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This paper presents the implementation of an algorithm for automatic identification of drops with different sizes in
monochromatic digitized frames of a liquid-liquid chemical process. These image frames were obtained at our Laboratory, using
a nonintrusive process, with a digital video camera, a microscope, and an illumination setup from a dispersion of toluene in
water within a transparent mixing vessel. In this implementation, we propose a two-phase approach, using a Hough transform
that automatically identifies drops in images of the chemical process. This work is a promising starting point for the possibility
of performing an automatic drop classification with good results. Our algorithm for the analysis and interpretation of digitized
images will be used for the calculation of particle size and shape distributions for modelling liquid-liquid systems.
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1. Introduction

Image processing is a very relevant area of computer
science with applications in many domains. Quantitative
analysis and interpretation of digitized images are currently
important tools in several scientific domains.

The acquisition and treatment of images of particulate
phases become essential for the calculation of particle size
and shape distributions, namely in multiphase systems
modelling in chemical engineering. In particular, modelling
and validation of liquid-liquid systems, either for hydrody-
namic or mass transfer phenomena, can benefit from image
processing techniques. This is of importance in simulation,
interpretation, and performance predictions of multiphase
reactors. As reported in Ribeiro et al. [1], authors like Olney
[2], Cruz-Pinto and Korchinsky [3] and Rod and Misek
[4] have demonstrated that serious design and performance
prediction errors occur if drop size distribution is neglected.
According to Pacek et al. [5], any technique based on

representative physical sampling will drastically change the
overall composition of the dispersion.

In Ribeiro et al. [1] and Ribeiro [6] a video technique
with nonintrusive probes was tested. Pictures of a small
region inside a transparent vessel near its wall were obtained,
by lighting and observing it from the outside. In that work,
to obtain the drop size distribution, images were analyzed
by employing visual/manual techniques which imply high
costs, intensive labour, weariness buildup, and consequent
high error rates. A fully automated computational approach
has a definite potential for better performance.

The aim of the present work is to develop an algorithmic
process capable of performing shape discrimination and size
classification for liquid drops in monochromatic digitized
frames of a liquid-liquid dispersion.

In order to automatically identify the contour of the
drops, some known techniques for edge detection in images
have been tested. Preliminary results with the Sobel, Marr-
Hildreth, and Canny [7] methods were not satisfactory.



FIGURE 1: Experimental mixer-settler setup and image acquisition
technique.

Therefore, we have developed a new approach which is
described in this paper. After preprocessing the images, we
have used Hough transforms [8] for the detection of round
drops.

2. Experimental Setup and Noninvasive Image
Acquisition Technique

Image frames were obtained at our SIPROM (Modelling
and Simulation of Multiphase Systems) Laboratory with
a digital video camera + microscope + illumination setup
from a dispersion of toluene in water within a transparent
mixing vessel [1] as shown in Figure 1.

The mixer consists of a 6,28 L glass vessel (diame-
ter = height) with flat bottom, equipped with four flat
vertical baffles. The agitation was provided by a standard
turbine with a 1/2 turbine/vessel diameter ratio and with
turbine diameter/disk diameter/paddle width/paddle height
of 20/15/5/4. The mixer-settler arrangement works in closed
circuit with the mixer feeds being forced in by peristaltic
pumps.

For our experiments, the average residence time of the
mixture in the mixer vessel was between 1 and 10 minutes,
the dispersed phase hold-ups between 1 and 10%, and the
agitation speed between 90 and 145 rpm.

The images were captured by a black and white SensiCam
[9] camera, designed for weak lighting and fast movement
(exposure times from 1 millisecond to 1000 seconds, image
intervals between 0 and 1000 seconds).

Due to the high sensitivity of the camera, the lighting
system had to respond to strict requirements of target ability,
no flicker, high light density, low heat generation and simple
and safe setup. So the light system was made up of four cool
halogen lamps (150 W, 12V each) with mirror-concentrated
beam and rear cooling.

