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In order to realize the miniaturization of quasi-Yagi antenna array, an antenna array with split-ring resonators (SRRs) based on
two 7 units quasi-Yagi elements is designed in this paper. )e radiation performance of the quasi-Yagi antenna array degrades
significantly when array element spacing is reduced. After embedding SRRs on both sides of the miniaturized dielectric substrate
surface, the S parameters and gain of array are significantly better than the array without SRRs, and the adjustable wave beam
energy is also enhanced effectively. It indicates that the proposed antenna array with SRRs has good directional radiation
performance under the miniaturize process at the operation frequency of 2.45GHz, which could be widely applied in the fields of
smart rail transportation and wireless power transfer.

1. Introduction

With the development of the intelligent transportation
networks and the new energy Internet of )ings (IOT), the
antenna array for transmitting wireless communication
signals needs to achieve miniaturized appearance and high
gain radiation. )e quasi-Yagi antenna is a typical repre-
sentative of end-fire antennas. Due to good directionality
and high gain, the quasi-Yagi antenna was most widely used
in wireless communication as vehicle-mounted antenna or
access points (AP) in metro tunnels [1–3]. In order to
overcome the frequency selective fading caused by the
multipath effect, the stacked quasi-Yagi array for 2.45GHz
has been used in wireless charging systems of REID chips
[4]. )e quasi-Yagi antenna by using the metamaterial
concept has been utilized in wireless power transfer (WPT)
to medical implants [5]. )e beam-forming was also very
important for multi-input-output (MIMO) communication
[6]. A quasi-Yagi array of four radiating elements [7] and a
wideband sectoral quasi-Yagi antenna has been presented
for the MIMO system [8]. )e mutual coupling [9] effect of
quasi-Yagi antenna arrays was a ubiquitous problem in

wireless communication [10]. )e large reflection of the
radiation port could cause the pattern distortion and gain
reduction [11]. )erefore, the research on decoupling of the
quasi-Yagi antenna array has practical application
significance.

)e electromagnetic band gap (EBG) [12, 13], defected
ground structure (DGS) [14, 15], and metamaterials [16, 17]
could be applied to suppress mutual coupling of antennas.
As the reflector of quasi-Yagi has been printed on the back of
the dielectric substrate, the high-surface required for the
EBG structure and the DGS gap could not be inscribed,
which would affect the induction field on the reflector. Due
to the feature of suppressing electromagnetic energy
transmission, the single-negative magnetic metamaterials
have been widely used to reduce mutual coupling between
high-profile antennas [18–20] and have adopted different
SRRs structures [21–23], but few were used for quasi-Yagi
antenna arrays.

)e proposed antenna array based on two 7-units quasi-
Yagi antenna elements adopt the single-negative magnetic
metamaterial concept to suppress the mutual coupling of
elements, and its different balun compound mode could

Hindawi
International Journal of Antennas and Propagation
Volume 2020, Article ID 4915848, 12 pages
https://doi.org/10.1155/2020/4915848

mailto:mai.lu@hotmail.com
https://orcid.org/0000-0003-1041-9502
https://orcid.org/0000-0001-7192-9771
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4915848


form an adjustable beam for directional radiation through
embedding the SRRs on both sides of the dielectric substrate
surface. )is article established different models to elaborate
the variation of radiation performance of the quasi-Yagi
array under its miniaturized process and carried out detailed
quantizing analyses for the decoupling effect.

2. Quasi-Yagi Antenna Array Design

)e operation frequency band of the communication based
train control system is 2.4∼ 2.48GHz in rail traffic, and the
band is also applied in the wireless local area network
(WLAN). )is paper designs a quasi-Yagi antenna array
with operation frequency (f) of 2.45GHz. )e array is
fabricated on the substrate with relative permittivity (εr) of
3.3, and the equivalent wavelength of electromagnetic waves
in the substrate (λe) satisfies the following:

λe �
c

f
��εe

√ � 74mm, (1)

where εe is the effective permittivity of εr.
)e geometry of the quasi-Yagi array structure of dif-

ferent balun compound modes is shown in Figure 1. )e
wilkinson power divider is used to split the input signal
power into two equal power outputs and connected two
quasi-Yagi elements as a dualistic antenna array. )e
thickness of the dielectric substrate is 1mm, and the exciter,
director, balun, and power divider are printed on the front of
the substrate, while reflector is printed on the back.

Based on the finite element method, the proposed an-
tenna array is calculated. )e array is excited by a side signal
through the port as shown in Figure 1.

)e S11 of the reference antenna array is simulated as
shown in Figure 2. At 2.45GHz, the S11 of the inverse balun
array is −11.76 dB, and that of the directional balun array is
−11.45 dB.

)e 3D gain simulated results of the antenna array are
shown in Figure 3. )e inverse balun array forms two
symmetrical beams with a maximum gain of 11.15 dBi, and
the directional balun array forms a single beam with a
maximum gain of 13.08 dBi.

)e above simulation results indicate that the reference
antenna array could ensure good radiation performance in
the frequency band of 2.4∼ 2.48GHz.

