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2e properties of 3 binary mixtures containing piperazine were investigated in this work. In a first step, the densities for the two
binary mixtures (piperazine +methanol) and (piperazine + acetone) were measured in the temperature range of 293.15 to 328.15K
and 293.15 to 323.15K, respectively, at atmospheric pressure by using a Rudolph research analytical density meter (DDM 2911).
2e concentration of piperazine in the (piperazine +methanol) mixture was varied from 0.6978 to 14.007mol/kg, and the
concentration of piperazine in the (piperazine + acetone) mixture was varied from 0.3478 to 1.8834mol/kg. On the other hand, the
density data for the (piperazine +water) mixture were taken from the literature in the temperature range of 298.15 to 328.15K. In
a second step, for the 3 investigated systems, the apparent molar volume (Vϕ) and the limiting apparent molar volume (V0

ϕ) at
infinite dilution were calculated using the Redlich–Mayer equation.2e limiting apparent molar volumes (V0

ϕ) were used to study
the influence of the solute-solvent and solute-solute interactions.2e temperature dependency of the apparent molar volumes was
used to estimate the apparent molar expansibility, Hepler’s constant (z2V0

ϕ/zT2)P, and isobaric thermal expansion coefficients αP.

1. Introduction

Information about the physical properties of solutions in the
vast range of solute concentrations at different temperatures
is greatly important for physicochemical processes (sepa-
ration process, crystallization, vaporization, desalination,
waste aqua treatment, environment protection, oil retrieval,
etc.) and the natural environment [1, 2].

2e apparent molar volumes are particularly relevant to
determine the molecular interactions (solute to solute, solute
to solvent, and solvent to solvent) happening in solutions
[3]. Also, the apparent molar volumes of solutions at infinite
dilution are useful to obtain information regarding solute to
solvent and solvent to solvent interactions. However, the
apparent molal volumes depend on strength of solution that

can be used for the determination of solute to solute in-
teractions [4–6].

2e thermophysical properties of piperazine +water is
important for the design of gas processing technology [7]
like in the treatment of natural gas having significant
amount of H2S and in processing of refinery waste gases as
well as synthesis gas for manufacturing of NH3, where so-
lution of piperazine +water is used as a solvent for the re-
moval of acidic gases (carbon dioxide and hydrogen sulfide).
2e highly effective removal of CO2 from industrial gases
can also be performed by mixing piperazine with an alcohol
such as the 2-amino-2-methyl-1-propanol [7, 8], which
suggests that the alcoholic solutions of piperazine are also
important in many separation processes. As another ex-
ample, the separation of o- and p-chlorobenzoic acids from
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their eutectic blend usually uses a mixture of (piperazine
+methanol) [9] as the solvent. In chemical processes, pi-
perazine is present with crude products and has to be
separated. In such a case, acetone is classically used due to its
stronger molecular interaction with piperazine as compared
to the higher molecular weight ketone [10].

In conclusion, the thermophysical properties of the 3 bi-
nary systems (piperazine+water), (piperazine+ acetone), and
(piperazine+methanol) are involved in many separation
processes and thus need to be known. Consequently, it was
decided to measure the densities of the (piperazine+ acetone)
and (piperazine+methanol) systems in the temperature range
of 293.15 to 328.1K and 293.15 to 323.15K, respectively, since
they are not available in the open literature. 2e concentration
of piperazine was varied from 0.6978 to 14.007mol/kg and
from 0.3478 to 1.8834mol/kg for methanol and acetone, re-
spectively.2e density data for (piperazine+water) were taken
from literature in the temperature range of 298.15 to 328.15K.
[11]. For the 3 investigated binary systems, the density data
were used for the calculation of the apparent molar volume,
limiting apparent molar volume, apparent molar expansivities,
Hepler’s constant, and isobaric thermal expansion coefficient.

2. Experimental Work

2.1.Materials. 2e chemicals used in this work are piperazine
(purity≥ 99%), methanol (≥99.4%), and acetone (≥99.8%).
2ey were provided by Sigma-Aldrich (Germany) and were
used without any further purification or treatment.2e purity
of these chemicals used along with their source and CAS
number are tabulated in Table 1.2e deionized water has been
prepared in lab through alfa-pore machine (WAP-4).