Test trials enabled the definition of the best placement
of the microscope-camera group, the best placement of the
lighting array and the penetration depth (up to 3 cm) into
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FiGuURre 2: Examples of images, (a) is a very good image, and (b) is
an image with low photographic quality.

(a)

FIGURE 3: Original image, the edge detection and the detection of
the drop using the Hough transform.

the vessel. The amplification of the combined optical image
system was determined from images of a gauge made from
calibrated wire immersed in the vessel. In this routine work
was used a minimum frame duration (1 millisecond) in
order to disable drop trails even at the highest agitation
speeds. In this way, many frames (up to 1000) may be
obtained per second, which enables the selection, in each
frame, of only the best-defined drops without representative
sample size problems.

3. Definition of the Problem

The experimental conditions (mainly phase ratio and agi-
tation speed) led to frames of deeply focused fields with
partially overlapping drops and high background noise,
as we can see in Figure 2. In this figure we show two
images, Figure 2(a) is what we consider a better quality
image whereas Figure 2(b) is very difficult to process. Since
noninvasive image acquisition and lighting were our uncom-
promising starting option, no significant improvements were
obtained although all available image acquisition and clean-
ing techniques were used within this fundamental constraint.
Thus, partial images and ill-defined drop boundaries led
to all low cost, market-available image processing software
packages requiring a high number of frames in order to
secure statistically significant drop samples which, again,
made for greatly time-consuming, unreliable procedures.
This led us to develop our own software for which a
preliminary test and calibration stage was performed on
archive images previously obtained with a semiautomated
procedure [1]. We have developed a promising approach,
implemented in MATLAB [10], which, given one of these
photographic images of a dispersion, automatically identifies
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Typical signal profile (X axis parallel cut view)

Typical signal profile (X axis perpendicular view)
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FiGURrk 4: The signal profile typically presents two steep ascents and two steep descents. The algorithm uses the gradient’s descent (Gd) and

its respective thickness (Ed) to identify the contour of the drops.
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FIGURE 5: (a) Original image; (b) the resulting contour image; (c) representation of the drop contour as an irregular object.

the contour of existing drops and classifies them according to
their diameter.

4. Description of the Method

Given one of the photographic images of the dispersion,
our approach, implemented in MATLAB, automatically
identifies the contour of existing drops and classifies them
according to their diameter.

In our proposed approach, the process for the detection
of the drops in an image has two distinct steps. In the
first step, we detect the edges of the drops in the original
image by monitoring the values of the gradient and the
descending thickness and by creating an output image with
those contours. In the second phase, we detect the drops in

this contour image, using the Hough Transform [8, 11]. This
transform is widely used in image processing to detect lines
and also to detect circles.

4.1. Edges Detection. In Figure 3, we show the step of the
detection process of the drops. Thus, starting from the orig-
inal image (Figure 3(a)), we detect the edges (Figure 3(b))
and in the next step, we detect the contours of the drops using
the Hough transform (Figure 3(c)).

In our images, of relatively poor quality, the drops have,
in majority, dark edges.

To reduce the noise, and consequently reduce the
probability of false edges detection, the original image
(Figure 5(a)) is smoothed using a Gaussian filter. This
eliminates some false contours and reduces the detection of
false drops.



Voting window
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FIGURE 6: Voting window and voting amplitude.

Using the typical profile of the signal, edge detection
is made by evaluating the relation between the gradient’s
descent (Gd) and its respective thickness (Ed), shown in
Figure 4.

The filtered image (If) is derived, with kernels of
convolution, as indicated below, originating two matrices,
Ix and Iy (see (1)) corresponding to the partial derivatives
dz/dx and dz/dy:

Ix = Ifs[1 -1],
Iy = Ifx [_11} : W

From the images Ix and Iy we obtain the average and the
standard deviation of the descending gradient (ug,0g) and
the average and the standard deviation of the descending
thickness (pe, ge). The edge detection threshold is defined
by the combination of Gd and Ed (computed from the
Ix and Iy images), where Gd takes negative values and Ed
positive.