3. Characterization of SRR

To illustrate the decoupling principle of split-ring resonators
(SRRs) considered in this work, a model of the SRR unit cell
is established as shown in Figure 4.

)e SRR consists of a concentric circle ring with an outer
radius (R) of 7 mm and a split gap (g) of 0.5 mm, and the
strip width (w) of the ring is 1 mm. )e material of SRR is
copper with a thickness of 0.035 mm. )e relative permit-
tivity of the dielectric substrate is 3.3 with the thickness of
1mm. )e period of the SRR unit cell is 21 mm.

When an x-polarized incident wave (the magnetic field
direction is along the y-axis direction) propagates along the
−z-axis and passes through the SRR unit cell, a resonance

point could be generated by the inductance and capacitance
of SRR. At this resonance frequency point, the SRR unit cell
would display a single-negative magnetic feature to suppress
the propagation of the x-polarized incident wave. )e
scattering parameters and the equivalent electromagnetic
parameters of SRR are simulated as shown in Figures 5 and
6, respectively.

Figure 5 shows the x-polarized incident wave is al-
most completely reflected at the resonance close to
2.5 GHz. Figure 6 shows the equivalent magnetic per-
meability is negative and the equivalent permittivity is
positive at the resonance point. )e simulated results
mean SRR could be regarded as the negative magnetic
metamaterials. Due to the fact that the coupling magnetic
field of the proposed quasi-Yagi antenna array passes
through the SRR array perpendicularly, its mutual cou-
pling could be suppressed.

)e electromagnetic performance of SRR with different
parameters is discussed as follows.

3.1. Different Radius (R). )e equivalent permittivity and
permeability of SRR with different R are simulated, re-
spectively, with the values of 7mm, 7.7mm, and 8.4mm and
are shown in Figure 6.

Figure 6 shows that with the increase of R, the resonance
point with a single-negative magnetic feature moves to low
frequency.

3.2. Different Split Gap (g). )e equivalent permittivity and
permeability of SRR with different g are simulated, re-
spectively, g with the values of 0.5mm, 1.0mm, and 1.5mm
and are shown in Figure 7.

Figure 7 shows that with the increase of g, the resonance
point with a single-negative magnetic feature moves to high
frequency.

3.3. Different Strip Width (w). )e equivalent permittivity
and permeability of SRR with different w are simulated, w

with the values of 0.6mm, 1.0mm, and 1.4mm and are
shown in Figure 8.

Figure 8 shows that with the increase of w, the resonance
point with a single-negative magnetic feature moves to high
frequency.

It can be seen from Figures 6–8 that the resonant fre-
quency with a single-negative magnetic feature of SRR can
be adjusted by changing its parameters.

4. Miniaturized Quasi-Yagi Array Design

In order to obtain a better performance, the size and ar-
rangement of SRRs are constructed by optimizing design,
and the proposed quasi-Yagi antenna arrays with different
balun modes are established as shown in Figure 9. )e SRRs
are embedded on both sides of the dielectric substrate
surface with the antenna element spacing of 30mm and
40mm, respectively.
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)e variation of antenna array radiation performance
under the process of reducing the elements spacing to
40mm (decrease of 0.2λe) and 30mm (decrease of 0.34λe) is
compared, respectively.

4.1. 4e Simulation of Quasi-Yagi Antenna Array with Ele-
ment Spacing Decrease (0.2λe). )e S11 comparison of the
antenna array with SRRs and without SRRs is shown in
Figure 10.

At 2.45GHz, it can be seen from Figure 11(a) that the
S11 of the inverse balun quasi-Yagi antenna array with SRRs
is −14.46 dB, and the array without SRRs is −9.14 dB. It can
be seen from Figure 11(b) that the S11 of the directional
balun quasi-Yagi antenna array with SRRs is −12.65 dB, and

the array without SRRs is −2.71 dB. )erefore, the SRRs
could further reduce S11 of the quasi-Yagi antenna array.

)e 3D gain of the antenna array with SRRs and the array
without SRRs is compared, respectively, as shown in
Figure 11.

It can be seen from Figures 11(a) and 11(b) that the 3D
gain of the inverse balun quasi-Yagi antenna array with SRRs
is 13.32 dBi and 2 dBi more than that of the array without
SRRs. It can be seen from Figures 11(c) and 11(d) that the 3D
gain of the directional balun quasi-Yagi antenna array with
SRRs is 12.96 dBi, but the array without SRRs appeared with
the serious distortion.

As the spacing of the elements decreases, the antenna
array without SRRs begins to deteriorate, and the degree of
wave beam separation is worsened. Adding SRRs not only
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Figure 1: Reference antenna array structure. (a) Inverse balun. (b) Directional balun.
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Figure 2: S11 of reference antenna array. (a) Inverse balun. (b) Directional balun.
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effectively overcomes the distortion of the antenna array but
also separates beam energy effectively and enhances gain by
1.05∼1.13 times.

In order to further analyse the decoupling effect, the
electric field intensity distribution of the antenna array with

SRRs and the array without SRRs is compared, as shown in
Figure 12.

