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The rheology and evolution of the polar ice sheet are deeply influenced by the anisotropy of ice crystals. Studying the anisotropy of
ice crystals can help to well understand and predict the behavior of the polar ice sheet and then the sea level rising and global
climate change. In this paper, firstly, we deduce the expression of eigenvalues and eigenvectors of anisotropic media, which are
determined by permittivity tensor and geometry of media. Then, the analytic formulas of reflection and transmission coefficients
are derived directly by matrix transformation. Some models with real ice parameters are tested, and they present some special
features at the anisotropic interface. We also discuss the physical meanings of eigenvalues and eigenvectors and the geometry
analyzing to polarimetric radar. This analytic solution reveals the functional relationship between the macroradar reflection and
the microphysical properties of ice crystals, which provides a feasibility of ice fabric identification by polarimetric radar detection.

1. Introduction

The polar ice sheets play an important role in the global
climate system. Their evolution and stability have great
impact on climate change and sea level rising [1, 2]. The huge
thick ice sheet [3] (more than 2,000m on average) is
composed of numerous microice crystals. A single ice crystal
shows noticeable anisotropy in its response to stress,
specified by its exclusive C-axis, which is orthogonal to its
basal plane. However, the bulk of ice crystals may exhibit
preferred crystal orientations (fabric) and variable shapes
and sizes (texture) under the giant stress in the ice sheet
[4, 5]. The preferred fabrics and textures of ice crystals
significantly affect the flow and evolution of ice [6-8].
Therefore, the fabric alignment in the ice sheet is a key
indicator for understanding the behavior of the ice sheet.
Unfortunately, this information can only be obtained from
very few deep ice cores in Antarctic and Greenland [9-12].

Glen [13] presented an isotropic ice flow law, which
successfully explained the early field observations and had
been widely accepted. However, recent field measurements
showed some discrepancies with the results predicted by

Glen’s flow law, given the improvements from equipment
detection precision and extent [14]. These discrepancies
implied that the anisotropy of the ice crystal could not be
ignored in understanding the ice sheet evolution. Consid-
ering the importance of ice anisotropy in the ice sheet
evolution [9, 14], how to recognize the fabric and its dis-
tribution in the ice sheet and how to understand its an-
isotropic behavior are still the leading and challenging fields
in polar research [15].

RES (or radio-echo sounding) has been widely employed
as the standard facility in ice sheet expeditions since the
1950s. It achieves remarkable success in the polar explo-
ration due to its high efficiency and accuracy [16, 17]. Early
works since the 1950s had reported the elliptical polarization
in RES echoes in ice sheet survey [18]. Hargreaves [19]
suggested birefringence as the cause of echo difference along
different polarized orientations and proposed an anisotropic
expression of the permittivity with tensor. It is till the late
1990s that the permittivity tensor of the ice crystal within the
frequency band of radar waves is precisely measured in the
laboratory [20, 21]. Some field surveys have been conducted
to address the relation between the polarization of the EM
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wave and the ice fabric in the ice sheet [22-26]. Additionally,
some numerical methods have been developed for modeling
the propagation of electromagnetic waves in the ice sheet.
However, only a few [27-29] incorporated the anisotropy of
the ice. Polarimetric radar is considered as the most potential
tool for revealing the evolution of the anisotropic ice sheet.
The major obstacle of using it in polar research is the limited
understanding of radar wave propagation in the anisotropic
ice sheet rather than hardware. This limited understanding
deeply bottlenecks the data processing and interpretation of
the polarimetric radar.

The ice sheets can be simplified as a horizontally ho-
mogeneous stratified model with multiple anisotropic layers
(isochronous layers) [27-29], which possess variable fabrics
and permittivity tensors changed with the paleoclimate.
Therefore, while considering the propagation of the EM
wave in the ice sheet, the solution for this problem can be
categorized into two sequential steps: the reflection and
transmission at the anisotropic interface and the propaga-
tion in stratified and anisotropic media. For stratified an-
isotropic media, Berreman’s 4 x 4 propagation matrix is the
most popular method used in optic and other EM fields
[30-35]. Ursin [36] presented a propagation matrix method
commonly used for elastic and EM wave propagating in
horizontally layered media. Sluijter et al. [37] used the
polarized ray-tracing method for analyzing the inhomoge-
neous anisotropic media. However, in ground penetrating
radar, the wave sources are often transient pulses, not the
same as the continuous wave used in EM and optic fields.
The echoes of radar can be considered as the convolution
response of a ray series (or geometrical optics series) [38]
with the excitation wavelet. Each ray series is the combi-
nation of multiple reflections and transmissions at interfaces
along the ray path. So, the reflection and transmission at the
interface is a key basis for understanding the EM propa-
gation in stratified media. There are some approaches to
determine the reflections and transmissions of the EM waves
at the interface of anisotropic media [39-42]. In this paper,
we present a matrix transformation method to derive the
direct expressions of reflection and transmission at the
interface. It will be useful for the propagation in stratified
and anisotropic media.

