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By transmitting multiple independent waveforms at the transmit side and processing echoes of spatial targets at the receive side,
Multiple Input Multiple Output (MIMO) radar enjoys virtual array aperture expansion and more degree of freedom (DOF), both
of which favors the application of direction finding or estimation of direction of arrival (DOA). ,e expanded virtual aperture
provides higher angular resolution which also promotes the precision of DOA estimation, and the extra DOF brought by
waveform diversity can be leveraged to focus energy in certain spatial region for better direction-finding capacity. However,
beamspace methods which match certain beampatterns suffer from deteriorated performance and complexity in implementation,
and the advantage of virtual array aperture is limited by its virtual element redundancy. As an important performance indicator of
DOA estimation, Cramer–Rao Bound (CRB) is closely connected to the array configuration of the system. To reduce the
complexity of the system and improve CRB performance at the same time, in this paper, the virtual array of MIMO radar is
designed directly by selecting outputs frommatched filters at the receive side. For the sake of fair comparison, both scenarios with
and without priori directions are considered to obtain optimized virtual array configuration, respectively. ,e original com-
binatorial problems are approximated by sequential convex approximations methods which produce solutions with efficiency.
Numerical results demonstrate that the proposed method can provide thinned virtual arrays with excellent CRB performance.

1. Introduction

In various applications of radar system, such as beam-
forming and interference suppression, the Direction of
Arrival (DOA) is often needed as a priori information [1].
Inversely, the performance of DOA estimation can be im-
proved by proper beamforming and interference suppres-
sion [2]. ,erefore, DOA estimation is a prerequisite for
various applications as well as the purpose after other
processing procedures, which is of great importance to the
array of the radar system [3].

,e performance of DOA estimation is related to the
properties of array, which includes the aperture and structure
of the array. In MIMO radar, each element of transmit array
sends one of multiple independent waveforms, the echoes of
which are received by the receive array and processed through
matched filters. ,e data after matched filtering operation is

equivalent to the one received by an array with larger array
aperture, which is often referred to as virtual array. ,e
aperture of virtual array is usually larger than that of both
transmit and receive array, which is helpful for DOA esti-
mation since larger aperture is productive for angle resolution
[4]. However, such expansion of virtual array aperture is
limited by the redundancy of virtual array elements rendered
by the adoption of uniform array configuration at both
transmit and receive side. Even though both transmit array
and receive array are uniformly distributed without spatial
tapering in most cases of MIMO radar, the virtual array
configuration obtained by the spatial convolution of transmit
array and receive array is characterized by the fact that one
element in the virtual array may correspond to several pairs
consisting of elements from both transmit array and receive
array, producing redundancies of virtual array elements [5].
Such redundancy not only leads to the waste of element
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resources and increase of hardware complexity but also
produces array shading effect which often adds unwanted
weights on the virtual array elements, contributing to the
reduction of array performance. To tackle the redundancy of
virtual array and reduce the hardware cost and complexity of
the system, references [6–8] propose to model the virtual
array as polynomial and decompose the polynomial to obtain
thinned polynomials which represent both transmit array and
receive array. In these problems, the virtual array is given as a
uniform one to eliminate negative effects brought by un-
wanted weights in the virtual array and obtain thinned
transmit and receive arrays to reduce hardware complexity.
However, the number of possible solutions, i.e., the possible
combinations of thinned transmit and receive arrays, are
limited due to the intrinsic nature of spatial convolution. To
enlarge the scope of solution space and obtain larger virtual
aperture while preserving the thinned transmit array and
receive array, mathematical tools such as difference sets [9],
cyclic difference sets [10], and almost difference sets [11], as
well as numerical optimization methods such as genetic al-
gorithm [12] and simulated annealing [13] are proposed to
obtain more available solutions for thinned transmit and
receive array given the same number of elements, whereas the
optimality of solutions depends on the initial points for the
numerical problems and the computational complexity of the
problem is much larger than polynomial decomposition. To
obtain an even larger virtual aperture with thinned transmit
array and receive array, coprime array [14–16] and nested
array [17–19] are proposed together with the difference co-
array processing method, which utilizes O(N) elements to
achieve O(N2) or even O(N4) DOF. In this way, larger DOF
promotes parameter identifiability and angular resolution of
the array, but such difference co-array-based array configu-
ration is prone to error and distortion from the multipath
effect in practical applications. ,ese array configurations for
the MIMO radar are focused on improving DOA estimation
performance by expanding virtual array aperture using
thinned transmit array and receive array [20]. However, larger
virtual aperture does not necessarily translate to higher es-
timation precision of the MIMO radar [21].

,e performance of DOA estimation depends on the
effective array aperture on the direction to be estimated,
which means that the array configuration with the best DOA
estimation performance is determined by the DOA to be
estimated [22]. In fact, as a metric representing the limit
performance of array and DOA estimation, the Cramer–Rao
Bound (CRB) is closely related to the array configuration of
the system and the estimated direction [23]. Meanwhile, in
practical applications of direction finding, priori informa-
tion on the estimated direction is often available. ,erefore,
in order to fully utilize DOF from the configuration of the
virtual array to achieve lower total CRB, a thinned virtual
array is proposed. ,e work of this paper is summarized as
follows:

(1) ,e signal model of the MIMO radar is proposed, in
which the virtual array expansion and the connec-
tion between virtual array configurations are dis-
cussed. Since the performance of DOA estimation or

CRB of the MIMO radar depends on the structure of
virtual array, the connection between virtual array
structure, fisher information matrix (FIM), and CRB
is discussed to reveal the impact of array configu-
ration on the direction-finding performance of
certain spatial targets, and analytical expressions are
derived.

