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A model-based predictive control system is designed for a copolymerization reactor. These processes typically have such a high
nonlinear dynamic behavior to make practically ineffective the conventional control techniques, still so widespread in process
and polymer industries. A predictive controller is adopted in this work, given the success this family of controllers is having
in many chemical processes and oil refineries, especially due to their possibility of including bounds on both manipulated and
controlled variables. The solution copolymerization of methyl methacrylate with vinyl acetate in a continuous stirred tank reactor
is considered as an industrial case study for the analysis of the predictive control robustness in the field of petrochemical and
polymer production. Both regulatory and servo problems scenarios are considered to check tangible benefits deriving from model-
based predictive controller implementation.

1. Introduction

Operations management of polymerization plants is quite
complex, since such processes are characterized by strong
nonlinearities, intense state variable interactions, and wide
variations in operating conditions. Beyond these issues that
are strictly related to the physical process, it is worth under-
lining that the field of polymer production, and generally
speaking petrochemical plants, is undergoing more and more
reduced net profit margins and frequent market dynamics,
both making the operations management of production
sites a problematic issue. Controlling polymer reactors and
related operations has always been a challenging task even
accounting for the fact that operators rely on conventional
methods to do it, rather than model-based methodologies.
This is mainly attributed to the lack for rigorous/detailed
process knowledge, reliable kinetic models, and online
measures of some specific properties of the final product.

Thanks to the increased computing power and the
spread of detailed process modeling and programming
tools, the use of rigorous models for generating accurate
system predictions and for making use of predictive control
methodologies is nowadays feasible for many processes. It is
not a coincidence that many techniques based on rigorous
models have emerged. The one that has become very popular
in recent years is model predictive control (MPC).

MPC has been the most successful advanced control
technique applied in the process industries. Its formulation
naturally handles timedelays, multivariable interactions, and
constraints [2–5]. The name MPC arises from use an explicit
prediction model of the process to be controlled so as to fore-
see its future behavior. Such a capacity of predicting process
behavior can be exploited to get the so-called online optimal
control, where tracking error, that is, the difference between
the predicted output and the desired reference trajectory,
is minimized over a future horizon. For this reason, MPC
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Figure 1: Basic process configuration [1].

strategy is also known as moving horizon control or receding
horizon control, where the horizon which the output variable
is predicted on is moved in a sampling instant in the direction
of the future, each sampling instant.

MPC benefits have been validated on polymerization
reactors [6–9] by providing good results (i.e., satisfactory
tracking performance, robustness, ability to suppress distur-
bances, and accuracy under real-time constraints) without
significantly increasing computational complexity and effort
[10–15]. Some recent works also deal with stability and fault-
tolerant design issues [16–18].

One of the well-known MPC algorithms is dynamic
matrix control (DMC), originally developed by Cutler and
Ramaker [19] and rigorously derived for linear systems
[20]. A DMC procedure uses the system information in the
context of an optimizer that solves the control problem for
the trajectory of the manipulated variable over a future time
horizon based on a dynamic model of the process. DMC
basic ideas are [21] the following:

(1) use a linear model to predict future deviations from a
set point over a prediction horizon forming a quad-
ratic objective function to be minimized,

(2) adjust a control horizon of manipulated input moves,

(3) implement the first move and measure the resulting
output at the next sample time,

(4) update the model and loop to (1).

The condition of the DMC in employing a linear model
and a quadratic objective function results in a convex optimi-
zation problem easily solved by means of quadratic program-
ming. There is a good deal of literature focusing on the
application of DMC in polymerization processes. Peterson
et al. [22] developed a control algorithm that uses an explicit

nonlinear process model and the basic elements of the
classical DMC and applied it to a semibatch polymerization
reactor. Gobin et al. [23] applied a DMC algorithm to the
polymerization of styrene in the presence of a binary initiator
mixture, involving a cascade of two continuous stirred-
tank reactors (CSTRs). Meziou et al. [24] have performed a
simulation study to assess the performance of DMC for an
ethylene-propylene-diene polymerization reactor. Yüce et al.
[25] have investigated experimentally and by simulation the
dynamic matrix control of a batch solution polymerization
reactor. Lima [26] developed and implemented a DMC
algorithm for a copolymerization process in a well-mixed
jacketed tank reactor.

In this study, the application of DMC is investigated for
a copolymerization reactor in solution to control the pol-
ymer production rate, the copolymer composition, the mo-
lecular weight, and the reactor temperature. Four mono-
variable control loops are designed and analyzed separately;
multivariable strategies will be accounted for in future devel-
opments. The copolymerization of methyl methacrylate with
vinyl acetate is considered as a case study. A nonlinear dy-
namic model of the system is used to simulate both regula-
tory and servo responses of DMC.

