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Polarized smart antenna array has attracted considerable interest due to its capacity of matched reception or interference
suppression for active sensing systems. Existing literature does not take full advantage of the combination of polarization isolation
and smart antennas and only focuses on uniform linear array (ULA). In this paper, an innovative synthesis two-dimensional
beampattern method with a null that has cross-polarization for polarized planar arrays is proposed in the first stage. 'is method
aims to further enhance the capability of interference suppression whose optimization problem can be solved by second-order
conic programming. In the second stage, a new sparse array-optimized method for the polarized antenna array is proposed to
reduce the high cost caused by the planar array that is composed of polarized dipole antennas. Numerical examples are provided to
demonstrate the advantages of the proposed approach over state-of-the-art methods.

1. Introduction

Smart antennas increase the capacity of communication
systems by improving signal-to-noise ratio (SNR) in mobile
communications [1, 2]. Adaptive array coherently combines
multipath components of the desired signal and null in-
terfering signals from different directions of arrival from the
desired signal. In terms of the capability to match reception
and suppress interference, the adaptive array is also applied
in modern radar systems [3, 4]. However, this kind of
conventional space-time adaptive technology has its own
limitations, especially in intentional interference. 'us,
polarization diversity is a potential solution [5–8]. Polari-
zation diversity not only reflects complete information on
electromagnetic waves of targets but also is an additional
degree of freedom that can be exploited in response to
dynamic environments. Polarization diversity can maximize
the received SNR when matching the target polarization and
can isolate the interfering signal from the desired signal
when cross-polarizing the interfering signal. Considering
this advantage, two synthesizing methods are introduced to
design an electromagnetic beam with desired power and
polarization [5, 9]. According to the literature [5, 9], dipole

antennas are suitable for generating arbitrary polarization
with a pair of orthogonal far-field electric vectors. Polarized
arrays can transmit a beampattern that can be selected freely
to design a desired null and polarization around areas of
interest. An effective approach to suppress strong interfer-
ence is based on the principle of polarization mismatch
factor; that is, the polarization in the specific region that
corresponds to the direction of strong interference is crossed
to that of strong interference to isolate the interference signal
energy at the receiver as much as possible. 'us, the
beamforming for polarized antenna array has become a
popular research topic in recent years [10, 11]. However,
most existing literature studies on polarized beamforming
are only based on a simple uniform linear array (ULA) due
to the high-dimensional weight matrix. A Fábry–Perot
cavity antenna with a reconfigurable partially reflecting
surface is proposed to produce dual-polarized 2D beams
[12]. Realizing the compatibility of this kind of antenna with
space-time adaptive processing technology based on ULA is
difficult, additionally, for the planar array composed of
polarized dipole antennas. A planar array generally com-
prises dozens or even hundreds of dipole antenna elements
at the cost of high-precision hardware for its
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implementation [13]. 'us, sparse array design is essential
for satisfying the function of using a finite number of ele-
ments to realize the polarization vector beam.

Unlike the conventional phase arrays, the sparse array
design for polarized smart array must be a constrained
optimization problem [14–18]. One particular constraint is
polarization matching, which is an inequality constraint.
'is constraint means that the optimization problem cannot
be solved by the single-objective optimization algorithm.
Transforming constraint optimization into multiobjective
optimization or adding a penalty function in the fitness
function is necessary to solve such a constrained optimi-
zation problem [19]. Scholars proposed multiobjective al-
gorithms based on a new evolutionary pattern in recent
decades. According to [20], the optimization problem with
inequality constraint can be transformed into a multi-
objective optimization problem. 'is problem can be solved
using the multiobjective differential evolution (MODE) al-
gorithm. In this work, the multioptimization design of a
sparse antenna array for polarized smart antennas is
addressed following the MODE algorithm.

'e rest of this paper is organized as follows. 'e signal
model for the polarized antenna is introduced in Section 2.
Second-order cone programming (SOCP) is presented in
Section 3 to solve the optimization problem of the 2D
polarized beampattern design. Multiobjective differential
evolution is applied to solve the multiobjective optimization
problem in Section 4. Numerical simulations are presented
in Section 5, and the conclusions are presented in Section 6.

2. Signal Model

2.1. Representation of Polarization State. 'e polarization
state of the far-field electric field can be characterized by its
polarization ellipse. 'e polarization ellipse is the most
frequently used representation of polarization states. 'e
polarization angle can be defined as the angle between the
major axis of the ellipse and a reference vector to orient the
ellipse in space. In the ellipse, the polarization state can be
defined by its polarization axial ratio and angle. 'e electric
field produces an ellipse over one period when plotted on a
2D plane normal to the propagation direction. 'e po-
larization axial ratio is the ratio of the major to minor axes
of the ellipse. 'is ratio also determines the circularity (low
axial ratio) and linearity (high axial ratio) of the
polarization.

