [6, 7]. Fatty acids are characterized by an
outstanding range of applications within the energy domain,
such as biofuels [8], and flow improvers for crude oils [9–12],
or within other high end industries such as food supple-
ments [13], cosmetics [14], medicines, and drugs [15, 16].

Fatty acids, often referred to as fats, are used in the
human body to store excess energy, and they constitute the
building blocks for membrane cells [17, 18]. Moreover, as
recommended by the Food and Agriculture Organization of
the United Nations [19], there is convincing evidence that
some fatty acids like the linoleic acid and the alpha-linoleic
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acid are indispensable for human health even if they cannot
be synthesized.

Considering the broad range of fatty acid applications,
an extensive review of their amount and composition in
different biomasses has been drawn.

Such remarkable potential opens the definition of new
industrial processes for fatty acid recovery from different
biomasses contributing to valorize poor feedstocks and to
reduce their environmental impact when treated as wastes.
Such approach paved the way in applying strategies deemed
to foster sustainability on an industrial scale.

Within a biorefinery approach, the target compounds are
recovered or obtained from the biomass through a series of
processes classified as thermochemical, biochemical, me-
chanical/physical, and chemical [20]. It means that, in order to
move from the definition of the biomass potential in re-
covering or obtaining some compounds to the process setup, a
reliable model must be available to design the single unit
operation and to define the process global performance and
profitability. Product and process design rely on the knowledge
of the properties of chemical compounds and their mixtures.
Although large databases of experimental data are available,
covering the complete set of compounds, mixtures, and op-
erating conditions is a huge task that may not be economically
feasible. Property estimationmodels for physical properties are
widely used when experimental data are not available.

Unlike what can be found in published research con-
cerning thermophysical properties of pure compounds, this
work has been focused on the most important temperature-
independent physical properties of the main fatty acids
found in biomass feedstocks. (ese properties are also es-
sential in improving the processes modeling, in the for-
mulation of product portfolios and for the composition
assessment of the generated pollutants.

Published prediction methods were critically analyzed
given the scarcity of experimental data for determining the
relevant physical properties. Considering current methods
shortcomings for the intended applications and using the
National Institute of Standards and Technology (NIST)
database as a reference, innovative estimation methods were
developed. Such correlation’s novelty is not only limited to a
higher accuracy but also finds a significant advantage in its
simplicity, given the use of molecular weight (MW) and the
maximum number of double bonds (DBs) in the molecule as
input. To sum up, a reliable method for the estimation of
fatty acid (FA) physical properties was developed.(erefore,
a set of six new correlations have been proposed to reduce
the estimation deviation of boiling point, melting point,
critical properties, and acentric factor.

Such a tool will be of paramount importance in proposing
strategies that congregate high-value addition in industrial
processes with the use of abundant biomass and the reuse of
potentially polluting waste from food or other related pro-
cesses, such as the waste from olive oil or wine manufacture.

2. Review on Fatty Acid Content in Biomasses

A biorefining process is based on the usage of selected
biomass(es) treated in a smaller or larger unit, locally or

centrally, for the production of valuable final products or
intermediates with applications in pharmaceutical, food and
beverages, or even nutraceutical fields [21]. Subsequently,
waste biomass effluents could be treated to produce lower
added-value products, e.g., insecticides or pesticides, or used
as feedstock for biofuel production.

A total of 104 different types of oils obtained by ex-
traction of different biomasses were collected from the
scientific literature to identify the most common and
frequent fatty acids. (e list of oil sources and main fatty
acid composition is reviewed in Table 1. (e information
was collected and summarized from different published
works, and when available, the minimum and maximum
concentration values were reported. In some cases, the
percentage of oil content in the biomass matrix was also
included. (is value could be useful to determine a possible
upper bound oil extraction yield from the biomass matrix.
In Table 1, 16 fatty acids were listed since, according to the
sources reviewed, they appear in the oil in a significant
amount.

Ricinoleic acid, lesquerolic acid, and elaeostearate acid,
the main constituents of castor oil, lesquerella oil, and tung
oil, respectively, were not reported since they do not appear
in the other biomasses listed. Information about their
quantity is provided in Table 1 notes.

Figure 1 shows the average of each fatty acid yield in the
biomasses and their frequency of appearance.

(e fatty acid yield average was obtained by considering
the values reported in Table 1. For those cases where a yield
interval is indicated, the average was calculated. (e fre-
quency of appearance expresses the occurrence of fatty acid
in the set of biomasses.

Regarding the saturated fatty acids, palmitic acid (C16 : 0)
and stearic acid (C18 : 0) are the ones with the highest content
and frequency in all the bio-oils examined. Considering
the unsaturated fatty acids, oleic acid (C18 :1), linoleic acid
(C18 : 2), and linolenic acid (C18 : 3) are the most plentiful
compounds identified in the reported bio-oils. However,
since the average yield reported in Figure 1 was evaluated
considering the distribution of the single fatty acids, a more
revealing indicator is the average minimum and average
maximum, reported in Figure 2 as a grey rectangle. (e
minimum and maximum averages were published together
with the absolute minimum and absolute maximum. On the
one hand, taking caprylic acid as an example, its average yield
range is from 0.2% to 5.2%, which is a very narrow range,
while the absolute maximum is 11.4%. On the other hand,
when palmitoleic acid, oleic acid, and linoleic acid are con-
sidered, their amount can extensively vary.

3. Fatty Acid Classification

Oil extracts from biomasses comprise saturated and un-
saturated fatty acids with long carbon chain, which can be
employed in integrated processes for sustainable bio-
refineries. To highlight the differences between the mole-
cules, the different fatty acids were identified based on the
number of carbon atoms (CN) and the number of carbon-
carbon double bonds (DB).
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While saturated acids are solid at room temperature, the
unsaturated are in the liquid state. Furthermore, saturated
and unsaturated fatty acids also differ regarding their
structure. While saturated fatty acids have a linear molecule,
the introduction of one or more double bonds promotes the
molecule twisting and the possibility of geometrical isom-
erism. Figure 3 reports the difference in the structure for the
fatty acid with 18 carbon atoms and 0, 1, and 2 double bonds.

Following the analysis summarized in Figures 1 and 2,
the most common saturated and unsaturated fatty acids
identified are presented in Table 2 together with the cor-
responding CAS number and their molecular weight.

4. Physical Properties

Temperature nondependent properties, namely, normal
boiling point, normal melting point, critical properties, and
acentric factor, were evaluated in this section.

Using the NIST database as a reference, the values ob-
tained from the different estimation models and the values

from the proposed correlations were compared using dif-
ferent deviation indexes:

(i) (e absolute deviation (AD) is defined as

AD � |estimated value − experimental value|. (1)

(ii) (e relative deviation (RD) and the absolute relative
deviation (ARD) are as follows, respectively:

RD �
estimated value − experimental value

experimental value
× 100, (2)

ARD � |RD|. (3)

(iii) (e average absolute deviation (AAD) is given as
follows:

AAD �
1
n



N

i�1
AD. (4)
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Figure 1: Percentage and frequency of each fatty oils in the biomasses reported in Table 1.
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Figure 2: Average minimum and maximum (grey rectangle) and absolute maximum and minimum (interval lines).
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(iv) (e root mean square deviation or relative deviation
(RMSD) is obtained using the following equation:

RMSD �

��������


N
i�1AD

2

N



. (5)

(v) (e average absolute relative deviation (AARD) is
defined by the following equation:

AARD �
1
n



N

i�1
ARD. (6)

4.1. Normal Boiling Point. (e normal boiling point (TB) is
defined as the temperature in which the vapor pressure equals
the value of 1 atmosphere.(e normal boiling point is used to

compare different liquids and represents an essential input for
the estimation of other properties like the critical parameters.