2. Methodology

2.1. Simplification of the Electromagnetic Model. RES survey
and deep ice core analysis have proved that, in small scale,
the deep ice sheet can be simplified as horizontal stratified
ice layers. The ice sheet is often composed of four main fabric
types [6, 27].

Figure 1 demonstrates the Schmidt diagrams with the
four fabrics in the ice sheet. C-axis is a direction or-
thogonal to the crystal basal plane and often acts as the
unique indicator of a crystal. The gray points or filled areas
in Figure 1 indicate the possible C-axis directions or the
gathering shape of C-axis (fabric) in polycrystalline ice.
The symbols x and y indicate the principal axes in the
horizontal plane, and the z-axis is perpendicular to the
horizontal plane. Random ice (Figure 1(a)) often appears
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in the shallow part of the ice sheet because the stress is
faint, and the C-axis points any direction kept while snow
fell on the surface. The perfect single pole (Figure 1(b))
and vertical girdle (Figure 1(d)) are the two extreme states
of fabric with ice crystal deformation under the stress and
shear. The elongated single pole (Figure 1(c)) is the
transient state between the perfect single pole and the
vertical girdle under shear. Mathematically, anisotropic
crystals in the ice sheet can be described by the second-
order permittivity tensor, which has a diagonal form along
the principal axis direction:

g 00
T=[0¢ 0] (1)
0 0 &

The fabric can be categorized based on the signatures of
differentiation of permittivity along principal axes. The
permittivity of a crystal along or perpendicular to its C-axis
is denoted as ¢, and ¢, respectively, which had precisely
been measured in the laboratory [20, 21]. The four main
fabric types can be categorized through the permittivity
tensor: a random ice (Figure 1(a)) has permittivity elements
of ¢ =¢, = &;; a perfect single-pole ice (Figure 1(b)) has
permittivity elements of &; = ¢, = ¢, and &; = ¢;;; a vertical
girdle fabric (Figure 1(d)) can be achieved when the per-
mittivity elements satisfy ¢, = ¢, and ¢, = &5 = (g, + €,)/2;
and the permittivity tensor of an elongated single pole
(Figure 1(c)) has ¢, <¢, < €.

In radar analysis, EM wave propagations are typically
described in two coordinates: measurement and media
coordinates. Measurement coordinate is used to describe
the amplitude and propagation direction of EM compo-
nents. Media coordinate is used to define the principal
axes of permittivity tensor and geometry of media. Fig-
ure 2 presents the relative position of the measurement
and media coordinates, where x' denotes the semimajor
axis of the indicatrix ellipses and y' denotes the semi-
minor axis. Note that the z-axis in the measurement
coordinate coincides with the z’-axis in the media coor-
dinate because EM waves propagate as plane waves with
normal incident angle into the ice sheet, where isochrones
are generally horizontal. In the layered ice model, the
measurement coordinate is shared among all layers,
whereas the media coordinate differs in each layer and is
simply a rotation of the measurement coordinate with an
azimuth angle g around z/z’ axis.

Applying the coordinate transformation to the diagonal
permittivity tensor (formula (1)) yields the generic form of
the permittivity tensor in the measurement coordinate:

1 -
&, sin’¢ + &,co8’¢ 5 (e, —&)sin2¢ 0

(2)

™l
Il

1
3 (e, —&)sin2¢ & cos’p + &,sinp 0

L 0 0 & |
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(a) (b)

(c) (d)

FIGURE 1: Schmidt diagrams demonstrate typical fabrics in the ice sheet: (a) a random ice, (b) a perfect single pole, (c) an elongated single

pole, and (d) a vertical girdle.