(2) Due to the uniformity in the distribution of elements
in both transmit array and receive array, elements in
the virtual array are redundant. Reducing such re-
dundancy not only decreases the hardware com-
plexity and waste of system resources but also
provides potential for utilizing the DOF provided
from the configuration of the array by incorporating
priori DOA information in the structure of thinned
array to achieve lower total CRB of the system. In this
way, the redundancy of the virtual array structure is
analysed and relation between the total CRB and
virtual array configuration is generalized to derive
the CRB expression of thinned virtual array
configuration.

(3) Based on these analyses, the optimization problem
for obtaining thinned virtual array is proposed. Both
the scenario with and without directional informa-
tion are considered. Because of the fractional
structure and nonconvex constraints, the solution to
the original form of the proposed problem requires
enumeration with high-computational complexity.
To solve the problem efficiently, the Dinkelbach
method is used to approximate the original problem
into a series of subproblems, all of which can be
solved iteratively.,e final solution to the problem is
obtained by solving another optimal integer con-
straint problem. Numerical results show CRB and
DOA estimation performance to validate the ad-
vantage of the proposed thinned virtual array.

It should be noted that the goal of this paper is thinning
the virtual array configuration directly through turning off
some of matched filters on the receive side rather than
designing thinned transmit and receive arrays to obtain
thinned virtual array. Compared to thinning transmit array
and receive array, respectively, the proposed scheme has the
following advantages:

(1) Even though thinning transmit and receive arrays
separately achieve more reduction of hardware re-
sources than thinning virtual array directly, such
separated scheme has fewer DOF for increased
performance due to limited number of virtual array
structures formed by spatial convolution of transmit
and receive array structures, whose combinations are
also limited. Meanwhile, the joint scheme can pro-
duce arbitrary virtual array configuration by turning
off matched filters and thus enjoys more possibilities
for increased system performance.

(2) ,e direct thinning of virtual array entails a pre-
condition that the virtual array must be fully filled
or at least one virtual element exists at the sensor
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positions of the obtained array. In other words, the
joint scheme requires both transmit array and re-
ceive array to be fully filled, which appears to waste
hardware resources than that of the separated
scheme. However, the precondition of fully filled
also implies that the proposed joint scheme can be
achieved without changing configuration of phys-
ical elements in transmit array and receive array.
,is enables fast deployment of the proposed
scheme on obsolete systems with filled arrays, and
fast reconfiguration of virtual array on the MIMO
radar at work. ,e proposed scheme is neither
better than any other existing ways of thinning
virtual arrays nor the one with lowest cost or fastest
speed. Rather, this scheme is proposed to provide a
possibility to improve the direction-finding per-
formance with more DOF on existing MIMO radar
systems.

,e rest of the paper is organized as follows. Section 2
introduces the signal model, which deals with virtual array
aperture expansion in the MIMO radar, redundancy in
virtual array structure, and the connection between virtual
array and CRB. ,e design of thinned virtual array for
optimization of CRB is discussed in Section 3, considering
both scenarios with and without priori directional infor-
mation. Numerical results are provided in Section 4, fol-
lowed by conclusion in Section 5.

2. Signal Model

Consider a MIMO radar system with transmit array of Mt

elements and receive array of Mr elements. ,e position of
the mth transmit array element is (xm, ym)(m � 1, . . . ,

Mt) and the position of the nth receive array element is
(xn, yn)(n � 1, . . . , Mr). Assume that the distance between
transmit and receive arrays is much fewer than wave-
length λ so that the target direction with respect to
transmit array is the same as the target direction with
respect to receive array, and all elements in both transmit
and receive arrays share the same carrier frequency Fc. It
is also assumed that there are L targets with elevation
angles θl(l � 1, . . . , L) and azimuth angles ϕl(l � 1, . . . , L).
In the transmit array, each element transmits an or-
thogonal waveform towards the target, and the complex
envelope of the waveform at the mth element can be
denoted as

sm(t) � ρϕm(t), m � 1, . . . , Mt, (1)

where t denotes fast-time index, i.e., the time index within a
radar pulse, ρ is the energy coefficient of waveform to
normalize the sum of energy of all transmitted waveforms as
constant, And ϕm(t) is the mth orthogonal baseband
waveform. After up conversion, the signal sent from the mth
element can be correspondingly denoted as sm(t)exp
(j2πFct), where the term exp(j2πFct) represents the carrier.

,e radar echo signal at the lth target is represented as

r1(t, τ) � ρβl(τ)aT θl( 􏼁ϕ(t)exp j2πFct( 􏼁, (2)

where βl(τ) denotes the reflection coefficient of the lth target,
a(θl) is the transmit steering vector corresponding to the lth
target, and ϕ(t) � [ϕ1(t), ϕ2(t), . . . , ϕMl

(t)]T is the vector
consists of Mt orthogonal waveforms. It should be noted that
the reflection coefficient within a single radar pulse remains
the same yet different between different pulses.