2.2. Measurement of the Density. An analytical digital vi-
brating glass U-tube densitometer (DDM-2911, Rudolph)
with an accuracy of 0.05 kg/m3 was used to measure the
density of the 2 mixtures: piperazine +methanol and
piperazine + acetone. A schematic diagram of the used
densitometer is illustrated in Figure 1. 2e binary mixtures
were prepared by weight using a Sartorius analytical weight
balance with an uncertainty of ±0.00029 g (the corre-
sponding uncertainty in molality was ±0.0004mol/kg). 2e
densities of the pure solvents and their blends with piper-
azine were measured in a temperature range varying from
298.15 to 333.15K. 2e calibration of the apparatus was
conducted by comparing the density of air and water at
293.15K and the barometric pressure. Air was provided
through a suction tube filled with silica balls to ensure
a provision of dry air, and double-distilled water was injected
through a syringe into the density meter. Silica balls were
regularly heated to remove the moisture content absorbed
from the atmospheric air. Once calibrated, the U-tube
densitometer was washed with distilled water and dried with
acetone and air. 2e density data reported in this study are
an average of at least three runs. To remove the air bubbles
from the samples, all the solutions were sonicated by using
a universal ultrasonic cleaner for 30min. Later, the samples
were stored in vials and placed into a desiccator for 10
minutes for proper mixing and settling. For each

measurement, the tube was washed with water and dried
with acetone. During the measurements, the air pump was
always turned off to avoid irregularities due to vibrations.

Table 2 shows the densities of the pure solvents
(methanol and acetone) measured in this study in the
temperature range of 293.1–328.15K along with values re-
ported in the literature. An average deviation of approxi-
mately 0.03% is observed between both sets of data, which
suggests that our data are consistent with previously mea-
sured densities and that our equipment is reliable.

3. Results and Discussion

2e densities of all three binary mixtures (piperazine +water),
(piperazine +methanol), and (piperazine + acetone) as
a function of the molality of piperazine and temperature are
presented in Table 3 and plotted in Figures 2–4. 2e ex-
periments cover the commercially significant concentration
range of piperazine with water, methanol, and acetone, that is,
concentrations that are important for industrial applications
like the design of gas processing technology, liquid-liquid
extraction, and leaching. More specifically, the mixtures of
piperazine +methanol were prepared in a concentration
range of 2.187wt.% to 30.978wt.% (0.6978mol/kg to
14.007mol/kg). Similarly, mixtures of piperazine + acetone
were prepared in concentration range from 1.98wt.% to 9.86
wt.% (0.3478mol/kg to 1.8834mol/kg). It is observed that the
density of the mixture increases with an increase in the
concentration of piperazine. However, the density decreases
with an increase in the temperature.

2e apparent molar volumes [26] (Vϕ) (in m3/mol) of
piperazine were calculated from the densities of the solutions
by using the equation given below:

Vϕ �
M

ρ
+

ρ0 − ρ
m · ρ · ρ0

, (1)

where m is the molality of piperazine (mol/kg), ρ and ρ0 are
densities (in kg/m3) of the solution and pure solvent, re-
spectively, andM is the molar mass of piperazine (in kg/mol).
2e apparent molar volume (Vϕ) of all three binary mixtures
(piperazine +water), (piperazine +methanol), and (piperazine
+ acetone) calculated from Equation (1) as a function of
molality of piperazine and temperature is tabulated in Table 4
and plotted in Figures 5–7 (denoted by markers). Figures 5–7
show thatVϕ values rise with rise in temperature for each binary
mixture, highlighting that the overall order of the structure is
improved or increased in solution with rising temperature [27].
2e influence of the molality depends on the studied system,
that is, the apparent molar volumes may rise, decrease, or
progress through a maximum. Our data were correlated with
the Redlich–Mayer equation [28]:

Table 1: List of chemicals used in this work.

