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Fermentation processes by nature are complex, time-varying, and highly nonlinear. As dynamic systems their modeling and further
high-quality control are a serious challenge. The conventional optimization methods cannot overcome the fermentation processes
peculiarities and do not lead to a satisfying solution. As an alternative, genetic algorithms as a stochastic global optimization
method can be applied. For the purpose of parameter identification of a fed-batch cultivation of S. cerevisiae altogether four
kinds of simple and four kinds of multipopulation genetic algorithms have been considered. Each of them is characterized with a
different sequence of implementation of main genetic operators, namely, selection, crossover, and mutation. The influence of the
most important genetic algorithm parameters—generation gap, crossover, and mutation rates has—been investigated too. Among
the considered genetic algorithm parameters, generation gap influences most significantly the algorithm convergence time, saving
up to 40% of time without affecting the model accuracy.

1. Introduction

Fermentation processes (FP) are preferred and widely used
in different branches of industry. The modeling and control
of FP pose serious challenges as FP are complex, nonlinear
dynamic systems with interdependent and time-varying
process parameters. An important step for adequate mod-
eling of nonlinear models of FP is the choice of a certain
optimization procedure for model parameter identification.
Different metaheuristics methods have been applied to
surmount the parameter estimation difficulties [1–3]. Since
the conventional optimization methods cannot overcome
the limitations of FP [4], genetic algorithms (GAs), as a
stochastic global optimization method, are quite promising.
Among a number of searching tools, the genetic algorithms
are one of the methods based on biological evolution and
inspired by Darwin’s theory of “survival of the fittest” [5].
GAs are directed random search techniques, based on the
mechanics of natural selection and natural genetics. GAs find
the global optimal solution in complex multidimensional
search spaces simultaneously evaluating many points in the
parameter space. They require only information concerning

the quality of the solution and do not require linearity in
the parameters. GAs have been successfully applied in a
variety of areas to solve many engineering and optimization
problems [6–8]. Properties such as noise tolerance and ease
of interfacing and hybridization make GA a suitable method
for the identification of parameters in fermentation models
[9–13].

Simple genetic algorithm (SGA) presented initially in
Goldberg [5] searches for a global optimal solution using
three main genetic operators in a sequence selection,
crossover, and mutation. GAs work with a population of
coded parameter set called “chromosome.” Each of these
artificial chromosomes is composed of binary strings (or
genes) of certain length (number of binary digits). Each
gene contains information for the corresponding parameter.
Through selection chromosomes representing better possible
solutions according to their own objective function values
are chosen from the population. After the reproduction,
crossover proceeds in order to form new offspring. Mutation
is then applied with determinate probability. Even though
selection and crossover effectively work, occasionally, a GA
may lose some potentially useful information. That is why
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mutation is needed to prevent falling of all solutions in the
population into a local optimum of the solved problem. Then
the algorithm evaluates the objective value of the individuals
in the current population and according to that the new
chromosome is created. The SGA is terminated when a
certain number of generations is fulfilled. The basic multi-
population genetic algorithm (MpGA) introduced in [5] has
the same sequence of implementation of the main genetic
operators as SGA. The difference in MpGA compared to SGA
is the presence of many populations, called subpopulations
[5, 14]. These subpopulations evolve independently from
each other for a certain number of generations (isolation
time), after that a number of individuals are distributed
between the subpopulation.