4.1.1. Estimation Methods. To determine the normal
boiling point, several methods are available in the lit-
erature. (e most relevant ones are summarized in
Table 3.

Each of these methods has been applied for the set of
fatty acids identified in Table 2.

(e Joback and Reid method [148] estimates the normal
boiling point considering the group incremental value (TBi

)
multiplied by the number of times the group appears in the
compound (Ni). (e estimation formula is reported in the
following equation:

(a) (b) (c)

Figure 3: C18 : 0, stearic acid C18H36O2 (a); C18 :1, oleic acid C18H34O2 (b); C18 : 2, linoleic acid C18H32O2 (c).

Table 2: Fatty acids selected for the property evaluation classified by name, CAS number, and molecular weight.

CN :DB Molecular formula Common names and IUPAC name CAS no. MW (g/mol)
C8 : 0 C8H16O2 Caprylic acid, n-octanoic acid 124-07-2 144.21
C10 : 0 C10H20O2 Capric acid, n-decanoic acid 334-48-5 172.27
C12 : 0 C12H24O2 Lauric acid, n-dodecanoic acid 143-07-7 200.32
C14 : 0 C14H28O2 Myristic acid, tetradecanoic acid 544-63-8 228.38
C16 : 0 C16H32O2 Palmitic acid, hexadecanoic acid 57-10-3 256.43
C18 : 0 C18H36O2 Stearic acid, n-octadecanoic acid 57-11-4 284.48
C20 : 0 C20H40O2 Arachidic acid, eicosanoic acid 506-30-9 312.54
C22 : 0 C22H44O2 Behenic acid, docosanoic acid 112-85-6 340.59
C24 : 0 C24H48O2 Lignoceric acid, tetracosanoic acid 557-59-5 368.65

C16 :1 C16H30O2
Palmitoleic acid, (9Z)-hexadec-9-enoic acid, cis-9-

hexadecenoic acid 373-49-9 254.41

C18 :1 C18H34O2
Oleic acid, (9Z)-octadec-9-enoic acid, n-octadecenoic

acid, [omega-9 fatty acid (18 :1 ω9)] 112-80-1 282.47

C20 :1 C20H38O2

Paullinic acid, 13-eicosenoic acid, [omega-7 fatty acid
(20 :1 ω7)] 29204-02-2

310.52

Gondoic acid, cis-gondoic acid, cis-11-eicosenoic acid,
11-eicosenoic acid, 11Z-eicosenoic acid, cis-11-icosenoic
acid, (11Z)-icos-11-enoic acid, [omega-9 fatty acid (20 :1

ω9)]

5561-99-9

Gadoleic acid, 9-eicosenoic acid, [omega-11 fatty acid
(20 :1 ω11)], (E)-icos-2-enoic acid

17735-94-3
26764-41-0

C22 :1 C22H42O2
Erucic acid, (Z)-docos-13-enoic acid, cis-13-docosenoic

acid 112-86-7 338.58

C24 :1 C24H46O2
Nervonic acid, (Z)-tetracos-15-enoic acid, [omega-9

fatty acid (24 :1 ω9)] 506-37-6 366.62

C18 : 2 C18H32O2
Linoleic acid, (9Z,12Z)-9,12-octadecadienoic acid,

[omega-6 fatty acid (18 : 2 ω6)] 60-33-3 280.45

C18 : 3 C18H30O2

α-Linolenic acid, cis-9,12,15-octadecatrienoic acid,
[omega-3 fatty acid (18 : 2 ω3)] 463-40-1

278.44Gamma-linolenic acid, gamolenic acid, all-cis-6,9,12-
octadecatrienoic acid, [omega-6 fatty acid (18 : 2 ω6)] 506-26-3

α-Calendic acid, (8E,10E,12Z)-octadeca-8,10,12-trienoic
acid, [omega-6 fatty acid (18 : 2 ω6)] 5204-87-5
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TB � 198.2 + 
i

Ni · Tbi
. (7)

(ecoefficients used for the estimation of the normal boiling
point are reported as Supplementary Material in Table A1.

Constantinou and Gani [149] established the two-level
evaluation method reported as follows:

TB(K) � 204.359 · ln 
i

Ni · Tb1i + W · 
j

Mj · Tb2j
⎛⎝ ⎞⎠.

(8)

(e method is based on the first- and second-order
group contribution. In the former, each group has a single
contribution independently of the type of compound in-
volved (TB1i). (e latter (TB2j) has the function to provide
more structural information about the portions of the
structure where the description through the first-order
groups is insufficient. (e model constant W assumes the
value zero if only the first-order group estimation is taken
into account, or one if the second order is also considered.
Ni and Mj are the group occurrences in the compound. (e
coefficients used to determine the normal boiling point are
reported in Tables A2 and A3 of the SupplementaryMaterial.

Marrero-Marejón and Pardillo-Fontdevila proposed a
family of models to estimate the normal boiling point of pure
organic compounds based on the compound chemical
structure and molecular weight [150]. (e normal boiling
point is evaluated according to equation (9), where Ni is the
number of times that type i occurs with contributions tbbk:

TB � MW− 0.404


i

Ni · tbbki
+ 156.0. (9)

In this case, the contributions are based on group in-
teraction, taking into account the interactions between
bonding groups in the molecule. Table A4, in the Supple-
mentary Material, presents the coefficients used.

Marrero and Gani [151] defined an estimation of the
normal boiling point based on three levels, as follows:

TB(K) � 222.543 · ln 
i

Ni · Tb1i + 
j

Mj · Tb2j + 
k

Oj · Tb3k
⎛⎝ ⎞⎠.

(10)

(e first level includes the simple groups used for de-
scribing a wide variety of organic compounds.(e second level
involves groups that permit a better description of poly-
functional compounds and differentiation among isomers.
Finally, the third level provides more structural information
aboutmolecular fragments of compounds whose description is
insufficient through the first- and second-level groups. (e
coefficients to determine the normal boiling point can be
found in Tables A5 and A6 of the Supplementary Material.

(e estimation of the boiling point proposed by
Nannoolal et al. [152] is reported as follows:

TB(K) �
iNiCi

n0.6583 + 1.6868
+ 84.3395, (11)

where Ci is the group contribution of group i and n is the
number of atoms in the molecule (excluding the hydrogen
atoms). (e method is valid for nonelectrolyte organic
compounds and was developed using experimental data for
about 2850 compounds stored in the Dortmund data bank.
Table A7 of the Supplementary Material presents the co-
efficients correspondent to this method.

4.1.2. Normal Boiling Point Estimation Results. (e results
for the normal boiling point estimated using the methods
described are summarized in Table 4. (e values extracted
from the NIST database were accessed through the Aspen
Property software, and they were used as a reference for the
comparison with the estimated values. (e values obtained
were checked for consistency, and it was noticed that the
normal boiling point for the C24 : 0 (673.7 K) was lower than
the value reported for C22 : 0 (685.0 K). For this reason, the
value of 704.4 K reported by Yaws [153] was used.

Figure 4 indicates the absolute relative deviation between
the different methods when compared to the NIST values.