All orthogonal waveforms from the transmit array is re-
flected from the target and captured by the receive array. ,e
received signal is then down-converted to baseband by mul-
tiplying with exp(−j2πFct). In this way, the Mr × 1 baseband
equivalent of received echo signal can be expressed as

x(t, τ) � 􏽘
L

l�1
rl(t, τ)exp −j2πFct( 􏼁b θl( 􏼁 + z(t, τ), (3)

where τ represents slow time index, which is the index of
radar pulse, b(θl) denotes the steering vector corresponding
to the lth target with direction θl, and z(t, τ) is an Mr × 1
Gaussian white noise.

2.1.VirtualArrayAperture Expansion. ,e transmit steering
vector and receive steering vector can be expressed as

a(θ) � exp jk0 x1ux + y1uy􏼐 􏼑, . . . , jk0 xMt
ux + yMt

uy􏼐 􏼑􏽨 􏽩
T
,

b(θ) � exp jk0 x1ux + y1uy􏼐 􏼑, . . . , jk0 xMr
ux + yMr

uy􏼐 􏼑􏽨 􏽩
T
,

(4)

where k0 � (2π/λ), ux � cos θ cos ϕ, and uy � cos θ sinϕ.
Since the transmitted equivalent waveforms are or-

thogonal or linearly independent from each other, the
component corresponding to a single waveform can be
extracted using matched filters on the receive array. After
going through the down conversion at the receiver side, the
Mr × 1 baseband equivalent data vector corresponding to
the m th orthogonal waveform can be expressed as

xm(τ) � 􏽚
T
x(t, τ)ϕ∗m(t)dt, m � 1, . . . , Mt. (5)

Stacking all data component vectors corresponding to
different waveforms in a columnwise manner, an MtMr × 1
virtual data vector can be obtained as

v(τ) � ρ􏽘
L

l�1
βl(τ) a θl( 􏼁⊗ b θl( 􏼁( 􏼁 + 􏽥z(τ)

� ρ􏽘
L

l�1
βl(τ)u θl( 􏼁 + 􏽥z(τ),

(6)

where

u(θ) � a(θ) ⊗ b(θ) (7)

denotes MtMr × 1 virtual array steering vector and 􏽥z(τ) is
MtMr × 1 noise term with covariance matrix as σ2zIMtMr

It can be inferred from (7) that the virtual data vector can
be seen as a signal received by an MtMr × 1 array. ,is is
equivalent to the case that spatial signal is received by a
virtual array with larger aperture, which is depicted in
Figure 1. Usually, an array with larger aperture implies better
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DOA estimation performance, yet this is not the case with
MIMO radar virtual array. To demonstrate the effect of
virtual array design on the performance of direction finding,
the connection between virtual array structure and CRB is to
discussed in Section 2.2.

2.2. Connection between Virtual Array and CRB. To simplify
subsequent analysis, the following vectors are defined based
on the location of array elements:

x � x1 + x1, x1 + x2, . . . , x1 + xMr
, x2 + x1, . . . , x2 + xMr

, . . . , xMt
+ xMr

􏽨 􏽩
T
,

y � y1 + y1, y1 + y2, . . . , y1 + yMr
, y2 + y1, . . . , y2 + yMr

, . . . , yMt
+ yMr

􏽨 􏽩
T
,

xx � x1 + x1( 􏼁
2
, . . . , x1 + xMr

􏼐 􏼑
2
, x2 + x1( 􏼁

2
, . . . , x2 + xMr

􏼐 􏼑
2
, . . . , xMt

+ xMr
􏼐 􏼑

2
􏼔 􏼕

T

,

yy � y1 + y1( 􏼁
2
, . . . , y1 + yMr

􏼐 􏼑
2
, y2 + y1( 􏼁

2
, . . . , y2 + yMr

􏼐 􏼑
2
, . . . , yMt

+ yMr
􏼐 􏼑

2
􏼔 􏼕

T

,

xy � x1 + x1( 􏼁 y1 + y1( 􏼁, . . . , xMt
+ xMr

􏼐 􏼑 yMt
+ yMr

􏼐 􏼑􏽨 􏽩
T
.

(8)

Assume that a target locates at (θ, ϕ), where θ is the
elevation and ϕ is the azimuth. During one specific pulse, the
kth sample signal received by the system is y(k), k �

0, 1, . . . , N − 1. Stack all data by columns to form new
column vector:

z � v(0)
T
, . . . , v(N − 1)

T
􏽨 􏽩

T
. (9)

Let the array response of system in the noise-free con-
dition be

u(k) � 􏽘
L

l�1
ρβlb θl, ϕl( 􏼁aT θl,ϕl( 􏼁ϕ(k). (10)

,en,

E z{ } � u � u(0)
T
, . . . , u(N − 1)

T
􏽨 􏽩

T
. (11)

,is means that the received data z conforms to the
complex Gaussian distribution with u as mean and σ2zIMrK as
covariance matrix, which also implies that the estimator z is
the minimum variance unbiased estimator of u. ,e
probability density function (PDF) is

p(z,Ω) �
1

πMrNσ2MrN
z

exp −
1
σ2z

(z − u)
H

(z − u)􏼨 􏼩. (12)

For the existence of minimum variance, it is assumed
that the PDF satisfies the regularity condition:

E
z lnp(z,Ω)

zΩ
􏼢 􏼣 � 0, for allΩ, (13)

where the expectation operator is taken with respect to the
PDF p(z,Ω). For each element in the parameter vector
Ω � [θ, ϕ]T, the lower bound of the estimation variance of
each element exists. Such lower bound is the so-called CRB.
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Figure 1: Virtual array expansion.
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CRB can be derived by conducting inverse operation on the
Fisher information matrix:

var 􏽢Ωi􏼐 􏼑≥ J− 1
􏽨 􏽩

ii
, 1≤ i≤ 2, (14)

where var(•) denotes the variance, 􏽢Ωi is the estimate of the
ith element in the parameter vector, and [J− 1]ii denotes the
(i, i) element in the inverse of the Fisher information matrix
J, which is the ith element on the diagonal.