2. Dynamic Matrix Control

Dynamic matrix control (DMC) was developed at Shell Oil
Company in 1979 [19]. The basic idea is to use a time-
domain step-response model (called convolution model) of
the process to calculate the future changes in the manipulated
variable that will minimize a given performance index. In the
DMC approach, we would like to have the PH (prediction
horizon) future output responses matching some “optimum”
trajectory by finding the “best” values of the CH (control
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Figure 2: Open-loop simulation to inhibitor disturbance.

horizon) future changes in the manipulated variables. This
is exactly the concept of a least-squares problem of fitting the
PH data points with an equation having CH coefficients. This
is a valid least-squares problem as long as the PH is greater
than the CH.

The aim of a predictive control law is to drive future
outputs close to the reference trajectory. The computation
sequence is first to calculate the reference trajectory and
estimate the output predictions using the convolution model.
Then, the errors between predicted and reference trajectories
are calculated [27]. The next step is to estimate the sequence
of the future controls by the minimization of an appropriate
quadratic objective function J . However, only the first
predicted control action is really implemented. At this point,
the data vectors are shifted so that the calculations can be
repeated at the next sample instant. This function J is defined
by:

J =
PH∑

i=1

(
ydi − y

pred
CL,i

)2
+ f 2 ·

CH∑

k=1

[
(Δuk)future

]2
, (1)

where i and k are the time interval, y is the output variable
(controlled variable), u is the input variable (manipulated
variable), with Δuk = uk − uk−1, and f is the suppression
factor for the movements of the manipulated variable. This
control parameter assures that no drastic control action is
calculated. A too small f results in large control actions,
which can result in an instable response, while a too large f
results in a slow response. Thus, f is even a weighting factor
for the movements of the manipulated variable.

In the original form of DMC strategy, the term ydi is
the set point. In the present work, to prevent drastic control
actions, a term is introduced based on Model Algorithmic
Control strategy [28]. The desired output is calculated
through an optimal trajectory defined by a first-class filter:

ydi = α · yactual
i−1 + (1− α) · yset

i−1, (2)

where yactual
i−1 is the vector of the current measured value of

the controlled variable at the sampling time i − 1, yset
i−1 is

the vector of the set point of the controlled variable at the
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Table 1: Steady-state operating conditions.

Inputs

Monomer A (MMA) feed rate Ga f = 18 kg/h

Monomer B (VAc) feed rate Gb f = 90 kg/h

Initiator (AIBN) feed rate Gi f = 0.18 kg/h

Solvent (benzene) feed rate Gs f = 36 kg/h

Chain transfer (acetaldehyde) feed rate Gt f = 2.7 kg/h

Inhibitor (m-DNB) feed rate Gz f = 0

Reactor jacket temperature Tj = 336.15 K

Reactor feed temperature Tr f = 353.15 K

Purge ratio ξ = 0.05

Reactor parameters

Reactor volume Vr = 1 m3

Reactor heat transfer area Sr = 4.6 m2

Outputs

Copolymer production rate Gpi = 23.3 kg/h

Mole fraction of A in copolymer Yap = 0.559

Average molecular weight Mpw = 34,995 kg/kmol

Reactor temperature Tr = 353.02 K

sampling time i − 1, and α is the reference trajectory pa-
rameter, with 0 ≤ α ≤ 1.

Predicted values y
pred
CL,i in (1) can be obtained directly

from a model of the process. However, since this model is
never perfect because of unavoidably ideal assumptions and
simplifications, the controller will be not sufficiently robust
[8, 9]. Therefore, the following correction is applied:

y
pred
CL,i = yCL,i +

(
yactual
i−1 − yCL,i−1

)
, (3)

where yCL,i is defined by a convolution model. It is considered
that the difference between the predicted and actual values in

Table 2: SISO control loops.

Loop Manipulated variable Controlled variable

1
Reactor jacket temperature

(Tj)
Copolymer production rate

(Gpi)

2
Monomers A/B feed rate

(Ga f /Gb f )
Mole fraction of A in

copolymer (Yap)

3
Reactor jacket temperature

(Tj)
Weight average molecular

weight (Mpw)

4
Reactor jacket temperature

(Tj)
Reactor temperature (Tr)

Table 3: Parameters of the DMC to the regulatory problem.

Parameters Loop 1 Loop 2 Loop 3 Loop 4

Convolution horizon 48 111 26 4

Prediction horizon (PH) 2 5 9 2

Control horizon (CH) 1 1 1 1

Suppression factor ( f ) 0.001 0.003 1.500 0.001

Reference trajectory
parameter (α)

0.002 0.001 0.010 0.001

Sampling time (h) 0.25 0.25 0.25 0.25

IAE∗ 6.946 0.121 23,803 1.744
∗IAE units: loop 1 (kg/h), loop 2 (−), loop 3 (kg/kmol), and loop 4 (K).

Table 4: Parameters of the DMC to the servo problem.