In Figure 1, α is called the orientation angle (the angle
between the major semiaxis of the ellipse and the H-axis)
and β is the ellipse angle (the angle measuring the ratio of the
two semiaxes). If the amplitude of the electromagnetic wave
is ignored, then the polarization state of electromagnetic
waves can be characterized by parameter pair (α, β). 'is
state is called the geometric descriptor of polarization state.
When β � 0 , the resultant polarization is linear; moreover,
α � 0 provides a horizontal polarization and β � (π/2) leads
to a vertical polarization. However, for β � ± (π/4), the
resultant polarization is circular for any orientation angle α.

'e mathematical relationship between electric field and
polarization ellipse parameters can be expressed as follows:

E � A ·
cos α −sin α

sin α cos α
􏼢 􏼣 · cos β j sin β􏼂 􏼃

T

� A ·
cos α cos β − j sin α sin β

sin α cos β + j cos α sin β
􏼢 􏼣

�
EH

EV
􏼢 􏼣.

(1)

In (1), the first item on the right is the rotation matrix,
and second one is the ellipticity vector; A �

�����������

|EH|2 + |EV|2
􏽱

represents the energy of an electromagnetic wave.
'e complex electric field vector can also be defined as

follows:

E � A
cos c

sin cejδ􏼢 􏼣. (2)

In (2), tan c � (AH/AV) represents the ratio between the
amplitude of vertical and horizontal channel electric fields, δ �

ϕV − ϕH is the phase difference between the vertical and the
horizontal channel components, c ∈ [0, (π/2)], and
δ ∈ [0, 2π]. Given that the energy information of electromag-
netic wave is not considered in this study, the parameter pair is
reversible to the polarization state of electromagnetic wave.
'us, the parameter pair can be called the phase descriptor of
polarization state of electromagnetic wave. If (EH/EV) � cejδ

and (EH)2 + (EV)2 ≠ 0, then the relationship between geo-
metric and phase descriptors can be expressed as follows:

α � tan− 1 −2c cos δ
1 − c2

􏼠 􏼡,

β � arcsin

������������������
1 − 2c/(1 + c)2􏼐 􏼑sin δ

􏽱
−

������������������
1 + 2c/(1 + c)2􏼐 􏼑sin δ

􏽱

2
.

(3)

2.2. Polarized Vector Array Response. Suppose r is a unit
vector representing a spatial direction in R3, which can be
expressed as follows:

β < 0

β > 0

cos β

sin β

H

V

α

Figure 1: Polarization ellipse.
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r � sin θ cosφ sin θ sinφ cos θ􏼂 􏼃
T
. (4)

In (4), θ ∈ [−π/2, π/2] is pitch, and φ ∈ [0, 2π] is
azimuth:

􏽢θ≜
zr

zθ
� cos θ cosφ cos θ sinφ −sin θ􏼂 􏼃

T
,

􏽢φ≜
1

sin θ
zr

zφ
� −sinφ cosφ 0􏼂 􏼃

T
,

(5)

where (r, 􏽢θ, 􏽢φ) can be described as a right-hand coordinate
system, as shown in Figure 2.

If the plane wave is traveling along the r→-direction, the
electric field is orthogonal to τ and lies in the plane spanned
by (rH, rV). Polarized vector antennas comprising orthog-
onal electric and magnetic dipoles are considered. In this
spatial coordinate system (rH, rV), each of the six dipoles has
the following responses (ignoring a common constant that is
determined by the antenna parameters and the distance to
the antenna).

In this paper, we simplified the representation of polari-
zation state in the coordinate system and only considered the
electric field and magnetic field along the x direction.'us, the
polarized antennas have the responses as follows (regardless of
the antenna parameters and the distance to the antenna):

vE
x(r) � −sinφ cos θ cosφ􏼂 􏼃,

vM
x (r) � cos θ cosφ sinφ􏼂 􏼃.

(6)

If the antenna only comprises electric and magnetic
dipole elements along r, then the response is as follows:

V(r) � vE
x vM

x􏼂 􏼃
T
. (7)

Moreover, for a given antenna response V(r) ∈ Cp×2,
v(r; H) and v(r; V) are used to denote the response to theH
and V channels, respectively, or as a formula.