,e element of the Fisher information matrix can be
given by the following expression:

Ji,j � f Ωi,Ωj􏼐 􏼑 � E
z lnp(z,Ω)

zΩi

z lnp(z,Ω)

zΩj

􏼢 􏼣. (15)

,e Fisher information matrix, therefore, can be
expressed as

J �
f(θ, θ) f(θ, ϕ)

f(ϕ, θ) f(ϕ, ϕ)
􏼢 􏼣. (16)

Among all elements in the matrix, the Fisher informa-
tion corresponding to the parameter θ is

f(θ, θ) � Gsin2 θ Qxxcos
2 ϕ + Qyysin

2 ϕ + Qxy sin(2ϕ)􏼐 􏼑,

(17)

where G represents the constant term irrelevant to the di-
rections and Qxx, Qyy, and Qxy are called inertia momen-
tum, which are defined as follows:

Qxx � 􏽘

Mt

m�1
􏽘

Mr

n�1
xm + xn( 􏼁

2
� 1TXx,

Qyy � 􏽘

Mt

m�1
􏽘

Mr

n�1
ym + yn( 􏼁

2
� 1Tyy,

Qxy � 􏽘

Mt

m�1
􏽘

Mr

n�1
xm + xn( 􏼁 ym + yn( 􏼁 � 1Txy.

(18)

,e Fisher information corresponding to the parameter
ϕ is

f(ϕ, ϕ) � Gcos2 θ Qxxsin
2 ϕ + Qyycos

2 ϕ − Qxy sin(2ϕ)􏼐 􏼑.

(19)

Note that the matrix J is symmetric, and the cross-term is
therefore

f(θ, ϕ) � f(θ, ϕ)

�
G

4
sin(2θ) Qxx − Qyy􏼐 􏼑sin(2ϕ) − 2Qxy cos(2ϕ)􏽨 􏽩.

(20)

,e derivation of (17), (19), and (20) is provided in
Appendix A.

As discussed above, the CRB matrix is defined to be the
inverse of the matrix J so that the CRB of parameter θ can be
expressed as

C(θ, θ) � f(ϕ, ϕ) f(θ, θ)f(ϕ, ϕ) − f
2
(θ, ϕ)􏽨 􏽩

−1
. (21)

Similarly, the CRB of parameter ϕ can be expressed as

C(ϕ, ϕ) � f(θ, θ) f(θ, θ)f(ϕ,ϕ) − f
2
(θ, ϕ)􏽨 􏽩

−1
. (22)

It can be revealed from above that the array configu-
ration has an important impact on CRB through inertia
momentum. In the same way, the virtual array configuration
has an effect on the CRB of the MIMO radar through inertia
momentum of virtual array elements. ,e redundancy of
elements in virtual array from uniform virtual array con-
figuration and the comparison between thinning transmit
array and receive array and thinning virtual array are dis-
cussed in Section 2.3.

2.3. Redundancy in Virtual Array Structure. It has been
mentioned in Section 2.2 that the virtual data vector ob-
tained from the matched filtering on the Mr × 1 receive
array, which receives echoes of orthogonal waveforms from
Mt × 1 transmit array, can be considered as the signal re-
ceived by anMtMr × 1 array. In this way, a virtual array with
virtual expanded aperture is achieved, which is helpful for
DOA estimation. However, multiple elements occupy the
same locations in the virtual array, causing the redundancy
in the virtual array. ,ese redundant elements not only
renders inadequate use of virtual elements from the transmit
array and receive array but also affects the output of virtual
elements brought by intrinsic weighting from the redun-
dancy. ,e redundancy of elements in the virtual array is
sketched in Figure 2, where the height on each location
denotes the number of repetitive elements in the virtual
array aperture, which implies the level of redundancy. Such
redundancy cannot be eliminated through the thinning in
transmit array or receive array since the virtual array steering
vector is constructed by the spatial convolution of transmit
and receive steering vectors. Furthermore, the DOF in
thinning transmit array and receive array separately is
limited due to the fact that once an element in transmit array
or receive array is not in their thinned counterparts, all
virtual elements corresponding to the discarded element are
not in the thinned virtual array. To reduce the redundancy in
the virtual array and increase the DOF in the design of
thinned virtual array, more flexible ways of thinning are
needed.

To serve the purpose of increasing DOF for designing
thinned virtual array, the structure of MIMO is considered.
In the receive array of the MIMO radar, each element is
followed by several matched filters, each of which corre-
sponds to one independent waveforms from transmit array
so that each waveform component in the echoes can be
separated after match filtering operation. In this way, each
element in the receive array is followed by Mr matched
filters, paired with Mt orthogonal waveforms in the transmit
array; the total number of matched filters is MtMr, which is
the same as the dimensions of virtual steering vector and
virtual data vector. In fact, thanks to the orthogonality of
waveforms, each output data component from eachmatched
filters is equivalent to the output from element in the virtual
array which takes virtual location determined by its
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corresponding transmit and receive elements. When some
matched filters are failed or unable to produce normal re-
sults, such failure of matched filters can also be seen as that of
virtual elements. ,erefore, by adjusting the output of each
matched filter, different elements in the virtual array can be
selected to implement specific virtual array configuration so
that the redundancy of virtual array elements is reduced and
the DOF in the virtual array is utilized in a more flexible
manner, e.g., exploiting the connection between the virtual
array structure and system performance.