Parameters Loop 1 Loop 2 Loop 3 Loop 4

Convolution horizon 48 111 26 4

Prediction horizon (PH) 2 5 9 2

Control horizon (CH) 1 1 1 1

Suppression factor ( f ) 1.500 2.500 4.000 2.000

Reference trajectory
parameter (α)

0.002 0.001 0.010 0.001

Sampling time (h) 0.25 0.25 0.25 0.25

IAE∗ 99.245 11.976 209,180 365.420
∗IAE units: loop 1 (kg/h), loop 2 (−), loop 3 (kg/kmol), loop 4 (K).

Table 5: Sensitivity analysis parameters of DMC for regulatory
problem.

Parameters Loop 1 Loop 2 Loop 3 Loop 4

Convolution horizon 48 111 26 8

Prediction horizon (PH)∗ 2 5 9 2

Control horizon (CH) 1 1 1 1

Suppression factor ( f )∗∗ 0.001 0.003 1.500 0.001

Reference trajectory parameter (α) 0.002 0.001 0.010 0.001

Sampling time (h) 0.25 0.25 0.25 0.25
∗Value for changes on the f.
∗∗Value for changes on the PH.

the previous instant is valid for the current instant. Thus, the
system reaches the desired value after successive corrections.
Details on DMC and on obtaining the convolution model are
given by Luyben [29].
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Figure 4: Schematic representation of the controllers evaluated.

Table 6: Sensitivity analysis parameters of DMC for servo problem.

Parameters Loop 3

Convolution horizon 26

Prediction horizon (PH) 9∗

Control horizon (CH) 1

Suppression factor ( f ) 4.000∗∗

Reference trajectory parameter (α) 0.001

Sampling time (h) 0.25
∗Value for changes on the f.
∗∗Value for changes on the PH.

The controller tuning is carried out through the Integral
of the Absolute value of the Error (IAE), defined by (4),
looking up the best combination of parameters (PH, CH,
f , α) that minimizes this performance criterion. Therefore,
the following optimization problem is solved during tuning
procedures:

min
PH,CH, f ,α

[
J
(
PH, CH, f ,α

)

= IAE =
∫ t f

t0

∣∣∣yset(t)− yactual(t)
∣∣∣ · dt

]
.

(4)

In (4), t0 and t f are the initial and final times, respectively,
of the evaluation period.

3. Case Study: Copolymerization of
MethylMethacrylate with Vinyl Acetate

The process considered in this paper is the solution copoly-
merization of methyl methacrylate with vinyl acetate within
a continuous stirred tank reactor [1]. Figure 1 is a qualitative
process flow diagram of a copolymerization reactor includ-
ing the recycle loop (streams 6, 8, and 2). Monomer A is

methyl methacrylate, monomer B is vinyl acetate, the solvent
is benzene, the initiator is azobisisobutyronitrile (AIBN),
and the chain transfer agent is acetaldehyde. The monomer
stream may also contain inhibitors such as m-dinitrobenzene
(m-DNB).

Monomers A and B are continuously added with ini-
tiator, solvent, and chain transfer agent. In addition, an
inhibitor may enter with the fresh feeds as an impurity. Feed
streams (stream 1) are mixed to the recycle stream (stream
2) to give the reactor inlet flowrate (stream 3). The reactor
is assumed to be a jacketed well-mixed tank. A coolant
flows through the jacket to remove heat generated during
the copolymerization process. Polymer, solvent, unreacted
monomers, initiator, and chain transfer agent flow out of
the reactor (stream 4) to enter the separator. Here, polymer
is ideally separated (stream 5). Residual initiator and chain
transfer agent are also removed in this step. In a real process,
the separation process is particularly complex, as it often
involves a series of steps, which may include dryers and
distillation columns. We assume also unreacted monomers
and solvent (stream 6) are recycled upstream, accounting for
purge line only (stream 7), which represents vent and other
losses. Purge line is required to prevent any accumulation of
inerts within the system. After the purge, the monomers and
solvent (stream 8) are stored in the recycle hold tank, which
acts as a surge capacity to smooth out variations in the recycle
flow and composition. The effluent (stream 2) recycle is then
added to the fresh feeds.

The important reactor output variables to control poly-
mer quality are the polymer production rate (Gpi), the
mole fraction of monomer A in the copolymer (Yap), the
weight average molecular weight (Mpw), and the reactor
temperature (Tr). Inputs are the reactor flows of monomer
A (Ga f ), monomer B (Gb f ), initiator (Gi f ), chain transfer
agent (Gt f ), solvent (Gs f ), inhibitor (Gz f ), the reactor jacket
temperature (Tj), and the reactor feed temperature (Tr f ).
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Figure 5: Closed-loop and open-loop simulations for an inhibitor disturbance of 4 parts per 1000 (mole basis).

Reactor, separator, and hold tank contain pure solvent pre-
heated to 353.15 K at startup.

The steady-state operating point is reported in Table 1.
Under these conditions, the reactor residence time is θr =
6 h, and the overall reactor monomer conversion is 20%.
These operating conditions ensure that the viscosity of the
reaction medium remains moderate. Table 1 also indicates
that the temperature of the reactor feed Tr f is practically
equal to the reactor temperature Tr , because in this work, we
have chosen to simulate reactor operation with a preheated
feed, where the source of heat removal is through the jacket.