From Figure 4, it is possible to notice that the Joback
and Raid method always overestimates the normal boiling
point, and the overestimation increases with the molecular
weight. In general, for the same number of atoms of carbon
in the molecule, the overestimation increases with the
unsaturation. (e same trend, but with a reduced absolute
relative deviation, is observed for the Marrero-Marejon
and Pardillo-Fontdevila method. (e opposite tendency is
observed for the method developed by Constantinou and
Gani, where the normal boiling point is underestimated
for the saturated fatty acids with the highest molecular
weight. A similar behaviour, but with a reduced margin of
deviations, is observed for the Marrero and Gani method.
(e Nannoolal et al. method has a positive deviation for
the unsaturated fatty acids that seem to be independent
from the molecular weight. However, for unsaturated fatty
acids, the overestimation increases with the molecular
weight.

Table 5 shows the minimum and maximum absolute
relative deviation for each method when compared with the
data provided by the NIST database.

Among all the estimation methods explored, the two-
level and the three-level approach proposed by Marrero and
Gani provided a more reliable estimation of the normal
boiling point for the FAs considered.

4.1.3. Novel Normal Boiling Point Estimation Method.
Anand et al. [154] defined the normal boiling point for
fatty acids methyl esters (FAMEs), as a function of mo-
lecular weight (equation (12)). (e same approach was
followed to propose an alternative correlation for the fatty
acids:

TBFAME
� AFAME(MW)

2
+ BFAME(MW) + CFAME. (12)

Using a similar equation, it was possible to obtain the
coefficients to determine the normal boiling points for the
fatty acids considered by applying the generalized reduced
gradient method to minimize the deviations. In fact,
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observing the normal boiling point values, as a function of
the molecular weight, it is possible to conclude that it has a
parabolic behaviour.

(e novel estimation method, reported in equation (13),
has three coefficients, assigned as ATBFACN:n

, BTBFACN:n

, and
CTBFACN:n

, and a correction factor, αTBCN:n, which depends on
the number of unsaturation:

TBFA
� αTBCN:n · AATBFACN:n

(MW)
2

+ BTBFACN:n

(MW)

+ CTBFACN:n
.

(13)

(e values for ATBFACN:n

, BTBFACN:n

CTBFACN:n

, and αTBCN:n

were obtained by minimizing the relative deviations with the

Table 4: Comparison of experimental and estimated normal boiling temperature (K).

CN :DB NIST Joback and
Reid [148]

Constantinou and
Gani [149]

Marrero-Marejón and
Pardillo-Fontdevila [150]

Marrero and
Gani [151]

Nannoolal
et al. [152]

C8 : 0 512.6 528.2 512.2 518.2 517.8 516.1
C10 : 0 543.2 573.9 540.8 554.3 546.8 549.6
C12 : 0 572.1 619.7 565.9 588.3 572.5 580.0
C14 : 0 599.5 665.4 588.3 620.6 595.6 607.9
C16 : 0 619.8 711.2 608.5 651.4 616.4 633.7
C18 : 0 643.0 757.0 626.8 681.0 635.5 657.9
C20 : 0 672.9 802.7 643.7 709.5 653.1 680.6
C22 : 0 692.9 848.5 659.2 737.1 669.4 702.1
C24 : 0 704.4∗ 894.2 673.7 763.8 684.5 722.4
C16 :1 632.5 715.4 607.0 653.4 617.5 625.8
C18 :1 635.9 761.1 625.5 682.9 636.5 650.4
C20 :1 642.4 806.9 642.4 711.4 654.0 673.5
C22 :1 665.7 852.6 658.1 738.8 670.2 695.3
C24 :1 672.6 898.4 672.6 765.5 685.3 715.9
C18 : 2 624.1 765.3 624.1 684.8 637.5 643.0
C18 : 3 622.7 769.4 622.7 686.7 638.5 635.5
∗Value reported by Yaws [153].

Table 3: Methods for the normal boiling point estimation.

Method Parameter(s) required
Joback and Reid [148] Molecular structure
Constantinou and Gani [149] Molecular structure
Marrero-Marejón and Pardillo-Fontdevila [150] Molecular structure and MW
Marrero and Gani [151] Molecular structure
Nannoolal et al. [152] Molecular structure
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Figure 4: Absolute relative deviation comparison for the normal boiling point estimation.
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NIST database values, using the GRG nonlinear solving
method to achieve the optimized result. (e coefficients
obtained are presented in Table 6.

(e proposed normal boiling point estimation method
showed a lower estimation deviation when compared with
the other methods previously presented. In particular, it was
obtained: AAD � 8.49K, RMSD � 11.94K, AARD � 1.3%,
MIN RD � − 3.6%, and MAX RD � 4.3%.

4.2. Normal Melting Point. (e normal melting point for a
pure substance is defined as the temperature in which the solid
and the liquid form exist in equilibrium at atmospheric
pressure. In general, it is expected that themelting point of fatty
acids increases if the unsaturation is reduced. If the fatty acids
are used for biodiesel production, the availability of themelting
point is essential for the evaluation of the cold-flow properties.

4.2.1. Estimation Methods. Several methods are available in
the literature to determine the normal melting point. (e
most appropriate methods are gathered in Table 7.

Joback and Reid proposed the estimation formula re-
ported as follows [148]:

TM(K) � 122.5 +  Ni · Tmi
. (14)

According to the authors, however, estimations of the
normalmelting point are not accurate and should be considered
only as approximate.(e coefficients of the group contributions
are presented in Table A1 of the Supplementary Material.

(e Constantinou and Gani method [149] is presented as
follows:

TM(K) � 102.425 × ln 
i

Ni × Tm1i + W × 
j

Mj × Tm2j
⎛⎝ ⎞⎠.

(15)

(e coefficients to determine the normal melting point
can be found in Tables A2 and A3 of the Supplementary
Material.

Marrero and Gani [151] developed a method to determine
the normal melting point using the following equation:

TM(K) � 147.450 × ln
i

Ni × Tm1i + 
j

Mj × Tm2j

+ 
k

Oj × Tm3k.

(16)

(e coefficients to determine the normal melting point
can be found in Tables A5 and A6 of the Supplementary
Material.

4.2.2. Normal Melting Point Estimation Results. Table 8
presents the values of the estimated normal melting point
together with the values obtained from the NIST database.

Figure 5 reports the absolute relative deviation between
the different methods when compared with the NIST values.

(e Joback and Reid group contribution method
overestimates the normal melting point. (e overestimation
regularly grows for saturated fatty acids with a consistent
penalty for molecules with the highest molecular weight.(e
same trend is observed for the unsaturated compounds even
if the increase of the absolute relative deviation is lower with
respect to the case of saturated fatty acids.

Table 9 shows the deviation indexes for each method
when compared with the data provided by NIST.

(e method of Constantinou and Gani offers the best
estimation with a very good prediction of the saturated
compounds. However, for the unsaturated fatty acids, all the
methods considered report a high estimation deviation.
When comparing molecules with the same number of
carbons, it is possible to observe that the melting point
decreases when the unsaturation increases. (is decrease is
due to the molecular distortion induced by the double bonds
that prevent the molecules from packing together easily. (e
difficulty in predicting the London dispersion forces be-
tween the oil molecules may be the cause of the high de-
viations observed for unsaturated fatty acids.

Table 5: Deviations of the different methods for the normal boiling point estimation.