V(r) � [v(r; H), v(r; V)]. (8)

3. Two-Dimensional Beampattern Synthesis for
Polarized Smart Antenna Array

A two-dimensional beamforming method for polarized
smart antenna array is proposed in this section. Xiao and
Nehorai designed a null and sidelobe polarization for the
polarized beampattern [6]. However, the null and polari-
zation controls of the sidelobe are independent, which did
not maximize the advantages of polarization isolation and
null. SOCP is still adopted to deal with the two-dimensional
beamforming for polarized antenna arrays. Different from
the previous literature, this section extends it to two-di-
mensional polarization beamforming. Here, the weight
matrixω is synthesized to generate a beampattern. Suppose a
uniform planar array comprises N × N antennas with an
element spacing d (half wavelength), as shown in.

According to the array model shown in Figure 3, the
weighting matrix ω is introduced in this section to be the
concatenation of all ωn×n:

ω �

ωT
11 ωT

12 . . . ωT
1N

ωT
21 ωT

22 . . . ωT
2N

⋮ ⋮ ⋱ ⋮

ωT
N1 ωT

N2 . . . ωT
NN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where

ω � ωH
,ωV

􏽨 􏽩
T
. (10)

For convenience of calculation, the N × N matrix ωT
NN is

transformed into 1 × N2 column vectors as follows:

ωH
� ωH

1 ,ωH
2 , . . . ,ωH

N2􏽨 􏽩,

ωV
� ωV

1 ,ωV
2 , . . . ,ωV

N2􏽨 􏽩.
(11)

Given the location of actual element xn: 1≤ n≤N2,
which has the N2 candidate positions, the array response,
as a function of spatial direction r, can be expressed as
follows:

x

yφ

φ

θ

θ
z r

Figure 2: Spatial coordinate system.
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Figure 3: Dual-polarized smart antenna array.
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AF(r) � e
− jψ1(r)

, e
− jψ2(r)

, . . . , e
− jψN2(r)

􏽨 􏽩
T
, (12)

where ψn(r) � kr · xn and k � (2π/λ) is the wave number.
'us, in terms of the vector antenna response V(r), the

N2 × 2 vector antenna array response is further obtained as
follows:

A(r) � AF(r)⊗V(r) � e− jψ1(r)V(r) · · · e− jψN2(r)V(r)􏽨 􏽩
T
.

(13)

'e antenna array response of H and V channels is
defined as follows:

A(r; H) � AF(r)⊗ v(r; H),

A(r; V) � AF(r)⊗ v(r; V).
(14)

'e normalized electrical field emitted from the antenna
array (ignoring the common carrier and the baseband signal
s(t)) can be expressed as follows:

E(r) � A(r)Tω, (15)

where E(r; H) and E(r; V) are used to denote the decom-
position of E(r):

E(r; H) � A(r; H)
Tω, (16)

E(r; V) � A(r; V)
Tω. (17)

Along r, the polarization state can be determined by the
ratio between E(r; H) and E(r; V), and the transmitting
power can be expressed as ‖E(r)‖2 � |E(r; H)|2 + |E(r; V)|2:

E(r) � (AF(r)⊗V(r))Tω

� V(r)T
sH sV􏼂 􏼃

T
,

(18)

where ωH
n and ωV

n are the complex weights of the horizontal
and vertical channels, respectively. sH(r) and sV(r) are,
respectively, defined as follows:

s
H

(r)≜AF(r)TωH
,

s
V

(r)≜AF(r)TωV
.

(19)

'e selection of ω under maximal sidelobe minimization
is one of the problems in achieving the following goals.

(1) Maximize the power of the main beam (at direction
r0) and match polarization parameter pair (μ, ]); the
region of main beam is denoted by Sm)

(2) Minimize power of sidelobe (this region is denoted
by Sr at direction rs)

(3) A desired null in the directions of interferers (gen-
erally located in the sidelobe region and denoted by
Sn), which has cross-polarization constraint (αp, βp)

Based on above, the polarized beampattern synthesis
problem can be formulated as follows:
min
rs∈Sr