4. Feedforward Control of Recycle

The presence of the recycle stream introduces disturbances
in the reactor feed which affect the polymer properties.
Congalidis et al. [1] implemented a feedforward controller in
the process to compensate for these disturbances by manip-

ulating the fresh feeds to maintain a constant feed compo-
sition and flow to the reactor. Feedforward control of the
recycle stream enabled the designer to separate the con-
trol of the reactor from the rest of the process. Thus, the
feedforward control is also applied in this work and the reac-
tor can be analyzed separately.

The feedforward control equations were obtained by
writing component balances around the recycle addition
point [1, 9, 30]. For example, the mole balance for monomer
A is:

Fa3 = Fa1 + ya2F2. (5)

Equation (5) is then solved for the fresh feed of monomer
A since it is desired to keep to goal flow of monomer A to the
reactor (Fa3) constant:

Fa1 = Fa3 − ya2F2. (6)
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Figure 6: Manipulated variables profile for an inhibitor disturbance of 4 parts per 1000 (mole basis).

Since only monomers A and B and solvent are present in
the recycle, only these three components have feedforward
control equations. The corresponding equations for fresh
feeds of monomer B and solvent are:

Fb1 = Fb3 − yb2F2,

Fs1 = Fs3 − ys2F2.
(7)

If any feedforward control equation causes a fresh feed to
go negative, the value of that fresh feed is set to zero.

5. Deterministic Model

This case study is described by a nonlinear deterministic
mathematical model. This model consists of a set of algebraic
and ordinary differential equations which formally replace
the real plant for the controller implementation. The deter-
ministic model, as well as the kinetic mechanism and initial
concentrations, is explained in detail in Appendix. More
information on the nonlinear model is given in Congalidis
et al. [1] and Maner and Doyle [30].

6. Open-Loop Behavior and Selection of
the Control Loops

This system consists of six inputs (Ga f , Gb f , Gi f , Gt f , Gs f ,
and Tj) and four outputs. The temperature of the reactor
feed (Tr f ) is assumed to be constant and the purge ratio
(ξ) is regulated by the feedforward controller. As pointed
out in Table 1, the inhibitor feed rate is normally no flow.
With these considerations, the algebraic equations in the
deterministic model were solved and the ordinary differential
equations were numerically integrated by means of Runge-
Kutta algorithm type implemented in Fortran 90 language.

The following four output variables of the process are
analyzed separately: copolymer production rate (Gpi), mole
fraction of A in copolymer (Yap), weight average molecular
weight (Mpw), and reactor temperature (Tr).

The dynamic behavior of these four output variables
is reported in Figure 2, where the system undergoes an
inhibitor disturbance of 4 parts per 1000 (mole basis) in the
fresh feed. This disturbance is the same as that considered
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Figure 7: Closed-loop simulations for changes in set point.

by Maner and Doyle [30]. The fresh feed corresponds to
the addition of the molar outflows of monomers, initiator,
solvent, and chain transfer agent in the system entrance.

Figure 3 presents the dynamic trend of the weight average
molecular weight (Mpw) for symmetric step disturbances of
in the reactor jacket temperature (Tj), by highlighting proc-
ess nonlinearities.

Lima et al. [31] developed a factorial planning using
Statistica Version 7.0 Software to discriminate the higher
impact variables on the process performance. According to
this sensitivity analysis, the four selected SISO control loops
are shown in Table 2. Figure 4 presents the location of each
monovariable DMC loop and the feedforward controller. For
the DMC control, the controlled variables are displayed in
blue color, and the manipulated variables are displayed in red
color.

7. Performance of the Dynamic Matrix Control

An algorithm for the proposed predictive controller was
developed in Fortran 90 and further inserted in the simula-
ion program. Both regulatory and servo mechanism prob-
lems are taken into account to check DMC performances.
Each SISO control loop was tuned separately.

7.1. Regulatory Problem. In this problem, an inhibitor dis-
turbance of 4 parts per 1000 (mole basis) in the fresh feed
was considered. Table 3 shows the parameters used for DMC
in each control loop together with the control errors for
this specific configuration. A comparison between DMC and
open-loop responses is given in Figure 5; the corresponding
manipulated variables for the closed-loop simulation are
shown in Figure 6. The computational effort is in the order
of 3 s for each control loop run.
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As can be observed in Table 3 and Figure 5 the DMC
structure performs satisfactorily, without abrupt changes and
with small overshoots. Furthermore, Figure 6 shows that the
manipulated variable behavior is quite acceptable presenting
small oscillations, which is important for a stable operation.

7.2. Servo Problem. According to the regulatory problem,
the parameters used for the DMC in each control loop
and the control errors are given in Table 4. Figure 7 shows
closed-loop performances of output variables, while the
system undergoes a series of set point changes. The corre-
sponding manipulated variables are given by Figure 8. The
computational effort is in the order of 2 s for each control
loop run.