Chemicals Purity Source CAS number
Piperazine ≥99% Merck 110-85-0
Methanol ≥99.4% Merck 67-56-1
Acetone ≥99.8% Merck 67-64-1
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Vϕ � V
0
ϕ + Sv

��
m

√
+ Bv · m, (2)

where V0
ϕ is the limiting apparent molar volume of the

piperazine mixtures and Sv and Bv are two regression pa-
rameters. Figures 6 and 7 highlight that our data are ac-
curately correlated with such a simple model. 2e
corresponding values of V0

ϕ, Sv, and Bv are tabulated in
Table 5. From this table, notably, the V0

ϕ values rise with rise in
temperature for each binary mixture. As highlighted by [29],
this behavior characterizes the presence of strong solute to
solvent interactions that are strengthened with the rise in
temperature. It is worth noting that this behavior was also
observed formany systems.We can cite the (methanol+methyl
acetate) system reviewed by [30], the (methanol+ ethyl acetate),
the (ethanol+methyl acetate) and (ethanol + ethyl acetate)
systems studied by [29], the (methanol+ isopropyl alcohol), the
(methyl salicylate+DMSO) and (hydroxamic acid+DMSO)
examined by [31]. 2e V0

ϕ values of the mixtures rise in the

following order: (piperazine+methanol)< (piperazine+water)
< (piperazine+ acetone), which could be due—as explained by
[29]—to an enhancement in the strengths of the solute to
solvent interactions. 2is enhancement results in an increase of
contraction in the volume.

2e values of SV and BV are also tabulated in Table 5. 2e SV
values are negative for (piperazine+acetone) and positive for the
(piperazine+water) and (piperazine+methanol) systems at each
temperature. 2e SV value decreases with rise in temperature for
each binary system.2e strength of the solute to solute interactions
of each system increases in the following order: (piperazine
+methanol)> (piperazine+water)> (piperazine+acetone). 2e
solute to solute interaction decreases with an increase in temper-
ature for each binary system. 2e BV values are negative for the
(piperazine+methanol) and (piperazine+water) mixtures and
positive for the (piperazine+acetone)mixture at each temperature.
2e BV values rise with rise in temperature for each binary system.
2e negative BV values show rise in solute to solute interactions for

Table 2: Comparison of the densities of the pure solvents measured in this study with those reported previously at various temperatures and
at atmospheric pressure with standard uncertainties: u (T)�±0.01K u (ρ)�±0.1 kg/m3, u (m)�±0.0004mol/kg, and u (P)�±0.002 atm.

Density (ρ0) kg/m3

Methanol Acetone
T/K 2is work Lit. value (Reference) T/K 2is work Lit. value (Reference)
293.15 791.6 791.9 (Papanastasiou and Ziogas [12]) 293.15 789.9 790.02 (Kinart et al. [13])

791.65 (Gonfa et al. [14]) 790.355 (Janz and Tomkins [15])
298.15 786.9 786.884 (Anwar and Yasmeen [16]) 298.15 784.2 784.45 (Kinart et al. [13])

786.68 (Tu et al. [17]) 784.638 (Janz and Tomkins [15])
303.15 782.2 782.158 (Anwar and Yasmeen [16]) 303.15 778.5 778.7 (Fan et al. [18])

781.9 (Tu et al. [19]) 778.57 (Enders et al. [20])
308.15 777.2 777.2 (Tu et al. [17]) 308.15 773.0 773.0 (Hafez and Hartland [21])

777.414 (Anwar and Yasmeen [16]) 773.065 (Janz and Tomkins [15])
313.15 772.4 772.3 (Tu et al. [19]) 313.15 767.3 767.03 (Fan et al. [18])

772.64 (Anwar and Yasmeen [16]) 767.21 (Estrada-Baltazar et al [22])
318.15 767.5 767.6 (Tu et al. [17]) 318.15 761.6 761.288 (Janz and Tomkins [15])

767.844 (Anwar and Yasmeen [16]) 761.3 (Hafez and Hartland [21])
323.15 762.7 762.7 (Bhuiyan and Uddin [23]) 323.15 755.7 755.14 (Fan et al. [18])

763.028 (Anwar and Yasmeen [16]) 755.31 (Estrada-Baltazar et al [22])
328.15 757.7 759.2 (Cai et al. [24]) 755.54 (Wu et al. [25])

Vials

Dry air pipe

Oahus pioneer analytical
balance

Waste container

Syringe

Burette with silica balls

Drain pipe
Mouse

Glass U-tube
U-tube window

Display screen

M

Analytical density meter (DDM 2911)

Specific gravity

Air

Water

1.0474 kg/m3

Figure 1: Schematic diagram of the experimental setup (analytical density meter (DDM 2911)).