Joback and
Reid [148]

Constantinou
and Gani [149]

Marrero-Marejón and
Pardillo-Fontdevila [150]

Marrero and
Gani [151]

Nannoolal
et al. [152]

AAD (K) 119.60 11.55 43.23 10.05 15.43
RMSD (K) 133.05 16.40 49.56 12.33 18.65
AARD (%) 18.5 1.8 6.7 1.6 2.4
MIN RD (%) 3 − 5 1 − 3 − 11
MAX RD (%) 34 0 14 3 6

Table 6: Coefficients for the estimation of the normal boiling point
according to equation (13).

Coefficients Values
ATBFACN:n

− 7.0670E − 04
BTBFACN:n

0.9173
CTBFACN:n

205.6120
αTBCN:0 1.5697
αTBCN:1 1.5501
αTBCN:2 1.5323
αTBCN:3 1.5329

Table 7: Methods for the normal melting point estimation.

Method Parameter required
Joback and Reid [148] Molecular structure
Constantinou and Gani [149] Molecular structure
Marrero and Gani [151] Molecular structure
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4.2.3. Novel Normal Melting Point Estimation Method. It is
possible to obtain the coefficients to determine the normal
melting points applying the generalizedreduced gradient
(GRG) method to minimize the deviations, with a similar
procedure described in Section 4.1.3 for the estimation of the
normal boiling point.

Equation (17) is the novel estimation method developed:

TMFA
� αTMCN:n · ATMFA

(MW)
2

+ BTMFA
(MW) + CTMFA

 .

(17)

(e main advantage of this method is the possibility of
estimating the normal meting point, using the fatty acids’
molecular weight exclusively.

(e coefficients ATMFACN:n

, BTMFACN:n

, CTBFACN:n

, and αTMCN:n

were obtained by minimizing the relative deviations with the
NIST database values. (e obtained coefficients are pre-
sented in Table 10.

For the proposed method, the comparison indexes are
AAD � 3.15K, RMSD � 4.09K, AARD � 1.0%, MINRD �

− 2.6%, and MAXRD � 3.1%, giving a smaller deviation
when compared to the other estimation methods.

Table 8: Comparison of experimental and estimated normal melting point (K).

CN :DB NIST Joback and Reid [148] Constantinou and Gani [149] Marrero and Gani [151]
C8 : 0 289.7 340.5 293.6 333.6
C10 : 0 304.5 363.1 303.8 341.2
C12 : 0 317.0 385.6 313.2 348.3
C14 : 0 327.3 408.1 321.7 355.1
C16 : 0 335.6 430.7 329.6 361.7
C18 : 0 342.6 453.2 336.9 367.9
C20 : 0 348.2 475.8 343.7 373.9
C22 : 0 353.8 498.3 350.1 379.7
C24 : 0 355.6 520.8 356.1 385.2
C16 :1 274.8 425.6 326.2 365.9
C18 :1 286.5 448.1 333.8 371.9
C20 :1 297.3 470.7 340.8 377.8
C22 :1 306.1 493.2 347.4 383.4
C24 :1 — 515.8 353.6 388.8
C18 : 2 267.6 443.1 330.6 375.8
C18 : 3 260.0 438.0 327.2 379.7
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Figure 5: Absolute relative deviation comparison for the normal melting point estimation.

Table 9: Deviations of different methods for the estimation of the
normal melting point.

Joback and
Reid [148]

Constantinou
and Gani [149]

Marrero and
Gani [151]

AAD (K) 132.98 24.10 56.68
RMSD (K) 141.25 34.02 65.14
AARD (%) 43.5 8.4 19.3
MIN RD (%) 18 − 2 7
MAX RD (%) 69 26 46
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4.3. Critical Parameters. (e critical point is used to
identify the fluid region where the liquid and gas phases
can be no longer distinguished. Critical parameters are
used for the estimation of other properties, such as the
acentric factor, compressibility factor, liquid density,
vapor pressure, and enthalpy of vaporization, among
others.

4.3.1. EstimationMethods. Several methods are available in
the literature to determine the critical parameters such as
critical temperature, critical pressure, and critical volume.
(e most appropriate methods are summarized in
Table 11.

Joback and Reid proposed the relations reported in
equations (18)–(20) to estimate the critical properties based
on the group contribution methods [148]:

TC �
TB

0.584 + 0.965 Ni · Tci
−  Ni · Tci

 
2, (18)

PC �
1

0.113 + 0.0032NA −  Ni · Pci
 

2, (19)

VC � 17.5 +  Ni · Vci
, (20)

where NA is the number of atoms in the molecule. (e
values Tci

, Pci
, and Vci

are presented in Table A1.
Constantinou and Gani [149] established a method to

determine TC, PC, and VC using equations (21)–(23),
respectively:

TC (K) � 181.128 · ln⎛⎝
i

Ni · Tc1i + W · 
j

Mj · Tc2j
⎞⎠,

(21)

PC (bar) � 
i

Ni · Pc1i + W × 
j

Mj · Pc2j + 0.100220
− 2

+ 1.3705,

(22)

VC cm3
·mol− 1  � − 0.004350 + ⎛⎝

i

Ni · vc1i + W × 
j

Mj · vc2j
⎞⎠.

(23)

(e coefficients to determine the critical properties can be
found in Tables A2 and A3 in the Supplementary Material.

Wilson and Jasperson suggested equation (24) to esti-
mate the critical temperature and equation (25) to determine
the critical pressure:

TC (K) �
TB

0.048271 − 0.019846Nr + kNk · tck + jMjΔtcj 
0.2, (24)

PC (bar) �
0.0186233 · TC

− 0.96601 + exp − 0.0092295 − 0.0290403Nr + 0.041 kNk · Pcbk + jMjΔPcj  
. (25)

(e coefficients to determine these critical properties can
be found in Table A6 in the Supplementary Material.

Marrero-Marejón and Pardillo-Fontdevila developed
equations (26)–(28) to calculate the critical parameters [150]:

TC (K) �
TB

0.5851 − 0.9286 kNk · tbck(  + jMj ·Δtcbj 
2,

(26)

PC (bar) � 0.1285 − 0.0059Natoms − 
k

Nk · Pcbk
⎛⎝ ⎞⎠

− 2

,

(27)

VC cm3
·mol− 1  � − 25.1+ 

k

Nk · vcbk, (28)

where Natoms is the number of atoms in the compound andNk

is the number of atoms of type k with contributions tcbk, pcbk,

and vcbk.(e parameters to determine these critical parameters
can be found at Table A4 in the Supplementary Material.

Marrero and Gani [151] determined TC, PC, and VC

using the following equations:

TC (K) � 231.239 · ln
i

Ni ·Tc1i +W ·
j

Mj ·Tc2j

+ W ·
k

Ok ·Tc3k,

(29)

PC (bar) � ⎛⎝
i

Ni ·Pc1i +W× 
j

Mj ·Pc2j +W

×
k

Ok ·Pc3k +0.108998⎞⎠

− 2

+5.9827,

(30)

Table 10: Coefficients for the estimation of the normal melting
point according to equation (17).

Coefficients Values
ATMFACN:n

− 4.1905E − 04
BTMFACN:n

0.4863
CTMFACN:n

193.9418
αTMCN:0 1.1380
αTMCN:1 0.9752
αTMCN:2 0.8999
αTMCN:3 0.8759
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VC cm3
·mol− 1  � 7.95+⎛⎝

i

Ni ·Vc1i +W×
j

Mj ·Vc2j

+ W×
k

Ok ·Vc3k
⎞⎠.