Table 4 and Figure 7 show that the performance of the
DMC is fairly good with the polymer properties, since it is

able to approach quickly the new set point. However, theMpw

shows a more complex dynamic response, which is charac-
teristic of the highly interactive dynamics of solution poly-
merization reactors. Moreover, Figure 8 shows that the ma-
nipulated variable behavior is quite acceptable without dras-
tic changes in reaching the control objective illustrated in
Figure 7.

8. Effect of Control Parameters on
Controller Performances

Prediction horizon (PH) and suppression factor ( f ) are the
control parameters of greatest impact on the four output
variables of the process, thus a sensitivity analysis of the
control structures has been carried out for them.
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Figure 9: PH sensitivity simulations for an inhibitor disturbance of 4 parts per 1000 (mole basis).

Dealing with the regulatory problem for an inhibitor
disturbance of 4 parts per 1000 (mole basis) in the fresh
feed, Figure 9 and Figure 10 both show the closed-loop
performance of the four controlled variables for changes in
PH and in f , respectively. The values of the other control
parameters are listed in Table 5. Figures 9 and 10 point out
that the increase in PH or in f takes to a larger control error;
however, random values of the IAE are observed for changes
in the PH for the loop number 3. It is also shown that the
increase in f provides a larger damping of the system, as

somehow expected. This can be explained from the analysis
of the control objective function J (1).

For example, by analyzing the servo problem for the
weight average molecular weight, Figure 11 shows the closed-
loop performance of this output variable for changes in PH
and in f. The values of the other control parameters are
presented in Table 6. Figure 11 shows that the increase in PH
provides a smaller control error, whereas the opposite effect
occurs for changes in f. Moreover, the increase in f provides
a larger damping of the system.
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Figure 10: f sensitivity simulations for an inhibitor disturbance of 4 parts per 1000 (mole basis).

9. Conclusions

The servo and regulatory performance of DMC, applied to
a solution copolymerization jacketed reactor, has been ana-
lyzed. The simulation case-study was based on a nonlinear
mathematical model that describes the liquid-full reactor.
Closed-loop computer simulation results showed the suc-
cessful behavior and the potential of the DMC method-
ology to reduce off-specifications during changes in copoly-
mer production rate, mole fraction of monomer A in the

copolymer, weight average molecular weight, and reactor
temperature. From this perspective, performances of DMC
methodology give the opportunity to move towards the so-
called demand-driven production and, hence, to increase net
operating margins of polymer plants by forcing the produc-
tion to fast follow, when possible, the more and more fre-
quent market dynamics and price/cost volatilities.

The DMC strategy showed robustness, having stable be-
havior for the four control loops even when large changes
due to the optimization convergence are imposed on the
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Figure 11: Closed-loop simulations for the servo problem for sensitivity analysis on PH and f .

Table 7: Kinetic mechanism for deterministic model.

(a)

Initiation Propagation

I
ki−→ 2I• An,m • +A

kpaa−−→ An+1,m•
I • +A

kia−→ A1,0• An,m • +B
kpab−−→ Bn,m+1•

I • +B
kib−→ B0,1• Bn,m • +A

kpba−−→ An+1,m•
S • +A

kis−→ A1,0• Bn,m • +B
kpbb−−→ Bn,m+1•

S • +B
kis−→ B0,1•

T • +A
kit−→ A1,0•

T • +B
kit−→ B0,1•

(b)

Termination by coupling Termination by disproportionation Inhibition

An,m • +Ar,q• kcaa−−→ Pn+r,m+q An,m • +Ar,q• kdaa−−→ Pn,m + Pr,q An,m • +Z
kza−→ Pn,m

An,m • +Br,q• kcab−−→ Pn+r,m+q An,m • +Br,q• kdab−−→ Pn,m + Pr,q Bn,m • +Z
kzb−→ Pn,m

Bn,m • +Br,q• kcbb−−→ Pn+r,m+q Bn,m • +Br,q• kdbb−−→ Pn,m + Pr,q

Chain transfer to monomer Chain transfer to solvent Chain transfer to agent

An,m • +A
kxaa−−→ Pn,m + A1,0• An,m • +S

kxas−−→ Pn,m + S• An,m • +T
kxat−−→ Pn,m + T•

An,m • +B
kxab−−→ Pn,m + B0,1• Bn,m • +S

kxbs−−→ Pn,m + S• Bn,m • +T
kxbt−−→ Pn,m + T•

Bn,m • +A
kxba−−→ Pn,m + A1,0•

Bn,m • +B
kxbb−−→ Pn,m + B0,1•
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Table 8: Kinetic and thermodynamic parameters for deterministic
model.