2.2. Eigenanalysis of EM Wave Propagations in Anisotropic
Ice. The EM wave propagation in anisotropic ice-sheet
layers can be described by differential-form Maxwell’s
equations in time-harmonic field:

VX Ei = _J"U!f‘oﬁz"
R _ (3)

where E ; and H; are the electric and magnetic fields in the i-
th ice sheet layer, w is the angular frequency, y, is the
isotropic permeability of the i-th layer, and & is the per-
mittivity tensor of the i-th layer. In the measurement co-
ordinate, we suppose z-axis is the direction of EM
propagation. It satisfies the case of normal incidence. So,
electric field E and magnetic field H just exist in the plane of
x- and y-axis determining. Combining electric and magnetic
fields into one vector

y,=[E. E, H, H,]" (4)
yields the matrix form of Maxwell’s equations [43-45]:
ﬁgﬁ;mmﬂy%@, (5)
where
0 0 0 —u,
0 0 0
I = Ho

1 .
£,cos?g + &sin’p 0 0

(&1 — &)singcos ¢
—(e;sin’ + g,c08%9) —(g; —¢&,)sinpcosg 0 0
(6)
The entries of I; are expressed in terms of the azimuth
angle ¢ and permittivity tensor in the i-th layer. For ver-
tically propagating plane waves with wave number A, the
eigensolutions of (5) can be found by letting

¥ = e, )

which yields an eigenvalue problem with the eigenvalues A:
(T; = AI) -y = 0. (8)
In general, linear system (8) has four eigenvalues.

Therefore, the general solution of (7) can be written as the
linear combination of eigenvectors of (8):

v (2) = Aa,e™ + Ayja,e™ + Ajae N+ Ayage M,

9)
or equivalently in matrix-vector notation:
v(z) = ﬁeﬁzz, (10)
where
a= [al a, as ‘14]’
- T
A:[Al Ay Ay A4] >
-ejlllz -
(11)
- e/h?
ej/lz _
ej/\3z
L ez |
We can further reformulate (8) into
(r-An-x-=0, (12)
where
M VEiHo
A NG
7 _| M| 20 ‘ (13)
A3 —Véiko
Ay ~—Vé&ko

Equation (12) has two fundamental solutions:



Xy ]
X2
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a;(2)
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1 7 For the normal incident EM wave along the -z/z" axis,
the wave field can be decomposed into waves I and II, where
waves I and II are in the direction of x' and y' axis, re-

ctgy spectively. In the measurement coordinate, waves I and wave
II have rotation angles of ¢ and ¢ + 71/2, respectively. The
; eigenvectors of the wave field in the i-th layer have two
;Ctg(’) forms:
0
Ai
Yo
’ (14)
tang
1
to
——itanq)
0 -
[ 199 1 t9¢; 1 1
s s
1 ctg(E + gol-> 1 ctg(E + goi)
€ir € (” > €in 2 (” ) ’
L cotg(Z+ ) -2 cctg( = + ¢
to Ho R to 0 saT?
€i1 €ix i1 €ix
[, 199 A\ — 199 —
L Yo Ho Ho Ho . (15)
[ 199 1 tgo; 1]
1 ~199; 1 ~1g9;
1 -1 - 1
— ——tgg;  — —-1g¢;
N1 N2 9 M M2 v
-1 - 1 1
P tge: . t99; .
[ 1 tg<g+(pi> 1 tg<g+(pi> ]
ctgo; 1 ctgy; 1
€i1 i2 il €in
—— - cigg; - A\ Ctgei A\
\/; l to 0 l Ho
€l Eix <7T ) €l €ix <7T )
- 2 tg( =+, il tg( =+
L \]; \/; I 2 v Ho Ho g 2 v .




International Journal of Antennas and Propagation

1 —ctgy;
ctgo; 1
o 1
— - C1gy; —
il iz
L e
L i2 l
where
- o
M = 81’1’
(17)
_ |Fo
Mip = 51‘2)

are intrinsic impedances of waves I and II in the i-th layer,
subscripts 1 and 2 represent waves I and II, respectively, and
@; is the azimuthal rotation angle of the i-th layer in the
measurement coordinate with respect to the media coor-
dinate. Subscripts (1) and (2) indicate the two forms of
matrices in (15) and (16), which are eigenvectors composed
of tangent and cotangent functions of the azimuth angles,
respectively. Taking the inverse of matrices (15) and (16)
yields

tg9; 1 tgo; I
. 1 1 —1g9; 1 —1g¢;
40 T Ssec?o >
SRy nptger N Mo tge;
Mt tge; M Mo ctger M
(18)
1 —ctgy; 1 —ctgy;
. 1 ctge; 1 ctge; 1
42 T 5o,
SEPH - ctge, Mia i1 - CtgY; iz
M M- ctgy; i1 iy - Ctge;
(19)

The inverse matrices (18) and (19) resemble the matrices
(15) and (16), except for a transpose operator, inverse of
wave impedance, and a scaling factor. Therefore, the inverse
matrices (18) and (19) can be easily written once the di-
electric tensor and azimuth angle are given.

