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This paper presents an analytic algorithm for accurate two-dimensional (2-D) angle of arrival (AOA) estimation of a single source
under fixed uniform circular arrays (UCAs). Algebraic and explicit formulations for 2-D AOA estimation are first developed in the
Fourier domain. It is shown that three is the minimum number of antennas for 2-D AOA estimation based on phase measurement.
Then a signal model for phase extraction is established with equivalent phase noises through observations of signal samples
corrupted by additive Gaussian white noise. Under fixed UCAs, 2-D AOA estimation of a single source would suffer from phase
ambiguity, and hence, ambiguity resolution is also addressed in the Fourier domain by integer search. Numerical examples are
provided to verify the effectiveness and appealing performance of the proposed 2-D AOA estimation algorithm.

1. Introduction

Fast and accurate estimation of the two-dimensional (2-D)
angle of arrival (AOA) of incident plane waves is important
in array signal processing due to its applications in radar,
sonar, and mobile communications. Uniform circular array
(UCA) is extensively utilized in the context of 2-D AOA
estimation due to its attractive advantages, including 360°

azimuthal coverage, almost unchanged directional pattern,
and additional elevation angle information [1, 2]. Recently,
a lot of literatures have been reported on the AOA estimation
with UCAs. In [3], spatial averaging algorithm and spectrum
search were applied to 2-D estimation with UCAs. Reference
[4] developed two eigenstructure-based algorithms for 2-D
estimation with UCAs. However, these methods introduce
errors in the form of bias and excess variance, and hence,
the obtained estimates may be far from optimal [5]. Further-
more, these methods involve eigenvalue decomposition; thus,
the computational load is significant. Liao et al. proposed a
generalized algorithm for 2-D AOA estimation based on
the least square estimation [2]. As will be shown in Section
2, if the antenna element number is even, our algorithm is
equivalent to the generalized method. However, if the
antenna element number is odd, the simulated accuracy by

the generalized method is lower than our algorithm, as will
be shown in Section 4.

In addition, it is well known that high AOA estimation
accuracy can be obtained from large apertures. However,
the measurement of phase difference can only be made
modulo of 2π, which leads to an ambiguity in determining
the AOA of the source [6]. To solve the phase ambiguity, a
modulo conversion method [7] was proposed, but it is
inherently developed for linear array interferometers and
cannot be directly applied to UCAs, for UCA’s phase
differences are dependent on both elevation and azimuth
angles. As regards ambiguity resolution under UCAs, rotary
ways were used [8–10], whereas rotary interferometers face
the problem of source correspondence and real-time applica-
tions. In [11], a method called subarray grouping and
ambiguity searching was proposed and the rough angle
estimation was achieved by searching the nearest value
among subarrays. However, the antenna elements were in
pairs, and hence, the number of antenna elements must
be even.

To avoid eigenvalue calculation, in this paper, we propose
an analytical 2-D AOA estimation algorithm under fixed
UCAs. The algorithm is based on the Fourier analysis of
the phase around the circular aperture. The underlying
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AOA estimation problem is reformulated as expansion
coefficient calculation problem. The solutions to 2-D AOAs
are explicit discrete Fourier transform (DFT) of antenna
outputs that sample the phases around the circular aperture.
A signal model for phase extraction is then established
with equivalent phase noises through observations of sig-
nal samples corrupted by additive white Gaussian noise
(AWGN). Furthermore, without rotation, we address ambi-
guity resolution by finding the missing spectrum of ambigu-
ity numbers through integer search. Numerical examples
show the effectiveness and appealing performance of the
proposed algorithm.

This paper contributes to the area of 2-D AOA estima-
tion in the following aspects:

(1) Algebraic formulations for accurate 2-D AOA
estimation under UCAs are presented with low
computational complexity.

(2) The estimation algorithm sufficiently exploits the
centrosymmetry and periodicity of the circular
aperture by Fourier transform, resulting in an
algebraic solution to 2-D AOAs.

(3) A novel ambiguity resolution based on integer search
and inverse Fourier transform is developed for fixed
UCAs, and hence, it is applicable to real-time AOA
estimations.

The rest of this paper is organized as follows. In Section 2,
phase-based expressions for continuous and discrete phases
around a circular aperture are first developed, which decou-
ples the 2-D AOA parameters by Fourier transform, and then
a signal model is established for phase extraction in AWGN.
Section 3 addresses ambiguity resolution based on DFT and
integer search. Numerical simulations are presented in
Section 4. Section 5 concludes this paper.

2. AOA Estimation Algorithm

In this section, Fourier transform is first applied to the noise-
less periodic phase distribution around a continuous circular
aperture and then to the noiseless discrete phase samples. In
order to extract the phases for the AOA estimation, a signal
model is established, in which the phase noises are equivalent
to the AWGN in the time domain. Moreover, the proposed
algorithm is compared to a previous method [2].

2.1. Continuous Aperture. Consider a circular aperture
located at ρ0, π/2, φ in the spherical coordinate system of
ρ, θ, φ , as shown in Figure 1. The phase of the electric field
of an incident wave from θs to φs can be written as

Φ φ =Φ ρ0,
π

2 , φ = kρ0 sin θs cos φs − φ +Φ0, 1

where the azimuth angle φs ∈ 0, 2π is measured counter-
clockwise from the x-axis and the elevation angle θs ∈ 0, π
is measured down from the z-axis, k = 2π/λ is the wave
number in free space, and λ is the wavelength. The first term
depends on the element position and contains the unknown

AOA parameters. The second term, that is, Φ0, is a constant
and represents the initial phase of the incident wave, which
can be interpreted as the phase of the incident wave arriving
at the center of the array.