(31)

(e coefficients to determine the critical properties can
be found in Tables A5 and A6 in the Supplementary
Material.

(e estimation of the critical properties proposed by
Nannoolal et al. [156] is presented in the following
equations:

TC (K) � TB
⎛⎝0.6990 +

1
0.9889 + iNiCi( 

0.8607
⎞⎠,

(32)

PC (kPa) �
MW− 0.14041(g/mol)
0.00939 + iNiCi( 

2, (33)

VC cm3
· mol− 1  �

iNiCi

n− 0.2266 + 86.1539, (34)

where n is the number of atoms in the molecule (excluding
hydrogen). Table A7 in the Supplementary Material presents
the coefficients used.

For the estimation methods that depend on the normal
boiling point temperature, this value can be experimentally
determined or estimated. (e calculations were performed
using the normal boiling point temperatures available from
the NIST database, as reported in Table 4.

4.3.2. Critical Properties Estimation Results

(1) Critical Temperature Estimation Results. (e estimated
and experimental values for the critical temperatures are
presented in Table 12.

Figure 6 presents the absolute relative deviation between
the methods considered and the NIST database values.

Except for the Marrero and Gani’s method, all the other
methods have a general agreement until the C16 : 0. For the
compounds with higher molecular weight, the method
developed by Nannoolal et al. and by Constantinou andGani

give the best results. When one or more unsaturations are
considered, it is not possible to define a method that
consistently predicts the critical temperature. Table 13
shows the minimum and maximum absolute relative de-
viation for each method when compared with the data
provided by NIST.

From the analysis of Table 13, it is possible to notice
that the Constantinou and Gani’s method exhibits the
best global performances for the critical temperature
estimation.

(2) Critical Pressure Estimation Results. (e results for the
estimated critical pressures and the experimental values for
the fatty acids are presented in Table 14.

Figure 7 presents the relative deviation between the
estimated values and the ones gathered from the NIST
database. All the methods provide estimations included in
a range of deviation of ±10%, except for the Marrero and
Gani method when applied to saturated fatty acids with
high molecular weight and unsaturated fatty acids with
one and three double bonds. (e Nannoolal et al. method
gives the best estimation for the fatty acids at high mo-
lecular weight with one double bond. Regarding the
saturated compounds, the Marrero-Marejón and Pardillo-
Fontdevila method overestimates the critical pressure
until C16 : 0. After this component, there is an un-
derestimation that increases linearly with the molecular
weight. Apart from the Marrero and Gani method, all the
others underestimate the critical pressure in the range of
C16 : 0–C22 : 0.

Table 15 shows the minimum and maximum absolute
relative deviation for each method when compared with the
data provided by NIST.

(3) Critical Volume Estimation Results. (e estimated and
experimental values for the fatty acids’ critical volume are
presented in Table 16.

Figure 8 presents the relative deviation distribution
between the estimated values and the ones provided by
NIST.

(e Nannoolal et al. method offers the best prediction
for the saturated compounds with a peak of about 10%
overestimation for C24 : 0. However, the overestimation
increases to 20% when the unsaturated compounds are
evaluated. All the other methods exhibit an opposite be-
haviour, with the tendency to underestimate the critical

Table 11: Methods for the critical parameters’ estimation.

Method Parameter(s) required
Joback and Reid [148] Molecular structure and TB

Constantinou and Gani [149] Molecular structure
Wilson and Jasperson [155] Molecular structure and TB

Marrero-Marejón and Pardillo-Fontdevila [150] Molecular structure and TB

Marrero and Gani [151] Molecular structure
Nannoolal et al. [156] Molecular structure, MW, and TB
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volume for saturated compounds, with a lower deviation for
the unsaturated fatty acids.

Table 17 shows the minimum and maximum absolute
relative deviation for each method when compared with the
data provided by the NIST database.

Except for the Nannoolal et al. method, that is only rec-
ommended for saturated compounds, all the other methods
provide a general agreement in the critical volume estimation.

4.3.3. Novel Critical Parameters Estimation Method

(1) Novel Critical Temperature Estimation Method. Anand
et al. [154] proposed a critical temperature estimation
method for FAMEs, according to the following:

TCFAME
� ATCFAME

(MW)
2

+ BTCFAME
(MW) + CTCFAME

. (35)

Table 12: Comparison of experimental and estimated critical temperature (K).

CN :DB NIST Joback and
Reid [148]

Wilson and
Jasperson [155]

Constantinou
and Gani [149]

Marrero-Marejón and
Pardillo-Fontdevila [150]

Marrero and
Gani [151]

Nannoolal
et al. [156]

C8 : 0 693.7 692.1 694.6 695.0 692.3 738.2 694.9
C10 : 0 723.8 714.6 718.4 720.4 715.7 762.3 719.5
C12 : 0 743.0 736.6 740.5 742.7 739.1 784.0 742.0
C14 : 0 763.0 758.4 760.8 762.5 762.8 803.9 762.5
C16 : 0 785.0 773.5 772.7 780.4 780.4 822.2 774.3
C18 : 0 803.0 794.5 788.7 796.6 804.6 839.2 790.1
C20 : 0 820.0 826.2 813.0 811.6 840.4 855.0 814.1
C22 : 0 837.0 848.4 825.5 825.4 867.4 869.8 826.3
C24 : 0 825.0 863.1 828.2 838.2 887.6 883.7 828.6
C16 :1 789.0 792.5 791.3 780.0 800.7 825.1 796.3
C18 :1 775.0 787.9 782.4 796.3 798.1 841.8 786.9
C20 :1 811.0 790.1 778.4 811.3 802.8 857.5 782.4
C22 :1 806.0 815.6 795.3 825.1 831.9 872.1 798.8
C24 :1 838.0 823.7 792.9 837.9 844.0 885.9 795.8
C18 : 2 787.0 775.8 770.4 796.0 786.6 844.5 778.0
C18 : 3 777.0 776.8 771.2 795.7 789.3 847.1 782.1
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Figure 6: Absolute relative deviation of estimation for the critical temperature.

Table 13: Deviations of different methods for the estimation of the critical temperature.

Joback and
Reid [148]

Wilson and
Jasperson [155]

Constantinou
and Gani [149]

Marrero-Marejón and
Pardillo-Fontdevila [150]

Marrero and
Gani [151]

Nannoolal
et al. [156]

AAD (K) 10.64 11.23 7.95 13.80 47.23 10.14
RMSD (K) 13.72 16.13 10.57 20.85 48.77 14.62
AARD (%) 1.3 1.4 1.0 1.7 6.0 1.3
MIN RD (%) − 3 − 5 − 1 − 1 4 − 5
MAX RD (%) 2 1 3 4 9 2
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Using a similar equation, it is possible to obtain the
coefficients to determine the critical temperature for the fatty
acids applying the generalized reduced gradients method to
minimize the deviations. Equation (36) is the novel esti-
mation method proposed to estimate the fatty acids critical
temperature:

TCFA
(K) � αTCCN:n · ATCFA

(MW)
2

+ BTCFA
(MW) + CTCFA

 .

(36)
(e coefficients ATCFACN:n

, BTCFACN:n

, CTCFACN:n

, and αTCCN:n

were obtained by minimizing the relative deviations with the

Table 14: Comparison of experimental and estimated critical pressure (bar).