International Journal of Chemical Engineering 3



mixtures that is, (piperazine+water) and (piperazine+methanol).
2e positive BV values indicate strong solute to solute interactions
for the (piperazine+acetone) system.

2e temperature dependence of the limiting apparent
molar volume (V0

ϕ) can be expressed in terms of the fol-
lowing equation [26]:

Table 3: Densities (kg/m3) of the binary mixtures (piperazine +water), (piperazine +methanol), and (piperazine + acetone) as a function of
the molality and temperature at atmospheric pressure. A global uncertainty calculation was performed on each point and the corresponding
values are given in parentheses.

Temperature (K) 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15
Molality (mol/kg)
of piperazine Binary system densities (kg/m3) with global uncertainty (kg/m3) in parentheses

System (piperazine +water) (Muhammad et al. [11])
0.9838 — 998.3 996.9 995.2 993.4 991.4 989.2 986.8
3.0226 — 999.4 997.9 996.3 994.4 992.4 990.1 987.8
6.4138 — 1001.3 999.8 998.0 996.1 994.0 991.7 989.3

System (piperazine +methanol) (this work)
0.6978 805.8 (0.02) 801.2 (0.01) 796.4 (0.02) 791.3 (0.007) 786.5 (0.02) 781.7 (0.01) 776.6 (0.01) 771.3 (0.01)
1.4000 817.4 (0.04) 812.9 (0.02) 808.2 (0.03) 803.5 (0.01) 798.6 (0.02) 793.6 (0.01) 788.4 (0.02) 783.2 (0.01)
2.2148 829.6 (0.03) 825.2 (0.02) 820.5 (0.03) 815.7 (0.02) 810.9 (0.02) 805.9 (0.02) 800.8 (0.02) 795.6 (0.02)
3.0544 840.7 (0.04) 836.3 (0.02) 831.7 (0.04) 827.0 (0.04) 822.1 (0.03) 817.2 (0.03) 812.1 (0.03) 806.9 (0.02)
3.7151 849.0 (0.04) 844.6 (0.02) 840.0 (0.04) 835.3 (0.04) 830.5 (0.04) 825.6 (0.03) 820.5 (0.04) 815.4 (0.02)
5.1007 862.6 (0.05) 858.2 (0.03) 853.7 (0.04) 849.0 (0.05) 844.5 (0.04) 839.6 (0.04) 834.6 (0.04) 829.5 (0.03)
5.9003 870.3 (0.05) 866.0 (0.03) 861.5 (0.05) 856.9 (0.05) 852.1 (0.05) 847.2 (0.04) 842.2 (0.05) 837.1 (0.04)
7.4725 881.4 (0.06) 877.1 (0.03) 872.6 (0.05) 868.0 (0.06) 863.2 (0.06) 858.4 (0.05) 853.4 (0.06) 848.3 (0.04)
9.2198 893.9 (0.06) 889.6 (0.04) 885.2 (0.05) 880.6 (0.06) 875.8 (0.06) 871.0 (0.05) 866.1 (0.07) 861.1 (0.05)
14.007 912.6 (0.06) 908.4 (0.05) 903.9 (0.06) 899.3 (0.06) 894.6 (0.07) 889.6 (0.05) 884.2 (0.07) 879.3 (0.06)

System (piperazine + acetone) (this work)
0.3478 792.4 (0.01) 786.5 (0.005) 780.8 (0.01) 774.9 (0.006) 768.8 (0.002) 762.7 (0.002) 756.3 (0.002) —
0.8416 796.7 (0.02) 791.0 (0.02) 785.2 (0.02) 779.3 (0.02) 773.3 (0.008) 767.2 (0.01) 760.9 (0.01) —
1.0951 799.3 (0.03) 793.5 (0.02) 787.7 (0.03) 781.6 (0.02) 775.5 (0.01) 769.1 (0.02) 762.7 (0.02) —
1.3359 802.3 (0.03) 797.0 (0.03) 790.7 (0.03) 784.6 (0.03) 778.4 (0.02) 772.1 (0.02) 765.6 (0.02) —
1.8834 807.5 (0.03) 802.0 (0.04) 795.9 (0.03) 789.9 (0.03) 784.1 (0.02) 778.2 (0.03) 772.1 (0.03) —
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Figure 2: Density of the (piperazine +water) system as a function of piperazine molality at various temperatures.
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Figure 3: Density of the (piperazine +methanol) system as a function of piperazine molality at various temperatures.
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Table 4: Apparent molar volume (m3/mol) of the binary mixtures (piperazine +water), (piperazine +methanol), and (piperazine + acetone)
as a function of the molality and temperature at atmospheric pressure with the standard uncertainty: u (Vϕ)�±0.35×10−6m3/mol.