For the purpose of this investigation, SGA and MpGA
with standard sequence of genetic operators, namely selec-
tion, crossover, and mutation, are denoted, respectively,
as SGA-SCM and MpGA-SCM. Many improved variations
of the SGA and MpGA have been developed [9, 13, 15,
16]. Among them are the modified genetic algorithm with
a sequence crossover, mutation, and selection [9], here
denoted as SGA-CMS, and consequent modification of
MpGA based on such exchange, here denoted as MpGA-
CMS. In these algorithms selection operator has been
processed after performing crossover and mutation. The
main idea for such operators’ sequence is to prevent the loss
of reached good solution by either crossover or mutation
or both operators. Both algorithms SGA-CMS and MpGA-
CMS have been tuned for a parameter identification of S.
cerevisiae fed-batch cultivation, improving the optimization
capability of the algorithm and decreasing decision time.
Obtained promising results applying SGA-CMS and MpGA-
CMS encouraged more investigations concerning genetic
operators’ sequences to be performed in order further
improvements of the algorithms to be found. Moreover,
since the basic idea of GA is to imitate the mechanics of
natural selection and genetics, one can make an analogy
with the processes occurring in the nature, saying that
the probability mutation to come first, and then crossover
is comparable to the idea both processes to occur in a
reverse order. Thus, following this line of investigation,
also the following modifications are obtained [9]: SGA-
SMC and MpGA-SMC—with sequence selection, mutation
and crossover; SGA-MCS and MpGA-MCS—with sequence
mutation, crossover, and selection, all the modifications of
the SGA and MpGA developed in [5].

The elaboration of SGA-MCS is briefly presented below
as the fastest genetic algorithm among all investigated in this
study. In the beginning, the SGA-MCS generates a random
population of chromosomes, that is, suitable solutions for
the problem. In order to prevent the loss of reached good
solution by either crossover or mutation or both operators,
selection operator has been processed after performing of
crossover and mutation [9]. The modification in SGA-MCS
is that the individuals are reproduced processing firstly
mutation, followed by crossover. The elements of chro-
mosome are a bit changed when a newly created offspring
mutates, after that the genes from parents combine to
form a whole new chromosome during the crossover. After

the reproduction, the SGA-MCS calculates the objective
function for the offspring and the best fitted individuals from
the offspring are selected to replace the parents, according to
their objective values. When a certain number of generations
is fulfilled the SGA-MCS is terminated.

There are many operators, functions, parameters, and
settings in the genetic algorithms that can be ameliorated and
implemented differently in various problems [5, 12, 14]. In
this study three of the main genetic algorithms parameters
are investigated, namely, generation gap (GGAP), crossover
(XOVR), and mutation rates (MUTR) with values shown
in Table 1, according to some statements [17]. Very big
generation gap value does not improve performance of GA,
especially regarding how fast the solution will be found.
Mutation is randomly applied with low probability, typically
in the range 0.01 and 0.1. Crossover rate is the parameter
that affects the rate at which the crossover operator is
applied. A higher crossover rate introduces new strings more
quickly into the population. A low crossover rate may cause
stagnation due to the lower exploration rate.

The aim of the paper is to study the influence of three
of the main genetic algorithms parameters, namely, gener-
ation gap, crossover, and mutation rates, to be investigated
towards algorithms convergence time with values shown in
Table 1. Such genetic algorithms parameters are examined
for altogether eight kinds of simple and multipopulation
genetic algorithms. Their performances are demonstrated for
S. cerevisiae fed-batch cultivation.

2. Parameter Identification of S. cerevisiae
Fed-Batch Cultivation Using Simple and
Multipopulation Genetic Algorithms

Experimental data of S. cerevisiae fed-batch cultivation is
obtained in the Institute of Technical Chemistry, University
of Hannover, Germany [10]. The cultivation of the yeast S.
cerevisiae is performed in a 1.5 L reactor, using a Schatzmann
medium. Glucose in feeding solution is 50 g·L−1. The
temperature was controlled at 30◦C, the pH at 5.7. The
stirrer speed was set to 500 rpm. Biomass and ethanol were
measured off-line, while substrate (glucose) and dissolved
oxygen were measured on-line.

Mathematical model of S. cerevisiae fed-batch cultivation
is commonly described as follows, according to the mass
balance [18]:

dX
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= µX − F

V
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dS
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Table 1: Range of investigated genetic algorithm parameters.