)e induced current generated on the five directors
would intensify electric field superposition, which increases
the mutual coupling effected. Because of the resonance ef-
fect, adding SRRs could effectively balance the electric field
strength on the two elements.

4.2. 4e Simulation of Quasi-Yagi Antenna Array with Ele-
ment Spacing Decrease (0.34λe). )e S11 comparison of the
antenna array with SRRs and without SRRs is shown in
Figure 13. At 2.45 GHz, it can be seen from Figure 13(a)
that the S11 of the inverse balun quasi-Yagi antenna array
with SRRs is −13.11 dB, and that of the array without SRRs
is −8.81 dB. It can be seen from Figure 13(b) that the S11 of
the directional balun quasi-Yagi antenna array with SRRs
is −15.91 dB, and that of the array without SRRs is
−13.52 dB.

)e 3D gain of the antenna array with SRRs and the array
without SRRs is compared, respectively, as shown in
Figure 14.

It can be seen from Figure 14(a) that the 3D gains of the
inverse balun quasi-Yagi antenna array with SRRs is
11.77 dBi and 2.02 dBi more than that of the array without
SRRs. It can be seen from Figure 14(b) that the 3D gain of the
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directional balun quasi-Yagi antenna array with SRRs is
12.14 dBi and 5.04 dBi more than that of the array without
SRRs.

)e electric field intensity distribution of the antenna
array with SRRs and the array without SRRs is compared, as
shown in Figure 15.

As the spacing of the elements is further reduced, the
mutual coupling effect is further aggravated correspond-
ingly.)e SRRs could form amore symmetric distribution of
the antenna array to reduce the mutual coupling and ensure
that the radiation performance of the antenna array is not
affected.

)e radiation performance of the antenna array with
decreased element spacing to the reference antenna array at
2.45GHz is compared, as shown in Table 1.

Table 1 shows that in the process of reducing the array
element spacing, the S11 of the antenna array with SRRs is

much lower than −10 dB, which achieves the engineering
requirements. It indicates that the antenna array with SRRs
could reduce the mutual coupling and get better matching
characteristics.

5. Antenna Array Fabrication and Its
Measurement Results

)e manufactured antenna array prototypes with different
element spacing are shown in Figure 16. )e fabricated
dielectric substrate has same relative permittivity and
thickness as the simulation model. )e reference array is
shown in Figures 16(a) and 16(b), and the proposed an-
tenna array with SRRs is observed in Figures 16(c) and
16(d).
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)e fabricated design is measured by using a Fieldfox
N9917A microwave analyzer, and the measurement results
of S11 are shown in Figure 17.

It can be seen that the error between the simulation
value and the measured value is less than 1.2%. At the

2.45 GHz, the S11 measurement value of the array with
SRRs is −13.49 dB, which is −2.5 dB better than the ref-
erence array.

)e measurement results of the radiation pattern are
shown in Figure 13.
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Figure 11: Comparison of 3D gain (0.2λe). (a) Array with SRRs. (b) Array without SRRs. (c) Array with SRRs. (d) Array without SRRs.
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Figure 12: Electric field intensity distribution of the antenna array (0.2λe). (a) Inverse balun. (b) Directional balun.
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It can be observed from Figure 18(a) that the gain of the
antenna array at −22° is 11.1 dBi and at 20° is 12 dBi; from
Figure 18(b), the gain of the antenna array at −22° is 10 dBi
and at 22° is 12 dBi. )e compared results indicate a very
decent maximum gain matching achieved in the direction of
the main lobe. )e slight variation in the side lobe is at-
tributed to inevitable error in the manufacturing process and
different tangent loss of the substrate.

6. Conclusion

In this paper, the mutual coupling of the quasi-Yagi antenna
array is investigated at 2.45GHz. )e effect of SRRs on the
radiation performance of the quasi-Yagi antenna array during the
element spacing reduced process is simulated. )e simulation
results indicate that the SRRs could suppress mutual coupling
effectively and guarantee high gain. )e measurement results of
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Figure 15: Electric field intensity distribution of the antenna array (0.34λe). (a) Inverse balun. (b) Directional balun.

Table 1: Comparison of the radiation performance of the proposed antenna array with SRRs and without SRRs.

Element spacing 30mm (SRRs/without SRRs) 40mm (SRRs/without SRRs) 55mm (without SRRs)

Inverse balun S11 (dB) −13.11/−8.81 −14.46/−9.14 −11.76
Maximum gain (dBi) 11.77/9.75 13.32/11.32 11.15

Directional balun S11 (dB) −15.91/−13.52 −12.65/−2.71 −11.45
Maximum gain (dBi) 12.14/7.1 12.96/0.17 13.08
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miniaturized quasi-Yagi antenna array fabrication show a better
radiation performance compared with the reference array.

)e work is useful for quasi-Yagi antenna miniaturi-
zation and could obtain better application in transportation
and WPT. )e proposed SRR structure needs to be further
optimized to adapt different antenna arrays.
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