To realize the direct thinning of virtual array, a virtual
array thinning vector is defined as w ∈ 0, 1{ }MtMr , which
means w only contains ones and zeros. For each element in
w, 1 indicates that this element is in the thinned virtual array
and 0 indicates that this element is not. Assuming that K

elements are to be selected from MtMr elements to compose
thinned virtual array, the gravity center of the thinned
virtual array can be expressed as

xc �
1
K

􏽘

MtMr

i

wixi �
1
K
wTx,

yc �
1
K

􏽘

MtMr

i

wiyi �
1
K
wTy,

(23)

where wi denotes the ith elements in the vector w. For the
sake of simplicity and without the loss of generality, assume
the gravity center of virtual thinned array locates at the
origin of the plane, i.e.,

xc �
1
K
wTx � 0,

yc �
1
K
wTy � 0.

(24)

,emoment of inertia in the thinned virtual array can be
expressed as

Qwxx � wTxx, (25)

Qwyy � wTyy, (26)

Qwxy � wTxy. (27)

In this way, the element in the Fisher information matrix
of thinned virtual array can be rewritten as

fw(θ, θ) � Gsin2θ · Qwxxcos
2ϕ + Qwyysin

2ϕ + Qwxy sin(2ϕ)􏼐 􏼑,

fw(ϕ,ϕ) � Gcos2θ · Qwxxsin
2ϕ + Qwyycos

2ϕ + Qwxy sin(2ϕ)􏼐 􏼑,

fw(θ, ϕ) �
G

4
sin(2θ) · Qwxx − Qwyy􏼐 􏼑sin(2ϕ) − 2Qwxy cos(2ϕ)􏽨 􏽩.

(28)

3. Design of Thinned Virtual Array for
Optimization of CRB

In Section 2.2, the connection between virtual array con-
figuration and CRB is revealed, indicating the reduction
redundancy and inflexibility in virtual array design can be
avoided by directly thinning virtual array through selection
of matched filters on the receiver array. ,e specific con-
figuration of thinned virtual array, however, should be
considered carefully in the specific condition. If priori di-
rection of the target is not available or not considered, the
thinned virtual array with the best CRB performance is the
one that meets the isotropic condition; if priori direction of
target is available, the virtual array with optimized CRB
performance depends on the given information of the target.
Note that the optimization of CRB usually takes the trace
minimization of the CRB matrix, namely, to solve the fol-
lowing problem:

min
c

tr(C). (29)

,e thinned virtual array without or with priori direction
is to be considered in the following.

3.1. 4inned Virtual Array without Priori Direction. In the
case where no priori information on target direction is
available, the best thinned virtual array is isotropic, namely,
the CRB performance should be decoupled from elevation
and azimuth angles of the target. ,erefore, the following
conditions is to be satisfied:

Qwxx � Qwyy � Q,

Qwxy � 0,
(30)

so that the CRB matrix can be rewritten as

4

3

2

1

0

1
10 0

–1 –1

Redundancy

Figure 2: Redundancy in virtual array.
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C � J− 1
�
1
G

1
cos2θ􏼐 􏼑Q

0

0
1

sin2θ􏼐 􏼑Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

which also implies

min
Q

1
sin2θcos2θ􏼐 􏼑Q

. (32)

Note that (32) holds for any angle θ. ,e problem can
thus be rewritten as

max
Q

Q. (33)

It can be implied from (25), (26), and (33) that the
optimized isotropic thinned virtual array is composed of
elements on the aperture boundaries. ,is is because
boundary elements ensures the largest possible array ap-
erture to obtain the largest Q, which is in accordance with
the observation in [4]. However, as also pointed out by [4],
the optimized isotropic thinned virtual array without ap-
erture limit does not exist since the Q value can be arbitrarily
large by expanding aperture on every direction so that CRB
can be reduced arbitrarily. ,is also implies that CRB, which
is small enough, can be obtained by a virtual array aperture
which is large enough, which is impractical in real-world
applications. Besides, the design focused on expanding
virtual array aperture renders ambiguity, which is not
suitable for the applications which needs enhanced DOA
estimation performance.

Meanwhile, the isotropic condition in (30) adds the
constraint that the virtual array is symmetric around the
gravity center of the aperture, which is difficult to satisfy too.
Furthermore, even with constraints on the array aperture,
since the array only contains boundary elements, the best
possible isotropic array still suffers from high sidelobes,
which affects the performance of DOA estimation.

To mitigate the effect of high sidelobes from boundary
aperture, the following problem is to be considered:

max
w

wTxx

s.t. w ∈ 0, 1{ }
MtMr

wTx � 0

wTy � 0

1Tw � K

wTxy � 0

wT xx − yy􏼐 􏼑 � 0

wTCt,jw ≤ δt,j,

(34)

where 1 denotes all-one vector, Ct,j � real(vt,jvH
t,j) and is the

cross-correlation vector between the target steering vector
and the steering vector of the jth interference, and δt,j

represents desired peak sidelobe.