τ

subject to

E r0( 􏼁 �
��
E0

􏽰
ejϕ

cos μ −cos μ

sin μ cos μ
􏼢 􏼣

cos ]

j sin ]
􏼢 􏼣

max
rs∈Sr

E rs; H( 􏼁
����

����
2

+ E rs; V( 􏼁
����

����
2

􏼚 􏼛≤ τ2; rs ∈ Sr

EH rn( 􏼁

EV rn( 􏼁
⎡⎣ ⎤⎦ �

��
P

√
ejϕ

cos αp sin αp

−sin αp cos αp

⎡⎣ ⎤⎦
cos βp

j sin βp

⎡⎣ ⎤⎦

E rn; H( 􏼁
����

����
2

+ E rn; V( 􏼁
����

����
2 ≤ ε2, rn ∈ Sn.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where τ is the optimal solution, which measures the
beampattern power gain over the sidelobes and does not
depend on the main beam polarization. 'e third constraint
directly determines the polarization of notch and its depth
(ε �

��
P

√
). When ω is a column vector of 1 × N2, the above

optimization mode is also applicable to the synthesis of the
polarized beampattern for ULA. 'is condition is a vector
optimization problem that is difficult to solve using an
optimization algorithm. 'us, this optimization problem is
split into two equivalent scalar optimization problems as
follows:

Horizontal channel is

min
ω(H)

max
rs∈Sr

EH rs( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

subject to E rm( 􏼁 � (cos μ cos ] + j sin μ sin ])

E rn( 􏼁 � ε(p − c, q − c) · cos αp cos βp + j sin αp sin βp􏼐 􏼑, rn ∈ Sn.

(21)

Vertical channel is

min
ω(V)

max
rs∈Sr

EV rs( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

subject to E r0( 􏼁 � (−sin μ cos ] + j cos μ sin ])

E rn( 􏼁 � ε(p − c, q − c) · −sin αp cos βp + j cos αp sin βp􏼐 􏼑, rn ∈ Sn.

(22)
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In (21) and (22), ε is called the null concave matrix for
polarized smart antenna array and is introduced as follows:

ε �

20lg ε(p−c,q−c) 20lg ε(p−c+1,q−c) . . . 20lg ε(p+c,q−c)

20lg ε(p−c,q−c+1) 20lg ε(p−c+1,q−c+1) . . . 20lg ε(p+c,q−c+1)

⋮ ⋮ ⋱ ⋮

20lg ε(p−c,q+c) 20lg ε(p−c+1,q+c) . . . 20lg ε(p+c,q+c)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)

where p � (p − c, . . . , p − 1, p, p + 1, . . . , p + c), q � (q − c,

. . . , q − 1, q, q + 1, . . . , q + c), and c is a constant. 'e above
optimized problem is convex and is also an SOCP problem.

4. Sparse Array Design for Polarized
Smart Antenna

Pattern performance and polarization constraint for the
polarized smart antenna must be considered in the sparse

process of antenna array [21]. 'e optimization model must
be a multiconstraint problem, including the unequal con-
straints, to accomplish both purposes. Following [22, 23], a
two-stage design approach is adopted to deal with the sparse
array design for polarized smart antenna. In the first stage,
the weight matrix ω is synthesized to generate a pattern for
N × N polarized antenna array with an N2 antenna element,
as mentioned in Section 3. In the second stage, the element
positions of the full array are treated as candidate positions
that are selected by a sparse array with M antenna elements.

Mean square error of polarization matching in interest
area (PMSE) is defined as an objective function, whereas the
peak sidelobe levels (PSLLs) minimization of sparse array
design is another objective function [24]. 'is optimization
problem of PMSE can be constructed as follows:

f(x) �
1
K

􏽘

K

k�1
α θk,φk( 􏼁 − αbest θk,φk( 􏼁􏼂 􏼃

2
+ β θk,φk( 􏼁 − βbest θk,φk( 􏼁􏼂 􏼃

2
􏽮 􏽯, (24)

where K is the number of sampling points in the far-field
area for the optimal polarized beampattern.

'e optimization problem for a sparse antenna array
design aimed at polarization matching to control the
designed polarization as desired in the interesting region can
be written as follows:
min f(x)

subject to

−Nx ≤m≤Nx, − Ny ≤ n≤Ny

a Nx, 0( 􏼁 � 1, a −Nx, 0( 􏼁 � 1

a 0, −Ny􏼐 􏼑 � 1, a 0, Ny􏼐 􏼑 � 1

PSLLs − δ < 0

􏽐
Nx

m�−Nx

􏽐

Ny

n�−Ny

amn � T

E θi−c,φj−c􏼐 􏼑

FFmax

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε(i − c, j − c), i, j � 1, 2, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where the first three constraints fix the four sides of the
antenna aperture, δ is the tolerance value for PSLLs in the
fourth constraint (which is an inequality constraint), the
fifth constraint sets the actual number of elements (T), and