In the processing of each descent (negative derivative)
from its origin to inflexion point, if Ed > pe — oe/2 and
Gd < ug + 0g/2, then the pixel of this point is considered an
edge pixel. From the matrix Ix we obtain the partial contour
matrix Ia, and from Iy the matrix Ib.

Since there may be very high values of e and very
low values of g, the detection of the edge pixels could
be negatively affected. To reduce that possible effect we
have introduced the terms —oe/2 and ¢g/2. By moving
the edge detection thresholds in this way, we intend to
obtain the maximally useful information without increasing
significantly the risk of obtaining unnecessary information.

The sum of Ia and Ib yields the contour image Ic, shown
in Figure 4. Currently, we only consider the vertical and
horizontal derivatives. Taking other directions into account
(such as 45 degrees derivatives) could saturate the contour
detection and degrade the results. Moreover, this would
increase significantly the computational effort of the method.
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Preliminary experiments with other known methods
for contour detection such as Sobel, Canny, and Marr
Hildreth showed that these degrade the results of the Hough
Transform in the detection of the drops. They introduce
additional information that causes the detection of false
drops.

4.2. Detection of Drops in the Contour Image. In the second
step of the work, we applied the Hough transform to the
contour image Ic (Figure 5(b)) to detect the contour of the
drops for different values of the radius.

We consider, as we can see in Figure 5(c), that the contour
of each drop can be represented as one object with irregular
form, centred in a point and with a radius that varies from r1
to r2.

The Hough transform is widely used to detect lines and
also to detect circles. To find circles using a Hough transform,
each edge element votes for all the points x, y which are
centres of the circles with radius r that it could lie on.
This transform allows determining the centre of the drop
through the identification of the most voted zone. It has the
inconvenience of, for each useful vote, generating 2 X xr—1
noise votes. For this reason, in an image with many drops,
this could cause the detection of inexistent drops.

As referred above, in this step of the process we applied
the Hough transform to the contour image Ic taking into
account the relative deformation k = (r2 — r1)/r2 of the
drops. The value of k is a parameter of the algorithm.
For a maximum deformation of radius r2 the minimum
deformation will be 71 = r2 X (1 — k). Votes will be generated
from the successive application of the Hough Transform to
the range r1: r2.

This procedure is repeated for all the radii considered
as maximum deformation (r2), in order to process all the
contours, of all dimensions, of the drops (see Figure 5(c)).

The voting window (centre of Figure 6) has a dimension
of 3 x 3pixels for radii above 15 and dimension of 1 X
1 otherwise. To reduce the number of noise points we
considered half of the voting amplitude (two quadrants). For
that we analyze the signal of the partial derivatives according
to the partial contour matrix, la or Ib, related to the edge
pixel.

Figure 7 illustrates the detection quadrant voting proce-
dure for an edge pixel related to matrix Ia. If the drop was
a regular solid, it would be possible to determine the correct
quadrant, by analyzing the gradient’s angle variation, f8. In
our case, it is only possible to determine a pair of possible
voting quadrants (A, C or B, D), by analysing the partial
derivative’s signal. The similar process is used for the edge
pixels related to matrix Ib.

The detection process starts with the set of drops with
radii between 17 and 48 pixels (0.17 and 0.48 millimeter,
resp.) because these are the most frequent. Then, we treat
the drops with at least 48 pixels of radius. Finally, we process
the drops with radius between 8 and 16 pixels (0.08 and 0.16
millimeter, resp.).

Processing the drops with higher radius first reduces
the probability of detecting false drops with a lower radius,
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FIGURE 7: Detection of the quadrant voting across the X axis.

TaBLE 1: Precision and recall for different radii on two images: one pixel corresponds to 0.01 millimeter.