GGAP XOVR MUTR

0.5 0.65 0.02

0.67 0.75 0.04

0.8 0.85 0.06

0.9 0.95 0.08

— — 0.1

where X is the concentration of biomass, [g·L−1]; S—con-
centration of substrate (glucose), [g·L−1]; E—concentration
of ethanol, [g·L−1]; O2—concentration of oxygen, [%];
O∗2 —dissolved oxygen saturation concentration, [%]; F—
feeding rate, [L·h−1]; V—volume of bioreactor, [l]; kO2

L a—
volumetric oxygen transfer coefficient, [h−1]; Sin—initial
glucose concentration in the feeding solution, [g·L−1]; µ,
qS, qE, qO2 —specific growth/utilization rates of biomass,
substrate, ethanol and dissolved oxygen, [h−1].

Fed-batch cultivation of S. cerevisiae considered here is
characterized with keeping glucose concentration equal to
or below to its critical level (Scrit = 0.05 g·L−1), sufficient
dissolved oxygen O2 ≥ O2crit(O2crit = 18%) and availability
of ethanol in the broth. This state corresponds to the so-
called mixed oxidative state (FS II) according to functional
state modeling approach [18]. As presented in [18], the
specific growth rate is generally found to be a sum of two
terms, one describing the contribution of sugar and the other
the contribution of ethanol to yeast growth. Both terms have
the structure of Monod model. Monod model is also used for
the specific ethanol and sugar consumption rates. Dissolved
oxygen consumption rate is obtained as a sum of two terms,
which are directly proportional to the specific glucose rate
and specific ethanol production rate, respectively. Hence,
specific rates in (1) are presented as follows:

µ = µ2S
S

S + kS
+ µ2E

E

E + kE
, qS = µ2S

YSX

S

S + kS
,

qE = − µ2E

YEX

E

E + kE
, qO2 = qEYOE + qSYOS,

(2)

where µ2S, µ2E are the maximum growth rates of substrate
and ethanol, [h−1]; kS, kE—saturation constants of substrate
and ethanol, [g·L−1]; Yij—yield coefficients, [g·g−1].

As an optimization criterion, mean square deviation
between the model output and the experimental data
obtained during cultivation has been used:

JY =
∑

(Y − Y∗)2 −→ min, (3)

where Y is the experimental data; Y∗—model predicted data;
Y = [X, S, E, O2].

Parameter identification of the model (1) has been
performed using Genetic Algorithm Toolbox [14] in MAT-
LAB 7 environment. All the computations are performed
using a PC Intel Pentium 4 (2.4 GHz) platform running
Windows XP. All kinds of genetic algorithms—four kinds
of SGA and four kinds of MpGA—have been consequently
applied for the purposes of parameter identification of

Table 2: Genetic algorithms parameters.

Parameter Value

NVAR 9

PRECI 20

NIND 20

MAXGEN 100

MIGR 0.2

INSR 0.95

SUBPOP 5

MIGGEN 20

Table 3: Genetic operators.

Operator Type

Encoding Binary

Reinsertion Fitness based

Crossover Double point

Mutation Bit inversion

Selection Roulette wheel selection

Fiitness function Linear ranking

S. cerevisiae fed-batch cultivation. The values of genetic
algorithms parameters except GGAP, XOVR, and MUTR for
all considered here kinds of genetic algorithms, both simple
and multipopulation, have been accepted as presented in
Table 2, while the type of genetic operators is as listed in
Table 3.

In Table 2 NVAR is the number of variables; PRECI—
precision of binary representation; NIND—number of in-
dividuals; MAXGEN—maximum number of generations;
MIGR—migration rate; INSR—insertion rate; SUBPOP—
number of subpopulations; MIGGEN—number of genera-
tion, after which migration takes place between subpopula-
tions.

The influence of main genetic algorithm operators con-
sidered here, namely, GGAP, XOVR, and MUTR, has been
firstly examined for all four kinds of SGA, and a comparison
in relation to model accuracy and convergence time is dem-
onstrated in Table 4. When one of the parameters GGAP,
XOVR, or MUTR is investigated according to Table 1, the
basic values for the other two parameters are as follows,
according to some statements [17]: GGAP = 0.8, XOVR =
0.95, and MUTR = 0.05.