the last constraint realizes the depth and polarization of null
(FFmax is the peak of the main lobe). Following the idea of
multiobjective optimization, the inequality constraint can be
regarded as another objective function in the evolution
process [24]. 'is constraint can be optimized in parallel
implementation as follows:
min f1(x), f2(x)( 􏼁

subject to

−Nx ≤m≤Nx, − Ny ≤ n≤Ny

a Nx, 0( 􏼁 � 1, a −Nx, 0( 􏼁 � 1

a 0, −Ny􏼐 􏼑 � 1, a 0, Ny􏼐 􏼑 � 1

􏽐
Nx

m�−Nx

􏽐

Ny

n�−Ny

amn � T

E θi−c,φj−c􏼐 􏼑

FFmax

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε(i − c, j − c), i, j � 1, 2, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where f1(x) is defined in (23) and f2(x) � PSLLs. Inspired
by [23], the MODE algorithm is suitable for this kind of
multiobjective optimization problem and is designed to
handle a multiset of solutions in a single iteration. In the
multiobjective domain, the MODE aims to identify a set of
Pareto optimal solutions to operate the selection of the best
individual for the mutation (Appendix A). At the end of the
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evolutionary search, the nondominated solution archive is
passed through a dominance filter to yield the global near-
Pareto-optimal frontier (Appendixes B and C) [23, 25]. 'e
individual representation (Initial and Coding) needs to be
explained as follows.

4.1. Initial. Let x
j

i,G denote the initial value of the j pa-
rameter in the ith population at generation G , which is
shown as follows:

x
j

i,G � rand(0, 1) · x
j
max − x

j

min􏼐 􏼑 + x
j

min, i � 1, . . . ,NP, j � 1, . . . , D,

(27)

where D � N2 − 4, and rand(0, 1) is a uniformly distributed
random variable within the range [0, 1], and x

j
max and x

j

min
are the lower and upper bounds of the jth variable pa-
rameter, respectively. 'e individual in the ith population at
generation G can be obtained in its vector form as follows:

xi,G � x
1
, x

2
, . . . , x

D
􏽨 􏽩. (28)

4.2.Coding. 'e initial value of the antenna position is set as
the partition points of a planar array aperture. 'e random
perturbation is controlled by xi,G, and binary coded ps

denotes the location of actual elements, which is shown as
follows:

ps(n, n) � sort(x)
T
, n � 1, . . . , N

2
− 4, (29)

where sort(·) denotes the real variables that are sorted by size
as integer variables converted into binary codes.

'e whole process of sparse array design using MODE
algorithm can be summarized as follows (Algorithm 1).

Steps 3–5 evaluate the fitness function at these 2NP
solutions at each generation G, select the NP fittest solutions
via fast nondominated sorting, and store them in the current
population pop c. In our approach, fast nondominated
sorting is applied to guarantee that the population maintains
its original size, and the nondominated solutions in the
population are identified at each generation of the evolution
process. 'e nondominated solutions are saved in the ad-
vanced population that corresponds to the feasible solution
[26]. Otherwise, the infeasible solution is reserved in the
current population.

5. Numerical Example

'e simulation results are presented in this section to il-
lustrate the effectiveness of the proposed method. Consid-
ering the preliminary results reported in [6, 9], the
application of the SOCP to polarized beampattern synthesis
must be investigated. 'us, the polarized beampattern
synthesis is introduced for polarized smart antenna based on
ULA in Example 1. 'is example highlights the continuity
and innovation of the proposed method. 'e cross-polari-
zation is added on the null of the beampattern to improve
the capability of interference suppression in the sidelobe
region, which is different from [6]. Example 2 synthesizes the
2D polarization beampattern and obtains the corresponding

polarization state for the polarized smart antenna array.
Example 3 realizes the sparse array design of the 2D po-
larized smart antenna array.

5.1. Polarized Beampattern with a Null that Has Cross-Po-
larization Based on ULA. Assume that a strong interference
is located at an azimuth angle of θ � 23°, and its polarization
state can be depicted with polarization ellipse parameters of
α � 80° and β � 25°. 'us, a desired null (SLL≤ −50 dB)
with (α � −10° and β� 25°) that is located at θ ∈ (20°, 25°)
must be designed. 'e entire angle area is θ ∈ (−90°, 90°)
with 1° angular spacing (such that K � 181 ). Assume a
strong interference is at the azimuth angle of θ � 23°. 'e
polarization state of this strong interference can be depicted
with polarization ellipse parameters of α � 80°and β � 25°.
'e desired null (SLL � −50 dB) with α � −10° and β� 25°,
which is located at θ � [20°, 25°], must be designed.