Kinetic parameters

ε = 1

Ai = 4, 5 · 1014 l/s

Acaa = 4, 209 · 1011 m3/kmol · s

Acbb = 1, 61 · 109 m3/kmol · s

Adaa = 0, 0; Adbb = 0, 0

Apaa = 3, 207 · 106 m3/kmol · s

Apab = 1, 233 · 105 m3/kmol · s

Apba = 2, 103 · 108 m3/kmol · s

Apbb = 6, 308 · 106 m3/kmol · s

Axaa = 32, 08 m3/kmol · s

Axab = 1, 234 m3/kmol · s

Axas = 86, 6 m3/kmol · s

Axat = 2085, 0 m3/kmol · s

Axba = 5, 257 · 104 m3/kmol · s

Axbb = 1577, 0 m3/kmol · s

Axbs = 1514, 0 m3/kmol · s

Axbt = 4, 163 · 105 m3/kmol · s

Aza = 2, 2 m3/kmol · s

Azb = 1, 13 · 105 m3/kmol · s

Ei = 1, 255 · 1052 kJ/kmol

Ecaa = 2, 69 · 104 kJ/kmol

Ecbb = 4, 00× 103 kJ/kmol

Edaa = 0, 0; Edbb = 0, 0

Epaa = 2, 42 · 104 kJ/kmol

Epab = 2, 42 · 104 kJ/kmol

Epba = 1, 80 · 104 kJ/kmol

Epbb = 1, 80 · 104 kJ/kmol

Exaa = 2, 42 · 104 kJ/kmol

Exab = 2, 42 · 104 kJ/kmol

Exas = 2, 42 · 104 kJ/kmol

Exat = 2, 42 · 104 kJ/kmol

Exba = 1, 80 · 104 kJ/kmol

Exbb = 1, 80 · 104 kJ/kmol

Exbs = 1, 80 · 104 kJ/kmol

Exbt = 1, 80 · 104 kJ/kmol

Eza = 0, 0; Ezb = 0, 0

Thermodynamic parameters

- ΔHpaa = 54, 0 · 103 kJ/kmol

- ΔHpba = 54, 0 · 103 kJ/kmol

- ΔHpab = 86, 0 · 103 kJ/kmol

- ΔHpbb = 86, 0 · 103 kJ/kmol

ρr = 8, 79 · 102 kg/m3, Cr = 2, 01 kJ/kg · K,

Ur = 6, 0.10−2 kJ/m2 · s · K

system. Another important breakthrough of the analyzed
control strategy is its capacity to deal with nonstationary
and nonlinear features, which are typical of polymerization
systems. This means that the whole procedure proposed in
this work has significant potential for application in several
industrial processes similar to the type considered here.

Appendix

A. Nonlinear Mathematical Model for
the Copolymerization Reactor

A.1. Kinetic Mechanism. The free radical kinetic mechanism
shown in Table 7 is postulated for the polymerization of
monomers A and B in the presence of initiator (I), solvent
(S), chain transfer agent (T), and inhibitor (Z) [1]. In this
mechanism, An,m• and Bn,m• symbolize growing polymer
chains containing n units of monomer A and m units of
monomer B that terminate in A and B, respectively. Pn,m

represents a “dead” polymer chain containing n units of
monomer A and m units of monomer B. In the calculation
of the cross-termination rate constants, it has been assumed
that kcab =

√
kcaa · kcbb and kdab =

√
kdaa · kdbb.

Each of the kinetic rate constants shown in Table 7 is
computed by an Arrhenius form such as:

k = A · e(−E/R·Tr ). (A.1)

Values for the Arrhenius factor A and the activation ener-
gy E are given in Table 8 [30].

A.2. Material and Energy Balances. Assuming that the reac-
tion occurs in a CSTR with no volume change in the reacting
mixture, the following mole balances can be written for the
monomers, the initiator, the solvent, the chain transfer agent,
and the inhibitor:

dCk
dt

= Ck f − Ck
θr

− Rk,

Ck(0) = Ck0, k = a,b, i, s, t, z,

Ra =
[(
kpaa + kxaa

)
· Ca• +

(
kpba + kxba

)
· Cb•

]
· Ca,

Rb =
[(
kpbb + kxbb

)
·Cb• +

(
kpab + kxab

)
· Ca•

]
·Cb,

Ri = ki · Ci,

Rs = (kxas ·Ca• + kxbs · Cb•) · Cs,

Rt = (kxat ·Ca• + kxbt · Cb•) · Ct ,

Rz = (kza · Ca• + kzb · Cb•) ·Cz.
(A.2)

The reactor feed volumetric flow rate, concentrations,
and reactor residence time are calculated by:

Qf =
∑

k

Fk f ·Mk

ρr
,

Ck f =
Fk f
Q f

,

θr = Vr

Qf
.