As shown in Table 4, the optimization criterion values
obtained with four kinds of standard genetic algorithms
are very similar, varying between 0.0221 and 0.0230 which
means about 4% variance. As one can see, the results
obtained with SGA-SCM are very similar to results obtained
with SGA-SMC. Also, results when SGA-CMS is applied are
closed to those with SGA-MCS, but the convergence time
is much less than the first group. One can summarize that
proceeding selection operator before crossover and mutation
(no matter their order) needs more computational time. This
fact is valid for investigation of both parameters—GGAP
and XOVR. It should be noted that the GGAP is the most
sensitive from three investigated parameters concerning the
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Table 4: Results from model parameter identification using different kinds of SGA.

SGA-SCM SGA-CMS SGA-MCS SGA-SMC

J t [s] J t [s] J t [s] J t [s]

GGAP

0.5 0.0223 43.8120 0.0222 38.1710 0.0221 37.2810 0.0221 44.5160

0.67 0.0221 52.7970 0.0225 37.1870 0.0223 39.7810 0.0221 55.0460

0.8 0.0221 67.9220 0.0222 50.2970 0.0224 53.4530 0.0221 67.6410

0.9 0.0222 70.6250 0.0224 52.3440 0.0230 61.4370 0.0222 70.9690

XOVR

0.65 0.0222 65.5930 0.0223 45.9680 0.0221 50.0930 0.0222 69.6560

0.75 0.0223 60.7650 0.0223 44.8590 0.0223 47.7350 0.0221 65.9530

0.85 0.0221 65.6250 0.0224 45.9220 0.0227 41.5310 0.0221 61.6100

0.95 0.0221 65.6090 0.0224 45.9220 0.0225 50.5000 0.0222 63.1720

MUTR

0.02 0.0222 56.2190 0.0228 46.5150 0.0222 48.6570 0.0222 55.1090

0.04 0.0221 62.0000 0.0221 44.3120 0.0223 50.1250 0.0221 56.1880

0.06 0.0223 70.9530 0.0222 42.7970 0.0221 45.5470 0.0222 65.3280

0.08 0.0222 81.0470 0.0224 49.0000 0.0222 43.8430 0.0221 76.2030

0.1 0.0221 82.5150 0.0221 42.5160 0.0226 40.9370 0.0222 83.0310

Table 5: Values of model parameters when SGA-MCS has been applied.

Parameter µS [h−1] µE [h−1] kS [g·L−1] kE [g·L−1] YSX [g·g−1] YEX [g·g−1] kLa [h−1] YOS [g·g−1] YOE [g·g−1]

Value 0.95 0.12 0.12 0.80 0.4 1.47 113.02 894.88 254.95

convergence time-up to almost 40% (in case of SGA-MCS,
which is distinguished also as the fastest one algorithm)
using GGAP = 0.5 instead of 0.9 can be saved without
loss of accuracy. Even more exactly in case of SGA-MCS
the objective function value decreases from the maximum
observed in all performances value of 0.0230 to the lowest
one—0.0221. Exploring different values of crossover rate no
such time saving is realized but it should be pointed that
values of 0.85 for XOVR can be assumed as more appropriate.
Only in MUTR no tendency of influence can be drawn.
For the “favorite” of the considered here algorithms SGA-
MCS, value of 0.1 for MUTR can save up to 20%. It is
also demonstrated that there is no loss of model accuracy
when the operator mutation is performed before crossover.
Moreover, proposed modification in SGA in most cases
reduces convergence time. Presented here comparison shows
that the implementation of the operators in a sequence of
mutation, crossover, and then selection is the most optimal
according to convergence time with guarantied high accuracy
of the decision.

Based on such analysis, as a “favorite,” SGA-MCS can be
distinguished. Parameter identification of S. cerevisiae fed-
batch cultivation has been performed applying SGA-MCS at
chosen genetic parameter values GGAP = 0.5, XOVR = 0.85,
and MUTR = 0.1. As a result of parameter identification, the
values of model parameters are as presented in Table 5, while
the CPU time = 38.6410 s and J = 0.0223.