Figure 4(a) depicts a polarized beampattern with one
desired polarization. 'e result shows that the polarization
can be controlled such that the interference of the known
source is isolated, and the gain of the main lobe is 16 dB.
Figure 4(b) presents that the desired polarization ellipse
parameter is a constant in the entire angle region. Figure 5(a)
depicts a polarized beampattern with the desired null. 'e
result also shows that the depth of the obtained null can
reach −24 dB compared with the maximum peak sidelobe
level. However, Figure 5(b) displays that the curve of the
polarization ellipse parameter in the entire angle area is not
constant, except for the main lobe region; that is, no law
exists.

Figure 6(a) shows the beampattern of the proposed
method. Figure 6(b) displays that the curve of the polari-
zation ellipse parameter in the entire angle area is not
constant; that is, no law exists. However, this curve meets the
interests in that region, such as the main lobe and jamming
direction. 'us, all these findings justify the efforts to
prevent jamming due to polarization mismatch.

5.2. Two-Dimensional Beampattern Synthesis for Polarized
Smart Antenna Array. Similar to Example 1, SOCP is ap-
plied to optimize the 2D polarized beamform as mentioned
in Section 3. 'e only difference from the previous example
is that the variable is no longer a column vector but a matrix.
'us, the weight matrix must be transformed into column
vectors again. Assume that a planar array of 10 × 10
(N � 10) is synthesized and satisfies the following con-
straints: (1) 'e distance between any pair of elements is
equal to dc � 0.5λ. (2) All elements are allocated on a fixed
aperture of 4.5λ × 4.5λ. (3) 'e main beam is targeted at φ �

20° and θ � 20° with beam width of 7.5° and polarization
constraint (μ, ]) � (10°, 20°). (4) 'e null is located at
φ ∈ (60°, 63°) and θ ∈ (60°, 62°) with the polarization con-
straint (αi, βi) � (25°, 35°). 'erefore, the coordinate vector
of the null concave in the sidelobe region is equal to
p � (60°, 61°, 62°), q � (60°, 61°, 62°), and the depth is
20 · lgε � 60 dB(ε � 0.001). According to the optimization
model defined by equations (16) and (17), CVX MOSEKY
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solver is used to solve the two equivalent scalar problems
[27]. 'e following results are obtained.

For clarity, 3D and contour figures represent the op-
timized beampattern. A null concave with the average
depth of −91.5 dB is located at θ ∈ (60°, 62°) and
ϕ ∈ (60°, 62°) in Figure 7. Compared to the maximum peak
sidelobe (−16.5 dB), the polarized beampattern obtained a
suppression gain with −75 dB. α and β are also represented
by a surface to verify the polarization state of 2D polarized
beampattern, as shown in Figure 8. Different from the

previous example, the polarization state of interesting area
cannot be directly observed from the curved surface.
However, if the tangent of the surface is used for repre-
sentation, then the polarization state values of null concave
cannot be fully expressed. 'us, a table is used to express
the corresponding polarization state values at several
sampling points of interesting areas, as shown in Tables 1
and 2.

Tables 1 and 2 suggest that the polarization parameter
pair (α, β) is consistent with the experimental setting, where

Input: ω, NP, M, N, G max
Step 1: initial. a(Nx, 0) � 1, a(−Nx, 0) � 1, a(0, −Ny) � 1, a(0, Ny) � 1; G � 1, . . . , G maxx

j

i,G � rand(0, 1), i � 1, . . . ,NP,

j � 1, . . . , N2

Step 2: coding. xi,G⟶ ps, f1(x) is defined in (24), f2(x) � PSLLs(x)

For p⟵ 1 to NP do
Step 3: mutation. Randomly select three distinct individuals, xr1, xr2, and xr3, who are all different from the target individual.