(A.3)
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Using the quasi steady-state assumption, the following
expressions can be derived for the total reactor concentra-
tions of the free radicals terminating in A or B:

Ca• =
−l2 +

√
l22 − 4 · l1 · l3
2 · l1 ,

Cb• = β · Ca•,

β =
(
kpab + kxab

)
· Cb

(
kpba + kxba

)
· Ca

,

l1 = kcaa + kdaa + 2 · β · (kcab + kdab) + β2 · (kcbb + kdbb),

l2 = Cz ·
(
kza + β · kzb

)
,

l3 = −2 · ki · Ci · ε.
(A.4)

These equations are coupled with the following reactor
energy balance:

dTr
dt

= Tr f − Tr
θr

+

(
−ΔHpaa

)
·kpaa·Ca·Ca•+

(
−ΔHpba

)
·kpbaCa·Cb•

ρr ·cr

+

(
−ΔHpab

)
·kpab ·Cb·Ca•+

(
−ΔHpbb

)
·kpbb·Cb·Cb•

ρr ·cr

−
Ur ·Sr

(
Tr−Tj

)

Vr ·ρr ·cr ,

Tr(0) = Tr0.
(A.5)

The instantaneous polymerization rate is:

Gpi = (Ra ·Ma + Rb ·Mb) ·Vr . (A.6)

A.3. Dead Copolymer Composition. The following mole
balances can be written for the calculation of the molar
concentrations of the monomers in the dead polymer:

dλa
dt

= λa f − λa
θr

+ Ra, λa(0) = λa0,

dλb
dt

= λb f − λb
θr

+ Rb, λb(0) = λb0.

(A.7)

The molar fraction of monomer A in dead polymer is
calculated as follows:

yap = λa
λa + λb

. (A.8)

A.4. Moments of the Molecular Weight Distribution of the Dead
Copolymer. Assuming that the reaction occurs in a CSTR,
the following expressions can be derived:

dψ
p
0

dt
=
ψ
p
0 f − ψ p

0

θr
+

1
2
· kcaa ·

(
ψa•0

)2 + kcab · ψa•0 · ψb•0

+
1
2
· kcbb ·

(
ψb•0

)2
+ L1 · ψa•0 + L2 · ψb•0 ,

ψ
p
0 (0) = ψ

p
0o,

dψ
p
1

dt
=
ψ
p
1 f − ψ p

1

θr
+ kcaa · ψa•0 · ψa•1

+ kcab ·
(
ψa•0 · ψb•1 + ψb•0 · ψa•1

)

+ kcbb · ψb•0 · ψb•1 + L1 · ψa•1 + L2 · ψb•1 ,

ψ
p
1 (0) = ψ

p
1o,

dψ
p
2

dt
=
ψ
p
2 f − ψ p

2

θr
+ kcaa ·

[(
ψa•1

)2 + ψa•0 · ψa•2

]

+ kcab ·
(

2 · ψa•1 · ψb•1 + ψb•2 · ψa•0 + ψa•2 · ψb•0

)

+ kcbb ·
[(
ψb•1

)2
+ ψb•0 · ψb•2

]

+ L1 · ψa•2 + L2 · ψb•2 ,

ψ
p
2 (0) = ψ

p
2o

L1 = kxas · Cs + kxaa · Ca + kxab · Cb
+ kxat · Ct + kza · Cz + kdaa · Ca• + kdab · Cb•,

L2 = kxbs ·Cs + kxbb · Cb + kxba · Ca
+ kxbt · Ct + kzb ·Cz + kdbb · Cb• + kdab · Ca•.

(A.9)

The number and weight average molecular weights of
the dead copolymer are then computed by the following
relationships:

Mpn = ψ
p
1

ψ
p
0

,

Mpw = ψ
p
2

ψ
p
1

.

(A.10)

A.5. Moments of the Molecular Weight Distribution of the Live
Copolymer. These moments are the same for all reactors and
depend only on the local reaction environment:

ψa•0 = B3

B1
,

ψa•1 = α1 · α2 ·V1 · (Mb +Ma) + α1 · c1 ·Ma

B1
− B2 · B3

B2
1

,
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ψa•2 = −B3 · [(α1 + α2) ·Ma ·Mb + B2 · (Ma +Mb − 1)]
B2

1

+
α1 · α2 ·V1 · (Ma +Mb − 1) · (Ma +Mb)

B1

+
α1 · c1 ·Ma · (Ma − 1)

B1
+

2 · B2
2 · B3

B3
1

+ ψa•1

− 2 · B2 · [α1 · α2 ·V1 · (Ma +Mb) + α1 · c1 ·Ma]
B2

1
,

ψb•0 = B4

B1
,

ψb•1 = α1 · α2 ·V2 · (Mb +Ma) + α2 · c4 ·Mb

B1
− B2 · B4

B2
1

,

ψb•2 = −B4 · [(α1 + α2) ·Ma ·Mb + B2 · (Ma +Mb − 1)]
B2

1

+
α1 · α2 ·V2 · (Ma +Mb − 1) · (Ma +Mb)

B1

+
α2 · c4 ·Mb · (Mb − 1)