First image

Second image

Radius (pixels) Recall Precision Radius (pixels) Recall Precision Radius (pixels) Recall Precision Radius (pixels) Recall Precision

7 0.25 1.00 17-19 1.00 0.90
8 0.50 1.00 20 0.75 1.00
9 0.57 1.00 21 0.60 0.60
11 1.00 0.67 22 0.60 1.00
13 0.67 1.00 23 0.67 1.00
14 0.80 1.00 24 0.33 1.00
15 0.67 1.00 25-26 1.00 0.75
16 0.75 0.75 28-44 1.00 1.00

7 0.44 0.80 16 0.57 1.00
8 0.50 1.00 17 0.77 1.00
9 0.40 1.00 18 0.57 1.00
11 0.25 1.00 19 0.50 1.00
12 0.25 1.00 20 0.50 0.60
13 0.25 0.50 22 0.25 0.33
14 0.57 0.57 23 0.75 1.00
15 0.57 1.00 24-44 1.00 1.00

FiGure 8: The drops detected by our program. Each detected drop
is marked with a white circle on top of the original image.

caused by agglomerates of pixels in the contour of the drops.
However, the detection is not efficient for radii below 8 pixels
(0.08 millimeter).

This detection process is enhanced with the erosion of
the contour images of detected drops. This is not a common
process of morphologic erosion [11]. In this process, after
finding a centre, we eliminate the pixels that have contributed
to find this centre so that they do not interfere in the
subsequent process [12, 13].

In Figure 8, we can see the results obtained on two
images for a radius ranging from 5 pixels (0.05 millimeter)
to 46 pixels (0.46 millimeter).

5. Results

To evaluate our approach more objectively we have chosen
two images with different levels of photographic quality,
and compared the sets of drops obtained automatically
with the drops manually identified by us. Each image



contains more than 100 drops with varying conditions (radii,
overlapping, border quality, etc.). In Table 1, we show the
results obtained with two of the images, the images shown
in Figure 8, in terms of recall and precision values. We have
calculated those values as defined in (2) where TP is the
true positives (number of drops correctly identified by the
program), FN the false negatives (actual drops not identified
by the program) and FP the false positives (drops incorrectly
identified by the program). In other words, recall measures
the proportion of existing drops that the program was able
to identify correctly, whereas precision is the proportion of
drops identified by the program that are truly correct:

recall = — P
T TPy RN
P 2
precision = —————.
TP+ FP

In the case of the first image, we have obtained the following
results. For a radius below 7 pixels the program cannot find
any drop. For the radius 10 (0.1 millimeter), not in the table
because recall = 0 and precision not defined, we have TP =
0, FP = 0, and FN = 3. For the radius 12 (0.12 millimeter),
also not in the table, because recall = 0 and precision are
not defined, we have a TP = 0, FP = 0 and FN = 1. For
the other values of the radius not represented in the table, we
have TP = 0, FP = 0, and FN = 0. As final results, taking
into account all the values of radius, we have for this image a
recall of 0.71 and a precision of 0.89.

For the second image, which has a lower photographic
quality, we have worse results, having a total 0.55 for recall
and 0.87 for precision. Nevertheless we have, for many values
of radius in the image, maximum recall and precision. For
several values of radius from 7 to 23 and for radius equal to
35, 40, and 45, recall and precision are not shown in the table,
for the same reasons as in the previous image. We believe
the cause for these worse results with respect to the previous
image is the lower quality of this second image.

6. Conclusions and Future Work

In this paper, we have presented a method for the automatic
identification of drops in images taken from agitated liquid-
liquid dispersion. The results obtained with two images
with more than 200 drops with diverse conditions (radii,
overlapping, border quality, etc.) lead to the conclusion that
our program is able to detect a good percentage of the drops.
In the case of a better quality image, the program recognized
71% of the drops. For the other image, with lower quality,
only 55% were detected. We have also observed that the
approach is less efficient for smaller values of the radius, since
very small drops can be easily mistaken by noise.

This work is a promising starting point for the possibility
of performing an automatic drop classification with good
results. However, given the limited number of images used
in these experiments, these results must be further validated.
Currently, we are manually identifying drops in our large
library of images. Having a larger number of annotated
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images, we can proceed with experimental validation and
further improve our results.

This can be done by fine tuning the parameters of the
process, and learning the appropriate parameters given the
image conditions (quality, lighting, etc.). Another line of
research we are pursuing implies employing neural networks
for strengthening drop recognition.
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