Temperature (K) 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15
Molality (mol/kg) of piperazine Binary system apparent molar volumes 106 ×Vϕ (m3/mol)

System (piperazine +water)
0.9838 — 85.02 85.16 85.32 85.49 85.67 85.88 86.13
3.0226 — 85.43 85.57 85.72 85.89 86.08 86.28 86.50
6.4138 — 85.37 85.52 85.68 85.87 86.06 86.27 86.50

System (piperazine +methanol)
0.6978 75.02 75.24 75.50 75.84 76.07 76.38 77.32 78.39
1.4000 76.96 77.05 77.18 77.15 77.48 77.97 78.69 79.32
2.2148 77.69 77.84 78.02 78.13 78.44 78.83 79.39 79.88
3.0544 78.29 78.46 78.65 78.78 79.11 79.48 79.98 80.41
3.7151 78.48 78.66 78.86 79.03 79.31 79.67 80.11 80.49
5.1007 79.49 79.70 79.93 80.13 80.30 80.66 81.07 81.45
5.9003 79.61 79.82 80.04 80.24 80.54 80.90 81.29 81.68
7.4725 80.52 80.75 81.00 81.23 81.55 81.89 82.29 82.68
9.2198 80.69 80.92 81.18 81.43 81.77 82.11 82.47 82.84
14.007 82.43 82.71 83.01 83.31 83.66 84.07 84.55 84.93

System (piperazine + acetone)
0.3478 97.37 98.38 99.39 102.11 104.76 107.33 110.96 —
0.8416 95.20 95.88 96.72 98.09 99.43 100.86 102.50 —
1.0951 94.14 94.91 95.75 97.22 98.65 100.24 101.94 —
1.3359 92.75 92.69 94.15 95.49 96.78 98.16 99.71 —
1.8834 92.02 92.32 93.37 94.36 95.06 95.77 96.69 —
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Figure 5: Apparent molar volume (Vϕ) of the binary mixture (piperazine +water) as a function of piperazine molality at different
temperatures.
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V
0
ϕ � A + BT + CT

2
, (3)

where A, B, and C are empirical parameters and T is the
temperature. 2e limiting apparent molar expansibility (E0

ϕ)
can be obtained by differentiating Eq. (3) with respect to the
temperature:

E
0
ϕ �

zV0
ϕ

zT
􏼠 􏼡 � B + 2CT, (4)

2e (E0
ϕ) values for each binary system are tabulated in

Table 6 which gives important information related to the
solute to solvent interactions [32]. Table 6 depicts that, at
each temperature, the (E0

ϕ) values are positive for all three
binary systems and decrease with rise in temperature.

According to Hepler’s theory [33] the so-called Hepler’s
constant, (z2V0

ϕ/zT2), can be used to classify a solute into
two categories, whether solute can act as a builder of
structure or as a breaker of structure. If the (z2V0

ϕ/zT2) value
is positive, then the solute is favorable in development or
making of structure. Conversely, if the (z2V0

ϕ/zT2) value is
negative, then the solute will act as a structure breaker. 2e
values of (z2V0

ϕ/zT2) are −0.33, −2.89, and −12.25 for the
binary mixtures, that is, (piperazine +water), (piperazine
+methanol), and (piperazine + acetone), respectively. 2us,
piperazine acts as a structure breaker in solution. 2e proof
for the effect of Hepler’s constant onmicroscopic structure is
discussed in the literature [34].