Generate a perturbed individual Ui by Ui,G+1 � xtb,G + F(xr2,G + xr3,G)

'e scaling factor F ∈ [0, 2] is constant. xtb,G denotes the best individuals among the three individuals, which is mean that the
one has best fitness function value
Step 4: crossover. 'e objective function value of each trial vector f(vi,G) is compared with that of its corresponding target vector

f(xi,G). 'e vector with the smaller fitness value will be retained in the next generation. Generate a trial individual as follows:

vi,G+1 �
vi,G, if f(vi,G)<f(xi,G),

xi,G, otherwise.􏼨

calculate the fitness value of Vi,G+1, p � p + NP
Step 5: Pareto dominance
If (Vi dominates xi)

replace xi by Vi in the current population pop c, and then add xi to the advanced population pop a

Else
add Vi to the advanced population pop a

End
end
NP fittest solutions is select in every fast nondominated sorting and save them in pop c; ps,best is the ps with the lowest fitness value

of f1(x)

Output: ps,best⟶ As⟶ p � AH
s ω

ALGORITHM 1: MODE algorithm.
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Figure 4: First method of polarized beampattern in [6]. (a) Beampattern. (b) Polarization.
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p and q, respectively, refer to the sampling points of themain
lobe and null concave, as defined in (18). Similar to Example
1, the constraint of polarization matching cannot guarantee
the polarization state outside the region of interest.

5.3. Sparse Array Optimization of Polarized Smart Antenna
Using MODE. 'e MODE algorithm is applied for sparse
antenna array design to verify the effectiveness of the
method mentioned in Section 4. Given its particularity, this
optimization problem is suitable for the multiobjective
differential evolution algorithm. 'us, we only apply the
multiobjective differential evolution algorithm to its sparse

array optimization. Herein, the sparse rate is set as 75%.
'us, M � 75 antenna elements selected from 100 candi-
date positions (N � 10×10 planar array) are used. Other
simulation conditions remain the same as those in Example
2. 'e parameters of MODE are defined and applied as
follows:

(1) Population size: NP � 100
(2) Initial range: xmax � 1,xmin � 0
(3) Mutation probability: F � 0.8
(4) Crossover probability: CR � 0.3
(5) Maximum number of iterations: G max � 200
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Figure 5: Second method of polarized beampattern in [6]. (a) Beampattern. (b) Polarization.
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Figure 6: Proposed method of polarized beampattern. (a) Beampattern. (b) Polarization.

8 International Journal of Antennas and Propagation



SOCP is repeated to establish the optimum covariance
matrix ω, and the evolution process continues until the
maximum number of iterations for testing convergence is
reached. 'e results are shown as follows.

'e red asterisks in Figure 9(a) record all the infeasible
solution sets, and the black diamonds represent the feasible
solution sets in one run. To balance the performance of both
PMSE and PSLL, the solution (PMSE� 0.0086 and
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Figure 7: Polarized beampattern using the proposed method. (a)'e 3D polarized beampattern. (b)'e contour of polarized beampattern.
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Figure 8: 'e surface of polarization parameter pair using the proposed method. (a) Orientation angle. (b) Ellipse angle.

Table 1: Polarization state in the main lobe.

Sampling points 1 2 3 4 5 6 7 8 9
p 19 19 19 20 20 20 21 21 21
q 19 20 21 19 20 21 19 20 21
μ 9.80 9.90 8.05 10.00 10.00 9.01 8.05 9.20 9.80
] 19.79 19.90 19.99 20.97 20.97 20.00 20.05 21.95 21.70

Table 2: Polarization state in the null.

Sampling points 1 2 3 4 5 6 7 8 9
p 60 60 60 61 61 61 62 62 62
q 60 61 62 60 61 62 60 61 62
αi 24.79 24.90 24.99 25.00 25.00 25.00 25.05 24.95 24.70
βi 34.89 33.34 36.89 35.00 35.00 37.90 34.56 36.90 39.00
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Figure 9: Pareto fronts produced by MODE. (a) Pareto fronts. (b) Position of antenna.
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Figure 10: Beampattern produced by MODE. (a) 'e 3D polarized beampattern. (b) 'e contour of polarized beampattern.
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Figure 11: 'e surface of polarization parameter pair using the MODE. (a) Orientation angle. (b) Ellipse angle.
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PSLL� 0.009) marked by the dotted circle should be the best
choice in experience. Figure 9(b) shows the selected antenna
positions corresponding to the best solution, and the sparse rate
is set to 75%. In Figure 10, it is easy to see that the average PSLL
is about −10dB, and the depth of null obtained is −50dB.'ose
performances are worse than those in Figure 7. 'is finding is
due to the decrease in the number of array elements, which leads
to increased sidelobe levels. However, the performance of po-
larizationmatching in the interesting area and the PSLLs outside
the beampattern is balanced.'e restriction for the polarization
matching in this study is to maintain the best approximation of
polarization matching while keeping the sidelobe level as flat as
possible, as shown in Figures 9 and 10. Figure 11 shows the
surface value of the polarization ellipse parameter that uses the
MODE. As previously described, we still cannot see the po-
larization state of interest region in Figure 11. 'us, the cor-
responding polarization states are shown in Tables 3 and 4,
respectively.