Note that (34) is not convex due to the binary constraint,
and this combinatorial problem is to be solved through
exhaustive search. To reduce computational complexity
from exhaustive search, it is necessary to seek a balance or a
trade-off between computational complexity and efficiency
through convex approximation to the original problem. In
this paper, a sequential convex approximation of (34) is
proposed. Specifically, the binary constraint w ∈ 0, 1{ } is
equivalent to the difference between two convex constraints,
i.e.,

A: w ∈ [0, 1],

B: wTw − wT1< 0,
(35)

where 1 denotes a vector of all ones.
,is means that the binary constraint w ∈ 0, 1{ } in (34)

can be expressed as a maximization problem, namely,

max
w

wTw − wT1

s.t. w ∈ [0, 1].
(36)

It is evident that the objective function does not meet the
requirement for the maximization problem. However, the
term can be approximated in an affine form by its first-order
Taylor decomposition. Note that the derivative ofwTw is 2w,
and thus the objective function in the kth iteration can be
approximated by

2wTw(k)
− w(k)Tw(k)

− wT1. (37)

,erefore, (34) can be approximated by iterative convex
problems as follows:

max
w

wT xx + 2μw(k)
− μ1􏼐 􏼑 − w(k)Tw(k)

s.t. w ∈ 0, 1{ }
MtMr

wTx � 0

wTy � 0

1Tw � K

wTxy � 0

wT xx − yy􏼐 􏼑 � 0

wTCt,jw ≤ δt,j,

(38)

where μ is the parameter controlling CRB and the degree of
thinning in the array. By adjusting μ properly, the trade-off
between the CRB and the degree of thinning can be achieved.

,e direct thinning of virtual array without priori di-
rection is summarized in Table 1.

3.2. 4inned Virtual Array with Priori Direction. It can be
inferred from (17), (19), and (20) that each element in the
Fisher information matrix is connected to both the DOA of
target and array configuration. Such connection also implies
that the array configuration with optimized CRB perfor-
mance is angle specific, namely, an array that is optimal for
one target direction is not for another target direction.
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Considering the condition with priori direction, the iso-
tropic virtual array proposed in Section 3.1 is not the most
desirable. Instead, the array only needs to detect certain
regions of interest with high precision while it still preserves
the capacity to detect targets outside those regions. If priori
information of target direction is available, e.g., from the
results from detection of the isotropic array over the whole
angle region, the optimal thinned virtual array can be ob-
tained through optimizing the CRBmatrix over the sector of
interest, which exploits the DOF from direct thinning of
virtual array and the connection between CRB and virtual
array configuration.

,e elevation θ and azimuth ϕ of a single target is as-
sumed priori known in the following discussions. Since the
CRB matrix is the inverse of the Fisher information matrix,
the elements on the main diagonal of CRB matrix can be
expressed as

Cθθ �
1
G

·
1

sin2θ
·
Qwxxsin

2ϕ + Qwyycos
2ϕ − Qwxy sin(2ϕ)

QwxxQwyy − Q
2
wxy

,

(39)

Cϕϕ �
1
G

·
1

cos2θ
·
Qwxxcos

2ϕ + Qwyysin
2ϕ − Qwxy sin(2ϕ)

QwxxQwyy − Q
2
wxy

.

(40)

,e derivation for (39) and (40) are provided in the
supplementary material.

To optimize the CRB of virtual array, the trace of the
CRB matrix is the target, which is

tr(C) �
1
G

·
αQwxx + βQwyy + ζQwxy

QwxxQwyy − Q
2
wxy

, (41)

where

α �
sin2ϕ
sin2θ

+
cos2ϕ
cos2θ

, (42)

β �
cos2ϕ
sin2θ

+
sin2ϕ
cos2θ

, (43)

ζ �
sin(2ϕ)

cos2θ
−
sin(2ϕ)

sin2θ
. (44)

,e elements in the thinned virtual array is selected by
choosing the MtMr × 1 binary vector w, where elements
with index of zero values is not included in the thinned
virtual array and elements with index of ones is included in

the thinned virtual array. ,e design of thinned virtual array
with minimized trace of the CRB matrix can therefore be
represented as

min
w

wT
􏽥αxx1

T
+ 􏽥βyy1

T
+ 􏽥ζxy1

T
􏼐 􏼑w

wT xxy
T
y − xyx

T
y􏼐 􏼑w

s.t. wTx � 0

wTy � 0

1Tw � K,

(45)

where 􏽥α � (α/K), 􏽥β � (β/K), and 􏽥ζ � (ζ/K).
Note that problem (45) is a fraction of quadratic terms

which is nonconvex, thus cannot be solved using convex
methods. To avoid large computational complexity from
exhaustive search, problem (45) can be approximated by
introducing matrix variableW. According to the property of
the trace of matrix, (45) can be rewritten as

min
w,W

tr(WN)

tr(WD)

s.t. wTx � 0

wTy � 0

1Tw � K,

W≥wwT
,

(46)

where N � 􏽥αxx1T + 􏽥βyy1T + 􏽥ζxy1T, and D � xxyT
y − xyxT

y .
Note that the fraction structure (tr(WN)/tr(WD)) is

still nonconvex. To facilitate the solution of (46), it should be
noted that the fractional problem is usually transformed as
the following problem:

F(η) � tr(WN) − ηtr(WD). (47)

(47) can be solved using the Dinkelbach method, which
is briefly given as follows:

Step 1: initialize the parameter η(1) and ε, where η(1) is
the initial value of η and ε is the threshold value where
the function F(η) converges.
Step 2: given η(k), the following problem is to be solved
to obtain the optimal value w(k), W(k) and corre-
sponding function value F(η(k)):

min
w,W

F η(k)
􏼐 􏼑

s.t. wTx � 0

wTy � 0

1Tw � K,

W≥wwT
,

(48)

Step 3: if F(η(k))≤ ε, the iteration terminates; w(k) and
W(k) are the output. Otherwise, let

Table 1: ,inning virtual array without priori direction.