2e isobaric thermal expansion coefficient, αp, of the
solute was calculated using the apparent molar volume and
apparent molar expansibility at infinite dilution data:

αp �
1

V0
ϕ

zV0
ϕ

zT
􏼠 􏼡 �

E0
ϕ

V0
ϕ
. (5)

2e isobaric thermal expansion coefficient, αP, is also
tabulated in Table 6. A higher value of αP was obtained for
acetone, and lower value of αP was obtained for water.

4. Conclusion

In this work, new density data for 2 binary mixtures
(piperazine +methanol) and (piperazine + acetone) were
measured from 293.15K to 328.15K. It was found that the
density of both the mixtures increases with increase in
temperature but decreases with increase in concentration.
Similarly, Vϕ values rise with increase in concentration of
piperazine in methanol but decreases in case of acetone.
Also, the apparent molar volume (Vϕ), limiting apparent
molar volume (V0

ϕ), apparent molar expansibility (E0
ϕ),

Hepler’s constant, and isobaric thermal expansion co-
efficient (αP) were calculated and reported in this work. 2e
limiting apparent molar volume V0

ϕ increases with tem-
perature, which highlights the strong interactions of the
solute with the solvent. 2e positive apparent molar ex-
pansibility (E0

ϕ) decreases with temperature, which indicates

Table 5: Values of the limiting apparent molar volume (V0
ϕ) along with the Sv and Bv parameters to be used in the Redlich–Mayer equation

for each of the 3 binary systems as a function of temperature.

Temperature (K) 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15
System (piperazine+water)

106 × V0
ϕ (m3·mol−1) — 83.78 83.94 84.11 84.30 84.49 84.71 85.07

106 × Sv (m3·kg1/2·mol−3/2) — 1.65 1.61 1.60 1.57 1.56 1.53 1.39
106 ×Bv (m3·kg·mol−2) — −0.40 −0.39 −0.39 −0.38 −0.37 −0.36 −0.33

System (piperazine+methanol)
106 × V0

ϕ (m3·mol−1) 72.57 72.75 72.99 73.27 73.57 74.01 75.48 77.05
106 × Sv (m3·kg1/2·mol−3/2) 3.72 3.69 3.63 3.47 3.45 3.38 2.58 1.67
106 ×Bv (m3·kg·mol−2) −0.31 −0.29 −0.27 −0.22 −0.21 −0.20 −0.05 0.11

System (piperazine+ acetone)
106 × V0

ϕ (m3·mol−1) 102.68 104.72 105.89 111.82 117.01 121.20 129.50 —
106 × Sv (m3·kg1/2·mol−3/2) −9.60 −11.54 −12.17 −19.19 −24.51 −27.62 −37.74 —
106 ×Bv (m3·kg·mol−2) 1.26 1.68 2.14 4.66 6.21 6.67 10.19 —

Table 6: 2e limiting apparent molar expansibility (E0
ϕ) and isobaric thermal expansion coefficient αP.

Temperature (K) 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15
Binary mixtures

106 × E0
ϕ (m3·mol−1·K−1)

Piperazine +water — 2.64 3.24 3.84 4.44 5.04 5.64 6.24
Piperazine +methanol −0.04 0.03 0.10 0.16 0.23 0.29 0.35 0.41
Piperazine + acetone 25.38 46.78 68.18 89.58 110.98 132.38 153.78 —

103 × αP (K−1)
Piperazine +water — 0.31 0.39 0.46 0.53 0.60 0.67 0.73
Piperazine +methanol −0.39 0.28 0.95 1.62 2.28 2.93 3.52 4.08
Piperazine + acetone 2.47 4.47 6.44 8.01 9.48 10.92 11.88 —
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that the interactions increase with a rise in the temperature
of the solution. 2e negative values of the Helper’s con-
stant suggest that piperazine acts as a structure breaker in
the solvent. 2e Redlich–Mayer equation was used to
correlate the apparent molar volume with the standard
deviation, u(Vϕ) �±0.35 ×10−6 mol/m3.

Nomenclature

Vϕ: Apparent molar volume
V0

ϕ: Apparent molar volume at infinite dilution
ρ: Density of the solution
ρ0: Density of the pure solvent
SV: Empirical parameter of the apparent molar volume
BV: Empirical parameter of the apparent molar volume
αP: Isobaric thermal expansion coefficient
E0
ϕ: Limiting apparent molar volume expansibility

M: Molar mass of the solute
m: Molality of the solute.
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