The calculation of reflection-transmission coefficients
needs normalized eigenvectors, so we first normalize each
column of the matrix in (15) by the L2 norm of the column
vector:

5
1 —ctgg;
ctgg; 1
-1 -1
—.ctgg, — | (16)
i1 iz
- ;.Ctg(P
il iz g
[ tge 1 tgei 1]
L; L L; L
1 tge 1 tges
o L; Lj, L; L
Na,-(l) = > (20)
SOl 1 tge, -1 tge,
99Pi 99i
M- Lin M- Lip - Ly M- Lip
—tgp -1 tgy 1
L7 - Liv M Lip Min - Ly M- Lip
where
L j = (21)
We introduce a diagonal matrix
- 1 -
— 0 0 0
L;
1
0O — 0 0
L
zi = > (22)
1
0 0 — 0
L
1
0 0 0 —
- 12_4
and its inverse matrix
Ly 0 0 0
__ 0O L, 0 O
il _ i2 (23)
0 0 L, 0
0 0 0 L,

(20) can be simplified into a matrix product of (15) and

(22):



zlZ

E>

FIGURE 2: Schematic diagram demonstrates the measurement
coordinate ({x, y, z}) and media coordinate ({x', 3, z'}). They own
a common z/Z’ axis and rotate with azimuth angle ¢. The red ellipse
is the indicatrix ellipse, which indicates the principal axis direction
of the permittivity tensor. Here, we suppose that the semimajor axis
denotes x/.

_ | S
Na;q = seC(p»'ai(l) - L;. (24)
1

The corresponding inverse matrix of (20) can be sim-
plified using (18) and (23):

— 1 _ 1
Nay = sec;
1

-1
_ = —1 _-1
@) -Ll.) =secg; - L; - @, (25)

We can also write (24) and (25) in terms of the cotangent
functions of rotation angles from (16) and (19):

Na;) = Qi) - Li»

cscy;
(26)

-1

1 _ 1 _ — _ —1 _-1

Nai(z) = _csc<p~ ‘A0 Ly =cscp; - L; 42
1

2.3. Reflection and Transmission Coefficients for the Aniso-
tropic Interface in the Ice Sheet. We use the 2 x 2 reflection
matrix R and the 2 x 2 transmission matrix Tfor the problem
of EM propagation at the anisotropic interface. Considering
an interface between two anisotropic ice-sheet layers, the
reflection matrix R can be defined to relate the reflected
upgoing waves to the downgoing incident waves. The
transmission matrix T relates the transmitted downgoing
waves to the downgoing incident waves. Above the interface,
the total wave field consists of the incident downgoing wave
and the reflected upgoing wave. Below the interface, the total
wave field has only downgoing transmitted waves. The
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reflection and transmission at the interface of the anisotropic
half-space satisty the following relation:

N, | ¥ - va [ ’ ] (27)
a - =Na,| _|.
N 2| 7
We do matrix operation on equation (27) and get
o' Na - | ° [ ° ] (28)
a . a, - =|_1,
2 . T

where
— [Ru Ry
R-| ,
Ry Ry
= [Tu Ty
T-| .
Ty Ty
Formula (28) illustrates that the eigenvector matrix of
the first layer Na, and the inverse eigenvector matrix of the
second layer Na, are necessary for calculating R and T.
Since the eigenvector matrix in each layer has two repre-
sentations, there are four combinations to construct the

matrix A = Na, h Na,. We first consider a form with (20)
and (25):

(29)

Z = m;zl) . ml(l). (30)

Substituting (24) and (25) into (30) yields

_1 1 _ _
=seco, - L, -a, secq 1y Ly
SeCPy; —1 -1 _ - secQ, —1 — —
= L. . . L, = .L, -B-L..
secg, 2 BT 1
(31)
where
[tge, 1 21 M1 1G9, ]
3 1 L —tge, —1y-tge, N2
L0 T Yoo ,
e tg¢, 1 —Mn N1 - 1G9,
L 1 —tge, 1y -tge, M2 J
tg(pl 1 tg(Pl 1 T
1 ~tg¢, 1 -tge,
aya = 1 -1 -1 1
— —tgpy — 19
M M2 ! M1 M2 !
-1 ; -1 1 ; 1
S tge — — g9 —
L1111 ! M2 M ! M
(32)
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Decomposing the eigenvector matrix into a diagonal

matrix and an elementary matrix yields

= s 71 7 =
B=a,, ay) = Cof, - E,-b, -b,-Ey, (33)
_1 9
-0-10
2
1
0- 0 -1
B 2
E, = =
1
-0 1 0
2
1
0- 0 1
L™ 2 _
[2tge, 2
. 2 “2tge,
b, =
0 0
L 0 0
[2tge, 2
2 =2tge,
E =
! 0 0
0 0
-1 1 -
- 0 =0
2 2
1 1
_ 0 - 0=
-1 0 10
L0 -1 0 1]
1
Cof, = :
2sec?g,