Table 5 shows the chosen PMSE and PSLLs in ten in-
dependent runs.

Table 5 summarizes the results of MODE in 10 runs. 'e
highest PMSE is below 0.0091, whereas all PSLLs slightly
fluctuate around 0.009. 'is finding suggests the stability of
PSLLs obtained using MODE. MODE has almost the same
running time as DE despite the constraint added by the
former to the optimization problem.Moreover, MODE has a
simpler algorithm structure than that of DE. 'ese argu-
ments justify efforts to prevent PMSE.

6. Conclusions

A novel two-stage design approach for the sparse antenna
array design of 2D polarized smart antenna arrays is

proposed in this work. A new model of optimal polarized
beampattern optimization problem based on SOCP is for-
mulated in the first stage. A multiobjective optimization
problem for sparse arrays, which can be solved by MODE, is
then proposed in the second stage. Compared with the
existing method in [6], the cross-polarization on the null is
constrained to maximize the capability of interferer sup-
pression while retaining the polarization matched reception
in the main lobe. 'is method is extended to the two-di-
mensional polarized antenna array. Given the substantial
hardware cost, the MODE algorithm based on Pareto
technique is proposed to obtain the sparse array. In this
algorithm, the PMSE in the interest area is presented as
another objective function to be optimized. 'e simulation
results reveal that MODE outperforms other algorithms in
terms of sparse arrays while maintaining polarization
matching performance.

Although only beampattern synthesis and sparse array
for polarized smart antenna array are considered, the effect
of the matching reception and interference suppression is
not evaluated in practical application. 'e extension of this
method to the detection and interference suppression of
systems is part of future studies.

Appendix

A. Opposition-Based Learning

Proof. 'e opposition-based learning is introduced to
generate opposite solutions in the initialization to increase
the chances of starting with the fittest solution [20], which
can be expressed as follows:

Table 4: Polarization state in the region of null concave.

Sampling points 1 2 3 4 5 6 7 8 9
p 60 60 60 61 61 61 62 62 62
q 60 61 62 60 61 62 60 61 62
αi 23.79 25.49 24.50 23.30 24.20 26.11 25.52 28.7782 25.2064
βi 32.15 31.89 32.25 35.04 35.46 34.24 34.20 35.00 36.56

Table 3: Polarization state in the region of the main lobe.

Sampling points 1 2 3 4 5 6 7 8 9
p 19 19 19 20 20 20 21 21 21
q 19 20 21 19 20 21 19 20 21
μ 9.32 8.85 9.2621 10.91 10.00 10.07 10.00 10.01 10.80
] 19.85 20.00 20.05 19.86 20.00 20.00 21.11 20.00 21.30

Table 5: Performance of MODE in 10 runs.

Algorithm: MODE
Index of runs

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

PMSE 0.0086 0.0086 0.0087 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086
PSLLs 0.0090 0.0090 0.0091 0.0090 0.0090 0.0091 0.0091 0.0090 0.0090 0.0089
Iterations 27 27 27 27 27 27 28 25 28 26
Runtime 15/00 15/04 15/66 15/20 15/25 15/23 15/12 15/00 15/27 15/25
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j
i � x

j
max + x

j

min􏼐 􏼑 − x
j
i , i � 1, . . . ,NP, j � 1, . . . , D.

(A.1)

□

B. Pareto Dominance

Proof. A solution x1 is said to dominate another solution x2
under the following conditions:

(1) ∀m ∈ (1, . . . , Mobj): fm(x1)≤fm(x2)

(2) ∃m ∈ (1, . . . , Mobj): fm(x1)<fm(x2)

where Mobj is the number of objective functions and fm(·) is
the corresponding fitness function. Any individual that is
not dominated by any other member is considered
nondominated. □

C. Fast Nondominated Sorting

Proof. Assume a Pareto optimal set denoted by S. np denotes
the number of dominated solutions, while Sp is a set of
solutions dominated by the solution p [20].

For every solution p in S, both np and Sp are calculated.
All solutions in the first nondominated front F1 clear their
domination count to zero. Afterwards, when np � 0, each
solution p visits eachmember q of its set Sp, and np � np − 1.
Any member q is saved in a separate list P. 'ese members
belong to the second nondominated front F2. Each member
of P and the third front F3 are identified. 'is process
continues until all fronts have been identified. □
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