CN :DB NIST Joback and
Reid [148]

Wilson and
Jasperson [155]

Constantinou and
Gani [149]

Marrero-Marejón and
Pardillo-Fontdevila [150]

Marrero and
Gani [151]

Nannoolal
et al. [156]

C8 : 0 28.57 27.79 26.91 27.67 31.07 26.87 26.27
C10 : 0 20.76 22.92 22.22 22.79 25.40 22.52 22.11
C12 : 0 19.31 19.22 18.79 19.14 21.16 19.40 18.87
C14 : 0 16.40 16.35 16.17 16.36 17.89 17.09 16.29
C16 : 0 14.90 14.08 13.96 14.18 15.33 15.33 14.21
C18 : 0 13.30 12.25 12.25 12.44 13.28 13.95 12.50
C20 : 0 12.00 10.76 10.97 11.03 11.62 12.86 11.07
C22 : 0 11.10 9.52 9.75 9.88 10.25 11.98 9.88
C24 : 0 8.49 8.49 8.61 8.92 9.11 11.25 8.86
C16 :1 14.88 14.65 14.58 14.15 15.86 15.52 14.37
C18 :1 13.90∗ 12.71 12.39 12.42 13.71 14.10 12.63
C20 :1 10.98 11.13 10.69 11.02 11.96 12.98 11.18
C22 :1 9.83 9.83 9.55 9.87 10.53 12.07 9.97
C24 :1 8.87 8.75 8.61 8.91 9.35 11.33 8.94
C18 : 2 14.10 13.19 12.43 12.40 14.15 14.25 12.76
C18 : 3 12.34∗ 13.71 12.68 12.38 14.62 14.41 12.89
∗Values retrieved from the database APV88 PURE32 of Aspen Plus.
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Figure 7: Absolute relative deviation of estimation for the critical pressure.

Table 15: Deviations of different methods for the estimation of the critical pressure.

NIST Joback and
Reid [148]

Wilson
and Jasperson [155]

Constantinou
and Gani [149]

Marrero-Marejón
and Pardillo-Fontdevila [150]

Marrero and
Gani [151]

Nannoolal
et al. [156]

AAD (bar) 0.73 0.83 0.71 1.15 1.23 0.77
RMSD (bar) 0.98 0.99 0.95 1.64 1.50 0.97
AARD (%) 5.1 5.7 4.9 7.5 10.4 5.1
MIN RD (%) − 14 − 12 − 12 − 8 − 6 − 11
MAX RD (%) 11 7 10 22 33 7
Globally, the Nannoolal et al. method offers a better estimation together with the Constantinou and Gani approach.
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NIST database values. (e coefficients obtained are pre-
sented in Table 18.

For the proposed method, the critical temperature de-
viations resulted in AAD � 5.88K, RMSD � 8.01K,
AARD � 0.7%, MIN RD � − 1.6%, and MAX RD � 2.3%
compared with NISTdatabase.(us, AAD, RMSD, andAARD
significantly outperform the estimation methods considered.

(2) Novel Critical Pressure Evaluation Method. Applying the
same procedure, it is possible to optimize equation (37) in
order to obtain a functional equation to estimate the critical
pressure:

PCFA
(bar) � αPCCN:n · APCFA

(MW)
2

+ BPCFA
(MW) + CPCFA

 .

(37)

(e coefficients APCFACN:n

, BPCFACN:n

, CPCFACN:n

, and αPCCN:n

were obtained by minimizing the relative deviations with the

NIST database values, using the GRG nonlinear solving
method to find the optimized result. (e obtained co-
efficients are presented in Table 19.

For the proposed method, the critical pressure deviations
resulted inAAD � 0.69 bar, RMSD � 0.94 bar, AARD � 4.6%,
MIN RD � − 10.4%, and MAXRD � 9.7%. Again, AAD,
RMSD, and AARD show an improvement in accuracy, when
compared with the considered estimation methods.

(3) Novel Critical Volume Estimation Method. Applying the
same procedure as it was suggested before, it is possible to
derive equation (38) to estimate the critical volume:

VCFA
(mL/mol) � αVCCN:n · AVCFA

(MW)
2

+ BVCFA
(MW) + CVCFA

.

(38)

(e coefficients AVCFACN:n

, BVCFACN:n

, CVFACN:n
, and αVCCN:n

were obtained by minimizing the relative deviations with the

Table 16: Comparison of experimental and estimated critical volume (m3/kmol).

CN :DB NIST Joback and
Reid [148]

Constantinou and
Gani [149]

Marrero-Marejón and
Pardillo-Fontdevila [150]

Marrero
and Gani [151]

Nannoolal
et al. [156]

C8 : 0 0.526 0.5075 0.5071 0.5107 0.5046 0.5267
C10 : 0 0.639 0.6195 0.6187 0.6239 0.6172 0.6579
C12 : 0 0.787 0.7315 0.7302 0.7371 0.7298 0.7948
C14 : 0 0.921 0.8435 0.8417 0.8503 0.8423 0.9367
C16 : 0 1.066 0.9555 0.9532 0.9635 0.9549 1.0831
C18 : 0 1.255 1.0675 1.0647 1.0767 1.0674 1.2335
C20 : 0 1.371 1.1795 1.1763 1.1899 1.1800 1.3877
C22 : 0 1.486 1.2915 1.2878 1.3031 1.2926 1.5453
C24 : 0 1.575 1.4035 1.3993 1.4163 1.4051 1.7062
C16 :1 0.898 0.9355 0.9399 0.9429 0.9409 1.0525
C18 :1 1.016 1.0475 1.0514 1.0561 1.0535 1.2022
C20 :1 1.158 1.1595 1.1630 1.1693 1.1660 1.3557
C22 :1 1.448 1.2715 1.2745 1.2825 1.2786 1.5127
C24 :1 1.402 1.3835 1.3860 1.3957 1.3911 1.6729
C18 : 2 0.972 1.0275 1.0381 1.0355 1.0395 1.1708
C18 : 3 0.960 1.0075 1.0248 1.0149 1.0255 1.1395
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Figure 8: Absolute relative deviations of estimation for the critical volume.
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NIST database values, using the GRG nonlinear solving
method to achieve the optimized result. (e obtained co-
efficients are presented in Table 20.

(e proposed method for the critical volume yield de-
viations of AAD � 0.03(m3/kmol), RMSD � 0.05(m3/ kmol),
AARD � 2.1%, MINRD � − 13.6%, and MAX RD � 3.1%.
(e first three indicators significantly outperform the ones
computed for the considered estimation methods.

4.4. Acentric Factor. (e acentric factor (ω) is a pure
component constant that indicates the acentricity or
nonsphericity of a molecule. Monoatomic molecules are
expected to have acentric factors equal to zero, and their
values increase with the molecular weight and polarity
[155].

(is property is used in the estimation of transport and
thermodynamic properties for gases and liquids, such as
compressibility factor, heat capacity, enthalpy of vapor-
ization, and saturated density [155, 157].

4.4.1. Estimation Method. Several methods are available in
the literature to determine the acentric factor. (e most
appropriate methods are summarized in Table 21.