Iis the identity matrix, and E;l and b, are block diagonal
matrices. Since the product of two block diagonal matrices is

still block diagonal, we arrive at

where

0

—Ma

PSRRI
0

Ny 1G9,

M2
0

(34)



8
[4(1+tgeitgp,) 4(tge, —tge,)
~4(tgp, —tge,) 4(1+tgetge,)
__1 —
b =
2 01 0 0
0 0
e, 0
[0 5,
Therefore,
B=a,'-a
=Cof,-E,-b,-b, - E,
rl. 1.
ch +C) ZCI —C
= Cof, -
| S
_ch - C2 ZCI + CZ
[ M1 M1
1+—= 1+—= |t -
" ( ,712) g(p2—¢1)
_(1+;722>t9(‘/’2_§01) 1412
M M2
= Cof2 -
21 21
12 1-2 g (g, -
"~ < 1112> (92— 91)
22 22
~[1-"2)tg(e, - 1-22
_ ( ’711) 9(p2—91) -
Ea Eb
= Cof,
Eb Ea
where
Cof,

Let
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n
BL (14 tgg,tgp,) ,1—21 (tgp, - tge,)

11 12

) 2 (1+1g9,t99,)
2

Ui
—2 (tg9, - tgg,
M

—<1—Zi>tg(¢z—<p1) 1—%
1+% (1+%)tg((p2—
—<1+%>t9(¢2—¢1) 1+%

_1+1tg9, -tg9,
2sec?p,

1)

1)

(35)

(36)

(37)
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r 1 0 -
Ly 00
1 00
0 — _
_ Ly, F, 0
L= = , (38)
1 0 F,
— 0
00 Lp
00 1
O -
L Ly,
r 1 -
— 0
Ly, 00
1 00
0 I .
_ 22 F, 0
L= =12 _ | (39)
1 0 F,
— 0
00 Ly,
00 1
0 R
L L22 .
and
r 1 0 - r ) 2 -
L_u 1/\,1 +(}1—“> 0
Fl = = > (40)
0 ! 1 ’
0 | 0 ”‘/”(E) |
rl 0 1T ) 2 q
- L_21 1/\/1 +<H> 0
F, = = ,  (41)
0 ! 1 :
0] | 0 1/ ”(E) |
One can simplify (31) by substituting (36), (38), and (39):
A=S%2 TVBT
secgp,
—1 — = _ —
F, 0 B, B, F, 0
0, Csz[
sec — 5 B
1lo0 F' B, B,1 L0 F,
__ __ . 42
F,'-B,-F, F,' -B,-F, (42)
= Cof;.
Fz Bb'Fl Fz‘ aFl-
Za _b
=Cof;-| ,
Ab Aa

where
secy, 1+tgetge, 1 .
Cof, = -Cofy =—————=1==— - Q).
et sece; o 2secp,sece, ZSm(gD2 #)
(43)
Substituting (42) into (28) yields
A, AR 0
Cof, - | _" _ = , (44)
A, A LT T

where one can solve for the reflection and transmission
coeflicients R and T:

R=-A, -4, (45)

T = Cof, - (A, - R+ A,) = Cof - (_zb AE, +Ka>.
(46)

Hovleyler, the expressions of R and T involve inverse
matrix A, , which is typically difficult to obtain. Decom-
posing the matrix A into block diagonal matrices and ele-
mentary matrices as shown in (42) and substituting them
into (45) and (46) yield

— —1 — —1 = — N\l - = =
R=-A, -A,=-(F, -B,-F,) -F, -B,-F,

=1 =1 = = =1

1 5 = =1 =\ =
=-F, B, -F,.-F, -B,-F,=-F, -(B, -B,) F,,

(47)

T = Cof, - (A,-R+A,) = Cof3 - <_zb A, +za).

- Cof; - [F; .(-B, B, B, +B,) -Fl].
(48)

In this way, complex calculation of R and T can be
decomposed into product or sum between the matrix on the
diagonal matrix F and the submatrix of B and its inverse
matrix, where the inverse of matrix B, can be obtained from
(36):

M2 21
1+—== - 1+— |t -
- ( ;112> 9(p2—91)
—1 1
B ==
A
M2 M1
1+—= |t - 1+—
< ml) 9(p,— 1) -
(49)
Let

a :d (M21/M11),b = (131/M15), € = (Mpp/111)> d = (35/112)5
an
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|B.| :<1 +@><1 +@> +<1 +@)<1 +@>1‘g2((p2 -¢)
Ui V) N2 M (50)