Figure 1 presents results from experimental data and
model prediction, respectively, for biomass, ethanol, sub-
strate, and dissolved oxygen.

The same analysis has been performed also for four kinds
of multipopulation algorithms. The tendencies described in
SGA have been proven to multipopulation algorithms as well
(results not shown because of similarity). As a “favorite”
among MpGA the one with standard sequence, namely,
selection, crossover, mutation, has been distinguished.
GGAP is again the most sensitive parameter concerning the
convergence time leading again to saving up to almost 40%
using GGAP = 0.5 instead of 0.9 without loss of accuracy.
Parameter identification of S. cerevisiae fed-batch cultivation
has been performed applying MpGA-SCM at chosen genetic
parameter values GGAP = 0.5, XOVR = 0.85, and MUTR
= 0.02 (the only one difference to SGA). As a result of
parameter identification, the values of model parameters are
as presented in Table 6, while the CPU time = 97.5940 s and
J = 0.0221.

Figure 2 presents results from experimental data and
model prediction, respectively, for biomass, ethanol, sub-
strate, and dissolved oxygen.

Presented in both figures, the results from SGA and
MpGA application for parameter identification of S. cere-
visiae fed-batch cultivation show the effectiveness of GA for
solving complex nonlinear problems.

3. Conclusions

In this investigation altogether eight modifications of genetic
algorithms—four kinds of simple and four kinds of multi-
population genetic algorithms—have been examined. Dif-
ferent modifications of SGA and MpGA are with exchanged
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Table 6: Values of model parameters when MpGA-SCM has been applied.

Parameter µS [h−1] µE [h−1] kS [g·L−1] kE [g·L−1] YSX [g·g−1] YEX [g·g−1] kLa [h−1] YOS [g·g−1] YOE [g·g−1]

Value 0.90 0.15 0.15 0.80 0.40 2.03 96.40 764.53 441.63

0 5 10 15
0

5

10

15

20

25
Fed-batch cultivation of S. cerevisiae

Time (h)

B
io

m
as

s
co

n
ce

n
tr

at
io

n
(g

/L
)

Data
Model

(a)

0 5 10 15

Fed-batch cultivation of S. cerevisiae

Time (h)

Data
Model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
th

an
ol

co
n

ce
n

tr
at

io
n

(g
/L

)

(b)

0 5 10 15
0

Fed-batch cultivation of S. cerevisiae

Time (h)

Data
Model

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Su
bs

tr
at

e
co

n
ce

n
tr

at
io

n
(g

/L
)

(c)

0 5 10 15

Fed-batch cultivation of S. cerevisiae

Time (h)

Data
Model

10

20

30

40

50

60

70

80

90

100

D
is

so
lv

ed
ox

yg
en

co
n

ce
n

tr
at

io
n

(%
)

(d)

Figure 1: Model prediction compared to experimental data, respectively, for biomass, ethanol, substrate, and dissolved oxygen concen-
trations.

operators’ sequence of selection, crossover, and mutation
operators. The influence of some of genetic algorithm
parameters, namely, generation gap, crossover, and mutation
rates, has been explored for all eight kinds of genetic
algorithms aiming to improve the convergence time. Among
the three investigated parameters, the generation gap is
the most sensitive one towards to convergence time. As

“favorites” among the considered here algorithms, SGA-
MCS and MpGA-SCM have been distinguished. Up to
almost 40% from calculation time can be saved in cases of
SGA-MCS and MpGA-SCM application using GGAP = 0.5
instead of 0.9 without loss of model accuracy. Exploring
different values of crossover and mutation rates no such time
saving is realized but it should be pointed that values of
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Figure 2: Model prediction compared to experimental data, respectively, for biomass, ethanol, substrate, and dissolved oxygen concentra-
tions.

0.85 for crossover rate can be assumed as more appropriate.
Employing such values of genetic algorithm parameters, both
distinguished algorithms, as well as all others modification of
SGA and MpGA, show the effectiveness of genetic algorithms
for solving complex nonlinear problems.
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