(e acentric factor was initially proposed by Pitzer et al.,
and it is given by the following equation [158]:

ω � − log10 Pr − 1.0, (39)

where Pr is the reduced vapor pressure, defined as
Pr � Pvap/PC , and Pvap is the vapor pressure at temperature
T, defined at the reduced temperature T/TC � 0.7. (e
vapor pressure can be determined by the NIST Wagner
Equation, given as follows:

ln P
vap

(  � C5 +
C1 × 1 − T/C6( (  + C2 × 1 − T/C6( ( 

1.5
+ C3 × 1 − T/C6( ( 

2.5
+ C4 × 1 − T/C6( ( 

5

T/C6
, (40)

Table 17: Deviations of different methods for the estimation of the critical volume.

Joback and
Reid [148]

Constantinou and
Gani [149]

Marrero-Marejón and
Pardillo-Fontdevila [150]

Marrero and
Gani [151]

Nannoolal
et al. [156]

AAD (m3/kmol) 0.087 0.091 0.084 0.090 0.096
RMSD (m3/kmol) 0.112 0.114 0.106 0.112 0.130
AARD (%) 7.3 7.6 7.0 7.6 8.6
MIN RD (%) − 5 − 15 − 15 − 14 − 15
MAX RD (%) 31 6 7 7 7

Table 18: Coefficients for the estimation of the critical temperature
according to equation (36).

Coefficients Values
ATCFACN:n

− 1.8345E − 03
BTCFACN:n

1.6239
CTCFACN:n

550.5882
αTCCN:0 0.9286
αTCCN:1 0.9185
αTCCN:2 0.9134
αTCCN:3 0.9028

Table 19: Coefficients for the estimation of the critical pressure
according to equation (37).

Coefficients Values
APCFACN:n

7.0357E − 04
BPCFACN:n

− 0.5776
CPCFACN:n

143.4049
αPCCN:0 0.3515
αPCCN:1 0.3556
αPCCN:2 0.3836
αPCCN:3 0.3323

Table 20: Coefficients for the estimation of the critical volume
according to equation (38).

Coefficients Values
AVCFACN:n

− 1.0023E − 06
BVCFACN:n

0.0206
CVCFACN:n

− 0.9068
αVCCN:0 0.2485
αVCCN:1 0.2106
αVCCN:2 0.2033
αVCCN:3 0.2025

Table 21: Methods for the estimation of the acentric factor.

Method Parameters required
Pitzer et al. [158] Vapor pressure and PC

Lee and Kesler [159] TB, TC, PC

Watanasiri et al. [160] Specific gravity, MW, TB

Ambrose and Walton [161] TB, TC, PC

Chen et al. [157] TB, TC, PC

Constantinou et al. [162] Molecular structure
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where the pressure is given in Pa.(e coefficients C1, C2, C3,
C4, C5, and C6 can be found in Table A7 of the Supple-
mentary Material.

(e parameter proposed by Pitzer et al. is, however,
limited to reduced temperatures above 0.8.

Lee and Kesler proposed an analytical correlation for the
acentric factor employing equations of state, based on a wide
variety of compounds. (eir goal was to improve the rep-
resentation of the property at low temperatures and near the
critical region [159]. (e proposed equation (41) is given as
follows:

ω �
− lnPC − 5.92714 + 6.09648/TBr(  + 1.28862 lnTBr + 0.169347T6

Br

15.2518 − 15.6875/TBr(  − 13.4721 lnTBr + 0.43577T6
Br

,

(41)

where TBr � TB/TC is the reduced temperature at the boiling
point.

Watanasiri et al. developed a correlation to estimate the
acentric factor based on heterocyclic compounds and other
hydrocarbons and their derivatives [160]. According to
their model, the acentric factor is given by the following
equation:

ω � ⎡⎣0.92217 × 10− 3
TB + 0.507288

TB

MW
+
382.904
MW

+ 0.242 × 10− 5 TB

SG
 

2
− 0.2165 × 10− 4

TB × MW + 0.1261 × 10− 2 SG

× MW + 0.1265 × 10− 4 MW2
+ 0.2016 × 10− 4 SG × MW2

− 80.6495
T1/3

B

MW
− 0.3738 × 10− 2T

2/3
B

SG2
⎤⎦

TB

MW
 ,

(42)

where SG is the specific gravity of the component. Values of
specific gravity were obtained from the NIST database.

According to Poling et al. [155], the most accurate
technique to obtain an unknown acentric factor is from the
critical temperature and pressure combined with the normal
boiling point.(ey have found that the most reliable method
is given as follows:

ω � −
ln PC/1.01325(  + f(0)

f(1)
, (43)

where the critical pressure is in bar and the functions f(0)

and f(1) are defined as functions of TBr. (ese functions are
obtained according to the equations proposed by Ambrose
and Walton [161]:

f
(0)

�
− 5.97616 1 − TBr(  + 1.29874 1 − TBr( 

1.5
− 0.60394 1 − TBr( 

2.5
− 1.06841 1 − TBr( 

5

TBr

, (44)

f
(1)

�
− 5.03365 1 − TBr(  + 1.11505 1 − TBr( 

1.5
− 5.41217 1 − TBr( 

2.5
− 7.46628 1 − TBr( 

5

TBr

. (45)

(e method proposed by Chen et al. requires the same
properties for the estimation of the acentric factor. However,
this work suggested a correlation based on the Antoine
Equation [157]. Based on 217 compounds over the broadest
possible range of TBr, the acentric factor can be estimated as
follows:

ω �
0.3 0.2803 + 0.4789TBr( logPC

1 − TBr(  0.9803 − 0.5211TBr( 
− 1. (46)

Furthermore, Constantinou et al. proposed a method for
the estimation of the acentric factor using group contri-
bution [162]. (e equation for the property estimation is
reported as follows:

exp
ω

0.4085
 

0.5050
� 

i

Niω1i + 
i

Mjω2j + 1.1507,

(47)

where ω1i is the contribution of the first-order group type i

occurringNi times andω2j is the contribution of the second-
order group type j occurring Mj times. (e coefficients to
determine the acentric factor can be found in Tables A2 and
A3 of the Supplementary Material.

4.4.2. Acentric Factor Estimation Results. Estimated values
of the acentric factor are given in Table 22.

Figure 9 presents the relative deviation between the
different methods when compared to the NIST values, while
Table 23 shows the minimum and maximum absolute rel-
ative deviation for each method when compared with the
data provided by NIST.

(e acentric factor provided by NIST is obtained from
the Pitzer correlation. (e relative deviation concerning the
components C20 :1 and C24 :1 is higher for the methods
proposed by Watanasiri et al. and Constantinou et al. (is
occurs since the estimation of the vapor pressure was not
available in the NISTdatabase. (erefore, the NIST values of
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the acentric factor for these two components were probably
estimated using another method. In addition, the acentric
factor of the component C24 : 0 is inconsistent when
compared to the other saturated fatty acids, which makes
this value doubtful. Once the Pitzer equation was used for
the estimation of the values from NIST, the absolute de-
viation of Pitzer regarding the NIST acentric value is
negligible.

(e method proposed by Watanasiri et al. reported a
higher deviation with respect to NIST. (is is due to the fact
that, in their study, the correlations were built using a
different set of components that did not include fatty acids.
Followed by this method, Constantinou et al. reported the
second-highest deviation since their estimation was made by
using the group contributions instead of the physical
properties of the components. Conversely, the methods by
Lee and Kesler, Ambrose and Walton, and Chen et al. have
reported low deviation compared to NIST.