=(1+a)(1+d)+(1+b)(1+0)tg’ (9, - 9))s

R =B B,-——
=B, -B,=——
' IBa| (51)
(1+d)(1-a)+(1+b)(1-c)tg* (¢, —¢) 2(d-b)tg(e, - ¢,)
2(c-a)tg(9, — ) (1+a)(1-d)+(1+c)(1-b)tg*(p, - ¢,) |
We can simplify the reflection coeflicient (47) using (51):
L 1
R=-F, .Rl.plz_m.
1+ (1/ny,)
(1+d)(1-a)+1+b)(1-0o)tg* (e, - 2(d-b)t - —
g (92— 1) 9(92—91) 1+ (1/’112)2 (52)
1+(1/
2(c-atg(9y - o) M) (a1 —d) (149 (1= bt (s - 9)
1 +(1/’711)
Similarly, substituting
— - -] = = 4
T,=-B,-B, -B,+B, = Bl
: 3 (53)
I: a(l+d)+(a+bo)tg® (¢, —¢;) b+ad)tg(e, —¢;) +b(1+)tg’ (¢, — ¢1)
~(c +ad)tg(p, - ¢1) —c(1+b)tg’ (9, — 1) d(1+a)+(d+bo)tg® (¢, - ¢1)
into (48) simplifies the transmission coefficient:
T=Cofy [F' T, | = 20020 COS](E‘PT ~90),
2 5 (54)
|i F1-(a(1+d)+(a+bo)tg*(9,—¢;)) F2- ((b+ad)tg(g,—¢,)+b(1+0)tg’ (¢, — ¢;))
F3- (~(c+ad)tg(p, —¢,) —c(1+b)tg’ (¢, — 91)) F4- (d(1+a) +(d +bo)tg’ (9, - ¢1))

where
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o ()’
1 \1+(1/’711)2

F, = 1+(1/’721)2
Il | e ——
\1 +(1/ny,)

(55)
F, = \1 + (1/’722)2

1‘*’(1/’711)2’

F = 1+(1/’722)2
! \1"’(1/’712)2

|B.]=(1+a)(1+d) +(1+b)(1+0)tg’ (¢, — ¢;).

For the other three combinations of A = Na, - Na,,we  case of Ap = ¢, — ¢, approximating k7 + 71/2, the value of
can obtain the similar expression for the reflection and  tg(¢, — ¢,) tends to infinity. So, we need to select appro-
transmission coefficients using ctg (¢, — ¢,). For the special ~ priate combination for avoiding the infinity.

1*(1/’711)2

(1 +d) (1 -a)ctg® (¢, — @) +(1+b)(1-c)  2(d-b)ctg(p, — 1) 1+ (1/7,,)°
12

>

2(c—a)ctg(¢2—¢1)1% (1+a)(1—d)ctg” (¢, —¢1) + (1 +c)(1-b) (56)
1

72 sin(gr—¢1)

|B.|
F1- (a(1+d)ctg’ (¢, —¢1) + (a+bc)-ctg(p, — ¢1)) F2- ((b+ad)ctg® (9, — ¢;) +b(1 +0))
F3 - (=(c +ad)ctg* (¢, — ¢;) —c(1+b)) F4-(d(1+a)-ctg’ (¢, — ¢;) + (d +bo)ctg(p, — 1)) ’
000 —y
where
_ 00 0
|Ba| :(1+a)(1+d)ctg2(q)2—(p1)+(1+b)(1+c). (57) T, = Ho ) (58)
060 O
-0 0 O

2.4. Special Case: Isotropic and Anisotropic Interface. We now ) ) o
consider the special case of isotropic ice media, where the Fo.llowmg the aforemegtloned derivations, the corre-
permittivity tensor is isotropic, and (6) can be simplified to sponding eigenvalues and eigenvectors are
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F1GURE 3: The reflection and transmission coefficients from an interface between two homogeneous anisotropic ice layers. The measurement

coordinate rotates from 0 to 27 in the horizontal plane.
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the reflection and transmission coefficients (52) and (54) can
be simplified to

l1-a 2 +1—d.2 d-a . (2 )
—os sin sin (2 -
1+a 7™M Graard) &
ﬁ:— >
d-a l-a . , 1-d ,
7' 2' S. A9
Tr a1 ea) n@e2) [ sines+ - cos'e,
(60)
a .
o Fl-lJra-cosgo2 F2~m~sm¢2
T=—=. (61)
2 d . d
—F3-m- sin @, F4-m- cos ¢,
3. Numerical Results

It had been mentioned that echo difference exists in radar
exploration while rotating the antenna horizontally
[19, 22-24]. Therefore, we consider two numerical models to
verify our aforementioned formulae for computing the re-
flection and transmission coefficients. The aforementioned
formulae have no special limit to the range of permittivity.
However, for test and verification of the real reflections in
the ice sheet, we use the permittivities ¢, = 3.152 and ¢, =
3.189 for model parameters, which had precisely been
measured in the laboratory [20, 21].