B1
+

2 · B2
2 · B4

B3
1

+ ψb•1

− 2 · B2 · [α1 · α2 ·V2 · (Ma +Mb) + α2 · c4 ·Mb]
B2

1
,

α1 = kpaa · Ca
A

,

α2 = kpbb · Cb
B

,

c1 = 2 · ki · ε · Ci + Cs · (kxas · Ca• + kxbs · Cb•)
kpaa · (Ca + Cb)

+
Ct · (kxat · Ca• + kxbt · Cb•)

kpaa · (Ca + Cb)

+
kxaa · Ca• + kxba · Cb•

kpaa
,

c4 = 2 · ki · ε · Ci + Cs · (kxas · Ca• + kxbs · Cb•)
kpbb · (Ca + Cb)

+
Ct · (kxat · Ca• + kxbt · Cb•)

kpbb · (Ca +Cb)

+
kxbb · Cb• + kxab · Ca•

kpbb
,

r1 =
kpaa
kpab

,

r2 =
kpbb
kpba

,

γ = kpba
kpab

,

c2 = c4 · r2 · γ,

c3 = c1 · r1

γ
,

x = 1
r1 · r2

,

V1 = c2 · x − c1,

V2 = c3 · x − c4,

B1 = 1− (α1 + α2) + α1 · α2 · (1− x),

B2 = (Ma +Mb) · (1− x) · α1 · α2 − α1 ·Ma − α2 ·Mb,

B3 = α1 · c1 + α1 · α2 ·V1,

B4 = α2 · c4 + α1 · α2 ·V2,

(A.11)

where A and B denotes [(kcaa+kdaa)·Ca•+(kcab+kdab)·Cb•+
(kpaa+kxaa)·Ca+(kpab+kxab)·Cb+kxat ·Ct+kxas ·Cs+kza·Cz]
and [(kcbb +kdbb)·Cb•+(kcab +kdab)·Ca•+(kpbb +kxbb)·Cb +
(kpba + kxba) ·Ca + k xbt ·Ct + kxbs ·Cs + kzb ·Cz], respectivly.

A.6. Separator and Hold Tank Balances. These pieces of
equipment are modeled as first-order lags on the species con-
centrations with constant level:

dCks
dt

= Cks f − Cks
θs

Cks(0) = Ckso, k = a,b, i, s, t, z,

dCkh
dt

= Ckh f − Ckh
θh

Ckh(0) = Ckho, k = a,b, i, s, t, z.

(A.12)

Notation

A: Monomer A
A: Arrhenius pre-exponential factor
B: Monomer B
C: Concentration, kmol/m3

c: Heat capacity, kJ/kg/K
CH: Control horizon
CSTR: Continuous stirred tank reactor
DMC: Dynamic matrix controller
E: Activation energy, kJ/kmol
F: Molar flow rate, kmol/s
f : Suppression factor
G: Mass flow rate, kg/h
H : Enthalpy, kJ/kmol
I : Initiator
IAE: Integral of the absolute value of the error
k: Kinetic rate constant
L: Intermediate variable in molecular weight

distribution calculations
M: Molecular weight, kg/kmol
MPC: Model predictive control
P: Dead polymer
PH: Prediction horizon
Q: Volumetric flow rate, m3/s
R: Gas constant, kJ/kmol/K; reaction rate,

kmol/m3/s; ratio
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r: Reactivity ratio
S: Surface area, m2; solvent
T: Temperature, K; chain transfer agent
t: Time
U : Overall heat transfer coefficient, kJ/m2/s/K
u: Input variable of the process
V : Volume, m3

y: Output variable of the process, mole fraction
Y : Mole fraction
x: Intermediate variable in molecular weight

distribution calculations
Z: Inhibitor.

Greek letters

α: Reference trajectory parameter, intermediate
variable in molecular weight distribution
calculations

β: Intermediate variable in molecular weight
distribution calculations

γ: Intermediate variable in molecular weight
distribution calculations

ε: Initiator efficiency
θ: Residence time
λ: Molar concentration of monomer in

polymer macromolecules
ξ : Molar purge fraction
ρ: Density, kg/m3

ψ: Moment of molecular weight distribution

Subscripts

a: Monomer A
b: Monomer B
c: Termination by coupling
CL: Closed-loop
d: Termination by disproportionation
f : Feed to the reactor, final time of the

evaluation period
h: Hold tank
i: Initiator
j: Cooling jacket
k: Time instant
m: Number of B units in polymer chain
n: Number of A units in polymer chain
o: Initial value
p: Dead polymer, propagation
q: Number of B units in polymer chain
r: Reactor, number of A units in polymer chain
s: Solvent, steady-state value, separator
t: Chain transfer agent
w: Weight (average polymer property)
z: Inhibitor
0: Initial time of the evaluation period
(•): Free radical.

Superscripts

actual: Actual value
d: Desired output value
Future: Future value
Pred: Predicted value
Set: Set point
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[9] N. M. N. Lima, L. Z. Liñan, R. M. Filho, M. R. Wolf Maciel,
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