(e acentric factor has a definition based on vapor
pressure. In this way, the property is indirectly measured,
which can result in uncertainties in the estimation. (e
estimation of the acentric factor for the unsaturated fatty
acids as well as the component C24 : 0 reported some
inconsistencies. Disregarding those fatty acids, the av-
erage absolute relative deviation of the methods reduced
to 0% for Pitzer et al., 2.1% to Lee and Kesler method,
25.3% for Watanasiri, 2.6% for Ambrose and Walton,
2.1% for Chen et al., and 8.4% for the method proposed
by Constantinou et al. (erefore, these estimations are
more reliable for the saturated fatty acids from C8 : 0 to
C22 : 0.

4.4.3. Novel Acentric Factor Estimation Method. (e novel
method proposed to estimate the acentric factor is given as
follows:

Table 22: Comparison of experimental and estimated acentric factor.

CN :DB NIST Pitzer et al.
[158]

Lee and Kesler
[159]

Watanasiri
[160]

Ambrose and Walton
[161]

Chen et al.
[157]

Constantinou et al.
[162]

C8 : 0 0.782 0.782 0.790 0.493 0.776 0.776 0.780
C10 : 0 0.749 0.749 0.725 0.495 0.709 0.712 0.861
C12 : 0 0.879 0.879 0.889 0.532 0.869 0.872 0.940
C14 : 0 0.940 0.940 0.965 0.605 0.940 0.946 1.017
C16 : 0 0.970 0.970 0.942 0.714 0.917 0.925 1.093
C18 : 0 1.029 1.029 1.001 0.863 0.973 0.984 1.167
C20 : 0 1.184 1.184 1.206 1.031 1.171 1.187 1.239
C22 : 0 1.233 1.233 1.252 1.243 1.215 1.234 1.310
C24 : 0 0.810 0.810 1.449 1.508 1.403 1.437 1.379
C16 :1 1.088 1.088 1.105 0.751 1.075 1.084 1.079
C18 :1 1.247 1.345 1.342 0.856 1.304 1.315 1.153
C20 :1 0.725 — 0.742 1.184 0.719 0.736 1.226
C22 :1 1.080 1.080 1.102 1.294 1.068 1.091 1.297
C24 :1 0.676 — 0.694 1.766 0.671 0.694 1.366
C18 : 2 0.996 0.956 0.945 1.043 0.920 0.929 1.140
C18 : 3 1.022 0.976 0.950 1.054 0.922 0.936 1.127
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ω � αωCN:n × Aω FA(MW)
2

+ Bω FA(MW) + Cω FA .

(48)

(e coefficients APCFACN:n

, BPCFACN:n

, CPCFA CN:n

, and αPMCN:n

were obtained byminimizing the relative deviations between
the values estimated by the novel method and the NIST
database values, using the GRG nonlinear solving method to
achieve the optimized result.

As the variability of the NIST database is very high,
mainly for the unsaturated fatty acids, the novel method will
be only valid to estimate the acentric factors for fatty acids
within the range between C8 : 0 and C22 : 0. (e coefficients
to determine the acentric factor are provided in Table 24.

For the novel method for the acentric factor,
AAD � 0.03K, RMSD � 0.03K, AARD � 3.0%, MINRD �

− 3.0%, and MAXRD � 7.1%.

5. Conclusions

Over one hundred biomass sources were reviewed, and 16
saturated, unsaturated, and polyunsaturated fatty acids
were selected, based on their frequency and amount. (e
selected saturated fatty acids ranged from C8 to C24, in
agreement with Kenar et al. [163], which states that “sat-
urated fatty acids having alkyl chain lengths greater than 18
carbon atoms are often negligible in most seed oils and are
only found at useful levels in a few unusual seed oils.”

Different unsaturated fatty acids with 1, 2, or 3 double
bonds were considered.

Among the saturated fatty acids, the highest average
yields were found for palmitic (C16 : 0) and stearic (C18 : 0)
acids, with a value of around 15 and 5%, respectively. (e
highest yields for the unsaturated fatty acids were found for
oleic (C18 :1), linoleic (C18 : 2), and linolenic (C18 : 3) acids,
at around 32, 27, and 7%, respectively. (e frequency of
palmitic (C16 : 0), stearic (C18 : 0), oleic (C18 :1), and
linoleic (C18 : 2) acids is around 100% since almost all the
selected biomasses have these four fatty acids.

Available estimation methods for the temperature
nondependent properties, such as normal boiling point,
normal melting point, critical properties, and acentric factor,
were compared, and novel estimation methods were de-
veloped to enhance their predictions. (e novel proposed
method is simple to use, and it is based on the molecular
weight and the maximum number of double bonds in the
molecule.(is method is generalized in equation (49), where
PP is the temperature nondependent physical property:

PP � αCN:n · A(MW)
2

+ B(MW) + C . (49)

(e three coefficients, assigned as A, B, and C, and the
correction factor αTBCN:n, which depends on the number of
unsaturation, are summarized in Table 25.

For all the properties, new equations provide a better
estimation with an absolute average deviation equal to or

Table 23: Deviations of different methods for the prediction of the acentric factor.

Pitzer et al.
[158]

Lee and Kesler
[159]

Watanasiri
[160]

Ambrose and Walton
[161]

Chen et al.
[157]

Constantinou et al.
[162]

AAD (K) 0.01 0.07 0.32 0.07 0.07 0.19
RMSD (K) 0.03 0.16 0.41 0.15 0.16 0.27
AARD (%) 1.2 7.8 37.7 7.5 7.5 22.6
MIN RD (%) − 4 − 7 − 40 − 10 − 8 − 7
MAX RD (%) 8 79 161 73 77 102

Table 24: Coefficients for the estimation of the acentric factor (valid from C8 : 0 to C22 : 0) according to equation (48).

Coefficients Values
AωFACN:n

5.4382E − 05
BωFACN:n

− 0.0032
CωFACN:n

6.4600
αωCN:0 0.1066

Table 25: Coefficients for the estimation the temperature nondependent properties according to equation (49).

Coefficients TB TM TC PC VC ω

A − 7.0670E − 04 − 4.1905E − 04 − 1.8345E − 03 7.0357E − 04 − 1.0023E − 06 5.4382E − 05
B 0.9173 0.4863 1.6239 − 0.5776 0.0206 − 0.0032
C 205.6120 193.9418 550.5882 143.4049 − 0.9068 6.4600
αCN:0 1.5697 1.1380 0.9286 0.3515 0.2485 0.1066
αCN:1 1.5501 0.9752 0.9185 0.3556 0.2106 —
αCN:2 1.5323 0.8999 0.9134 0.3836 0.2033 —
αCN:3 1.5329 0.8759 0.9028 0.3323 0.2025 —
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lower than 4.6%, compared to the values of the NIST da-
tabase used as reference. (is approach allows a better fatty
acid property prediction compared to other previously
published methods.

It should be highlighted that the classic group contri-
bution methods have been developed to be applied to a wide
range of chemical compounds and different research groups
implemented various corrections to take into account the
possible interaction between different molecule fragments.
However, the validity of the equations developed in this
work is limited for the fatty acids selected.

(e equations proposed represent an improvement in
the modelling of processes related to the recovery and
purification of fatty acids from biomasses. Indeed, these
equations have the potential to become a stepping stone
for investigations of fatty acid mixtures or triglycerides
[4], taking into account that the first step in process
modelling relies on accurately predicting their physical
properties.
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[100] Á. Pérez, A. Casas, C. M. Fernández, M. J. Ramos, and
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