3.1. Reflection and Transmission Coefficients for an Interface
between Anisotropic Layers. Firstly, we construct a two-layer
ice model, where both layers are anisotropic and the values
of the entry permittivity tensors are & = 3.152, ¢, = 3.189,
and & = 3.189. In model 1, we fix media coordinates for
both layers and keep Ap = ¢, — ¢, = 7/6, where ¢, and ¢,
are azimuth angles of the first and second layer relative to the
measurement coordinate. Then, we rotate the measurement
coordinate from 0 to 27 and calculate each reflection and
transmission coeflicient at each rotating angle. This oper-
ation emulates the polarizing antenna rotates around the
horizontal plane inversely.

The reflection and transmission coefficients are drawn in
Figure 3. Both reflection and transmission coefficients are
kept constant, while rotating the measurement coordinate
from 0 to 27 in the horizontal plane. When we change the
permittivity or geometry Ag, the values of the reflection and
transmission coeflicients will change too, but they still re-
main constant in a new level while measurement coordinate
rotating.

In model 2, we fix the measurement coordinate and scan
the difference of media azimuth angle Ag = ¢, — ¢, from 0
to 27, where ¢, and ¢, are azimuth angles of the first and
second layer. In this case, we observe that the reflection and
transmission coefficients vary periodically in Figure 4.

3.2. Reflection and Transmission Coefficients for an Interface
between Isotropic and Anisotropic Layers. Considering the
real survey environment of the ice sheet, we construct
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another two-layer ice model, in which the upper layer is
isotropic with &, = ¢, = ¢; = 1 as the free air layer, and the
lower layer is anisotropic with ¢ = 3.152, ¢, = 3.189, and
& = 3.189 as the real ice layer. In this model, we fix media
coordinates for both layers and keep ¢, — ¢, = 0 and ¢, —
¢, = —n/6 (Figure 5), where ¢, and ¢, are azimuth angles of
ice fabric in the first and second layer. We rotate the
measurement coordinate from 0 to 27 in the horizontal
plane.

In this case, we observe that reflection and transmission
coefficients vary periodically in Figure 5 while we rotate the
measurement coordinates. Comparing the variation of re-
flection and transmission, we can see the curves shift right
—m/6, while the difference of azimuth angle changes from 0
to —n/6. This can be used for tracking the azimuth of the
maximum echo in radar survey on the ice sheet.

4. Conclusion and Discussion

4.1. Physical Meaning of Eigenvalues and Eigenvectors.
The eigenvalues and eigenvectors contain information about
the relation between electromagnetic components and
physical properties of media when the EM wave propagates
in anisotropic media. Multiplying (13) by the angular fre-
quency w yields the upgoing and downgoing wave vectors of
I and II waves:

M W~/ k;
A WA/€ k
0= 2| _ 2H0 _| (62)
Ay —WA/E1Hy —k;
Ay —WA/E 0 —kp;

The column vectors of eigenvector matrices in (15) and
(16) show the proportional relation of EM components,
[Ex E, H, H, ] The four columns in eigenvector ma-
trices represent the normalized component of the upgoing
and downgoing wave vectors corresponding to I and II
waves, respectively. In anisotropic media,

= =tgg,
E,
; (63)
— = tge
IHyi
i=I11I
E..
szl — 1’]l,
yl
Eyi _ (64)
|
i=III

Equation (63) shows that the ratios E,/E, and H,/H,
are only functions of the media angle ¢, which is measured
between the measurement and the media coordinate. The
intrinsic impedance of media relates the magnetic and
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electric fields, as shown in (64). So, the eigenvector matrix
describes the proportion relationship between EM com-
ponents of I and II waves and proves that eigenvectors are
only determined by intrinsic impedance of media and the
deflection angle ¢. Therefore, we can conclude that the ei-
genvector matrix describes the proportional relation of EM
components of I and II waves. Moreover, the eigenvectors
are only determined by the intrinsic impedance of media and
the deflection angle ¢.