Steps Procedure
Step 1 Initialize parameters μ, w(0), and I; set k � 0
Step 2 If sidelobe level is to be considered, determine j and δt,j

Step 3 Solve problem (32) or (34) to obtain w(k)

Step 4 k � k + 1; if k< I, go to step 3; if k≥ I, go to step 5
Step 5 w(I) consists of indices of selected active elements
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η(k+1)
�
tr W(k)N􏼐 􏼑

tr W(k)
D􏼐 􏼑

, (49)

and go back to Step 2.

It should be noted that the optimal parameter w(k) does
not meet the constraint of the original problem (45), and
optimal thinned binary vector is to be deduced by solving the
optimal integer constrained problem. Specifically, in order
to obtain vector w with zeros and ones as each element, the
following problem is to be solved.

min
w

w − w(k)
�����

�����

s.t. w ∈ 0, 1{ }
MtMr

􏽘

MtMr

i�1
wi � K.

(50)

,e design of thinned virtual array with priori direction
is summarized in Table 2.

4. Simulation Results

In this section, the advantage of the proposed thinned virtual
array is validated by simulation results. To give a fair
comparison between difference array configurations, nu-
merical simulations in several scenarios are to be considered.
First, in the case without priori direction, the virtual array
formed by linear transmit array and receive array is thinned,
which can be divided into two types, namely, the isotropic
(type 1) which only cares about CRB performance and
another type (type 2) that takes into consideration both the
CRB and sidelobe performance. ,e performance of type 1
and type 2 are compared to demonstrate the difference
between these two methods. Next, in the case with priori
direction, the virtual array formed by square transmit array
and receive array is thinned, which involves three types,
namely, the isotropic (type 3) which does not consider the
priori direction, the directional (type 4) which is thinned
based on the priori direction, and the one with wrong priori
direction (type 5). ,e performance of type 3, type 4, and
type 5 are compared to demonstrate that type 4 has the
lowest total CRB which achieves better DOA estimation
performance. Lastly, to prove the universal efficacy of the
proposed thinned virtual array, the total CRB of multiple
different directional thinned virtual arrays (type 4), obtained
with corresponding elevation and azimuth, is compared with
the total CRB of the isotropic (type 3) thinned virtual array
and that of the one with priori direction other than the actual
target direction (type 5).

4.1. Example 1. To provide comparison between different
linear thinned virtual arrays, a linear MIMO radar array is
considered, which is composed of Mt � 5 transmit elements
and Mr � 5 receive elements.,e interelement distance dt is
half of wavelength in transmit array, and the distance be-
tween elements in the receive array is set as dr � Mtdt to
expand array aperture as much as possible. In different

thinned virtual arrays, the number of virtual elements is
chosen to be K � 10. Assume a single target locates at
θ � 10°, and the target direction is estimated using the
maximum likelihood method. For type 2 array, the maxi-
mum allowed sidelobe is set to be ζ � −10 dB. Problems (33)
and (34) are solved separately to obtain the optimal type 1
array and type 2 array, which is shown in Figures 3 and 4.

As shown in Figures 3 and 4, since it only considers the
CRB performance, the elements in the optimal type 1 array is
concentrated on two sides of the array to achieve the largest
aperture which in turn produces the largest moment of
inertia. In contrast, the distribution of elements in the
optimal type 2 array is more even since it considers
counteracting sidelobes.

,e overall beampattern of two types of virtual array in
conventional beamforming is exhibited in Figure 5.

As revealed in Figure 5, the optimal type 1 array has
narrower mainlobe, which agrees with the fact that type 1
array concentrates its elements on the edge of its aperture.
However, higher sidelobe also appears in the isotropic type 1
array since virtual elements concentrate on two sides of the
virtual aperture. In contrast, the optimal type 2 array has
lower sidelobe than type 1 array does, but the mainlobe
width of the optimal type 2 array is wider than that of
optimal type 1 array due to the changed distribution of
elements in the virtual array. ,e observation above reveals
proper balance or trade-off between mainlobe width and
sidelobe level, depending on actual applications.

To give a fair comparison between different virtual arrays
and minimize the effect of DOA estimation methods, the
maximum likelihoodmethod is adopted in this section. Note
that the DOA estimates by the maximum likelihood method
is also the maximum likelihood estimate of true target di-
rections, which converges to CRB asymptotically. ,e Mean
Square Error (MSE) and CRB of different thinned virtual
array under different SNR conditions are depicted in
Figure 6.

As indicated in Figure 6, the CRB of type 1 array is lower
than the CRB of type 2 array. Nevertheless, in the low SNR
condition ranging from 0 dB to 5 dB, the threshold SNR of
type 2 array is lower than that of type 1 array. ,is implies
that type 2 array performs better in low SNR region than
type 1 array. ,e comparison between two types of thinned
virtual array indicates that incorporating the beampattern
performance into the design process, lower SNR threshold
or better noise reduction capacity can be achieved which
helps to improve DOA estimation performance in low SNR
region.

Table 2: ,inning virtual array with priori direction.