— —_—1 = = 1
R:_Fl 'RI'FIZ—_—'

l(l+d)(l—a)+(l+b)(l -otg* (¢, — ¢)

2(c-a)tg(p, - 9;)

_ 1 . -
T=Cof3-[F21-T1-F1]=M

lEﬂl

l a(l+d)+(a+botg* (9, — ;)

—(c+ad)tg(p,—¢,)—c(1+b)tg’ (9, — ;)

Bo| = (1 +a@)(1+d) + (1+b)(1+)tg” (9, - 9,)-

4.3. Polarimetric Radar Survey and Geometry Analysis. A
typical configuration of polarimetric radar consists of two
orthogonal transmitters and two orthogonal receivers. Four
transmitter-receiver pairs are possible, either copolarized or
cross-polarized, which are shown in Figure 6. Conventional
polarimetric radar implements configuration with time-
share single transmitter to double receiver alternately. Or-
thogonal echo differences can be used to infer the aniso-
tropic feature of the media.

For an interface between isotropic-anisotropic layers, we
can assume that the measurement coordinate is {X, Y} in
Figure 7, and the media coordinate of the anisotropic layer
has deflection angle ¢, relative to the measurement coor-
dinate. Ej; is the incident wave in the isotropic layer. It can be
decomposed into Ey; and Epy along the semimajor and
semiminor axes of the indicatrix ellipse. These two incident
waves generate two reflection waves ERyrand ERyp from the
interface:

—R
R, = Eyr _a—m _ V& — Ve
. - - >
TE)H, Mt e+ e
(67)
—R
R, = Epn o —m _ V& — Ve
= = = .
TE)HII Tart M Vet Ve

Therefore, the reflection from the interface along the x-
axis is the vector sum of ERyy; and ERpyy; along the x-axis. The
reflection coefficient R;; can be calculated as
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4.2. Simplification of the Formulae for Reflection and Trans-
mission Coefficients. For natural media, F, and F, in for-
mulas (40) and (41) tend to the unit matrix. In formula (52),

(65)

In formula (54), F1, F2, F3, and F4 also tend to 1, so
formulas (52) and (54) can be simplified to

2(d-b)tg (¢, - ¢1) ]
(1+a)(1-d)+(1+c)(1-b)tg* (¢, — ¢) ’

(66)
(b+ad)tg(9, - 91) +b(1+)tg’ (9, - (Pl)]
d(1+a)+(d+botg’ (9, ~ 91)
—R —R —R R R .
Ry, _Ew_ Epr + Eqyn, _Epy-cosg, + Epyy - sing,
= = —
Ey Ey Ey
R, - E, - cos’o, + Ry - Eyy - sin®
_f-bg ‘Pz_) I b2 _ R, - Cosz<p2
Ey
+RII -Sin2¢2,
(68)

and similarly, the reflection coefficient R;, can be computed
as

—R —=R R R
Ey +E F ino. — E
R. - HI, Hil, Ep;-sing,— Ep; - cosg,
127 E— = =
Ey Ey

= . = .
Ry Ey-sing,- cosg, + Ry - Epy- sing, - cos ¢,

= -
EH

1
= sin(2-9,) (R, - Ryy).
(69)

For incident wave E,, along the y-axis, we can derive the
reflection coefficients R,; and R, in a similar fashion, which
have been shown in (60).
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Supplementary Materials

In the directory of data, there are four excel files in it. Every
excel file consists of two parts: the first part is the model
parameter setting of the layers and includes 3 relative
permittivity and azimuth angle Fi in this layer, and the
second part is the calculated result according to the model
and includes 4 reflection coefficients and 4 transmission
coeflicients calculated while the antenna rotated around 360
degrees in the horizontal plane. Model0.xlsx: a model and its
calculated results for comparison with the past traditional
isotropic formula of reflection and transmission coefficients.
For the convenience of rapid verification, the relative per-
mittivity is set with simple 1 and 4. No figure for this model
is used in paper. Modell for Figure 3.xlsx: a model with two
anisotropic layers and calculating results for Figure 3. In this
model, the angular separation between the up and down
layers is fixed and the direction of antenna rotate is around
360 degrees in the horizontal plane. Model2 for Figure
4.xlsx: a model with two anisotropic layers same as model 1
and the calculated results for Figure 4. In this model, the
azimuth angle of the up layer is fixed, and the azimuth angle
of the down layer changes with the antenna rotating around
360 degrees in the horizontal plane. So, the angular sepa-
ration keeps changing with antenna rotation. Model31 for
Figure 5.xlsx and Model32 for Figure 5.xIsx: two models with
two different angular separation layers and calculated results
for Figure 5. In these models, the up layer is an isotropic
layer and the bottom layer is an anisotropic layer. The
angular separation in Model 31 is zero. The angular sepa-
ration in Model 32 is set -7/6, which makes its curves shift
right 77/6. (Supplementary Materials)
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