Steps Procedure

Step 1 Initialize parameters W(0), w(0), η(0), ε, K, and (θ,ϕ)

Set k � 0
Step 2 Obtain parameter α, β, and ζ from (θ,ϕ)

Step 3 Given η(k), solve problem (43)
Obtain w(k) and W(k)

Step 4 k � k + 1, and obtain w(k+1) by (44)
Step 5 Solve problem (45) to obtain the binary w
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4.2.Example2. In this example, the performance of different
thinned virtual arrays is compared in the scenario with priori
direction.

Consider a planar MIMO radar array, where Mt � 9
and Mr � 9. Both transmit and receive arrays take on
uniform square structure with interelement distance
being half of wavelength, as depicted in Figures 7 and 8.
,is indicates that the virtual array exhibits a 5 × 5 square
layout with 25 effective virtual elements, as depicted in
Figure 9. Assume that a single target locates with ele-
vation θ � 18° and azimuth ϕ � 156°. Problem (33) and
problem (46) are solved to obtain the isotropic thinned
virtual array which does not take into account the priori
direction (type 3) and the directional thinned virtual
array which incorporates the priori direction in the de-
sign of thinned virtual array (type 4). Both the two types
of thinned virtual array structures are shown in Fig-
ures 10 and 11.

As depicted in Figures 10 and 11, the elements in the
optimal type 3 array are located on the boundary of array
and are symmetric around the gravity center of virtual array
aperture. In contrast, the elements in the optimal type 4
array which takes into account priori direction do not locate
on the boundary of array but conforms to distribution that
changes according to the priori direction. Even though el-
ements are not on the boundary of the aperture of type 4
array, they are still symmetric around the gravity center due
to the symmetry of moment of inertia and the even number
of elements.

Similarly to the case in Example 1, the correlation
method is exploited to estimation DOA of the target by two
types of thinned virtual arrays. In different SNR conditions,
the total MSE of both elevation and azimuth and the total
CRB is shown in Figure 12.

As exhibited in Figure 12, the total CRB of the optimal
type 4 array is lower than that of the optimal type 3 array.
,e comparison between the total MSE of two types of array
indicates that the total MSE of the optimal type 4 array is
close to CRB even in low SNR condition (less than −2 dB);
the total MSE of the optimal type 3 array, however, does not
converge to the total CRB until the SNR is larger than 3 dB.
In other words, the SNR threshold of type 4 array is 5 dB
lower than that of type 3 array.,ese observations imply that
the priori direction information contributes to total MSE
performance in the low SNR condition. ,e optimal type 4
array introduces priori information and enjoys low total
MSE even in low SNR condition, while the optimal type 3
array has higher SNR threshold since the priori direction
information is not present in the isotropic thinned virtual
array.

4.3. Example 3. In this example, the generality of the per-
formance of directional thinned virtual array in cases with
different priori directions is demonstrated. Assume that the
SNR is 10 dB, the azimuth angles changes from 0° to 180°
with 1° as step; other conditions remain the same as in
Example 2. In each case with different azimuth angles, the
total CRB of isotropic thinned virtual array (type 3), di-
rectional thinned virtual array (type 4), and the thinned
virtual array with priori azimuth at 150 (type 5) are depicted
in Figure 13.
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15 20 25
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Figure 3: Type 1 array configuration.
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Figure 4: Type 2 array configuration.
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Figure 8: Receive array configuration.
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Figure 10: Type 3 thinned virtual array configuration.
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Figure 11: Type 4 thinned virtual array configuration.
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Figure 12: Total MSE and total CRB of type 3 and type 4 array.
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As displayed in Figure 13, the total CRB of the optimal
type 3 array is constant over different azimuth angles since
the virtual array is isotropic. In comparison, the total CRB of
the optimal type 4 array experiences fluctuation over dif-
ferent azimuth angles, but remains close and is lower than
that of isotropic type 3 array. For the directional type 5 array,
its total CRB is low when the direction of actual target
coincides with the priori one; however, when the direction of
the actual target is different from the priori direction, the
total CRB increases, indicating the direction-finding per-
formance of virtual thinned array is reduced since its DOA
estimation is misled by the wrong priori information. ,ese
observations indicate that when elevation is fixed yet azi-
muth sweeps over different angles, by taking the optimal
thinned virtual array on each direction, the total CRB re-
mains lower than that of isotropic thinned virtual array
while remaining constant compared to the optimal direc-
tional thinned virtual array with fixed priori direction.,ese
observations also indicate that reconfiguration of thinned
virtual array according to priori information of spatial
targets is a feasible way of obtaining total CRB which is lower
than that of isotropic thinned virtual array over different
spatial angles.

5. Conclusions

In this paper, the method for designing thinned virtual
arrays in the MIMO radar is proposed. ,e connection
between total CRB and virtual array is analysed, based on
which the thinning of virtual array is proposed both in case
with and without priori directions. In order to solve the
quadratic fractional problems efficiently, the original non-
convex problem is approximated by a series of convex
problems which can be solved iteratively, the solution of
which is used as the reference point in the optimal integer

constraint problem to obtain the binary solution which
satisfies the requirement of the original problem. Simulation
results show that the thinned virtual array can achieve
proper balance between DOA estimation and sidelobe
performance when no priori direction is present. When
priori direction is available, the directional thinned virtual
array achieves lower total CRB and total MSE than the
isotropic thinned virtual array without priori direction does.
Future work may include implementation of rapid changing
of virtual array structure through matched filters and
adaptive virtual array reconfiguration in real-time
applications.
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