Noticing that the phase Φ φ is a periodic function of φ,
we apply Fourier transform to (1) and obtain

Ψ n =
2π

0
Φ φ exp jnφ dφ

= πkρ0 sin θs δ n − 1 exp jφs + δ n + 1 exp −jφs

+ 2πΦ0δ n ,
2

where

δ n =
1, n = 0
0, n ≠ 0

3

Hence, we get the dependence of 2-D AOA on
Ψ 1 , namely,

Ψ 1 = πkρ0 sin θs exp jφs 4

It is obvious that the two angular parameters are
decoupled in (4), where the elevation dependence θs is on
the magnitude of Ψ 1 and azimuth dependence φs is on
the phase of Ψ 1 , that is,

θs = sin−1 1
πkρ0

⋅ Ψ 1 , 5

φs = arg Ψ 1 6

Equations (5) and (6) imply that the 2-D AOAs are
decoupled and obtained by Fourier transform, given the
continuous phase distribution around a circular aperture.
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Figure 1: Circular aperture geometry with a single incident wave.
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2.2. Discrete Phase Samples. A UCA, as shown in Figure 1,
can be deemed as N equally placed identical antennas that
sample the fields of the circular aperture, that is, the noise-
less phases of the output of the antenna elements are
denoted by

Φs φ =Φ φ 〠
N

i=1
δ φ − φi = 〠

N

i=1
Φ φi δ φ − φi , 7

where φi = i − 1 Δφ and Δφ = 2π/N . Let us define Φi as the
phase samples at φi, for example, Φ φi =Φi, and according
to (1), we have

Φi = kρ0 sin θs cos φs − φi +Φ0 8

Similarly, we apply Fourier transform to the second
equality in (7), and by changing the order of integral and
summation, we get

Ψs n =
2π

0
Φs φ exp jnφ dφ

=
2π

0
〠
N

i=1
Φiδ φ − φi exp jnφ dφ = Δφ〠

N

i=1
Φiexp jnφi

9

From the convolution theorem of Fourier transform, we
also get from the first equality of (7)

Ψs n =
2π

0
Φsexp jnφ dφ

=
2π

0
Φ φ exp jnφ dφ∗

2π

0
〠
N

i=1
δ φ − φi exp jnφ dφ

=Ψ n ∗ 〠
+∞

l=−∞
δ n − lN = 〠

+∞

l=−∞
Ψ n − lN ,

10

where ∗ denotes the convolution operator. Careful exami-
nation of (2) shows Ψ n is nonzero only when n = −1, 0, 1.
Therefore, when N ≥ 3, the value of Ψs 1 remains the same
as (4). Hence, by combining (9) and (4), we get

Ψs 1 = Δφ〠
N

i=1
Φi exp jφi = πkρ0 sin θs exp jφs , 11

which is the discrete Fourier transform (DFT) of Φi. It is
worth noting that the minimum number for 2-D AOA
estimation of a single source with a UCA is three.

Finally, considering (5) and (6), we get the analytic and
explicit formulations of the 2-D AOAs, namely,

θs = sin−1 2
Nkρ0

⋅ 〠
N

i=1
Φi exp jφi , 12

φs = arg 〠
N

i=1
Φi exp jφi 13

Noteworthily, the initial phase Φ0 is immaterial, pro-
vided that it is not shown in the estimation formulations
and it is the same for all elements. Alternatively and
conveniently, the phases can be measured with respect to a
particular antenna.

2.3. Phase Extraction. As indicated in (12) and (13), given the
discrete sampled phases around a circular aperture, the 2-D
AOAs can be obtained without accuracy loss. This subsection
examines the extraction of the receiver’s phases from signal
samples corrupted by AWGN.

Consider a UCA with N identical elements illuminated
by a single far-field source. The tth sample from the ith digital
receiver is assumed to have the form

xi t = Aejωt+jΦi + ni t , 14

where A is the magnitude of the signal and εi t is an AWGN
with zero mean and covariance σ2n. The noises of each
receiver are independent. The signal-to-noise ratio (SNR) is
defined by SNR = σ2s /A2

The unambiguous phase is considered here, and the
phase ambiguity is delayed to Section 3. At moderately high
SNR, the AWGN can be converted into an equivalent
additive phase noise [12], that is,

Φi = arg xi =Φi + εi, 15

where εi is the phase noise of the ith receiver. The frequency
of the signal is assumed to be accurately estimated using a
number of well-known techniques [13]. The phase of each
receiver output can be obtained by [14]

Φi = arg 1
M

〠
M

t=1
xi t e

−jωTt , 16

where T is the inverse of the constant sampling rate. The
variance of εi is given by

var εi = 1
2 ⋅M ⋅ SNR , 17

where M is the number of snapshots.

2.4. Equivalence to Previous Method [2]. Interestingly, if
the element number is even, in the least square estimation

b̂ = ATA −1ATw, that is, (11) of [2], ATA −1
becomes

ATA −1 =
〠
N/2

i=1
cos2 φi, 〠

N/2

i=1
cos φi sin φi

〠
N/2

i=1
cos φi sin φi, 〠

N/2

i=1
sin2 φi

−1

= 4
N

1, 0

0, 1
,

18
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and because the element number is even, cos φi = −cos φi+N/2
and sin φi = −sin φi+N/2, and ATw becomes

ATw = 〠
N
2

i=1
Φi −Φi+N

2
cos φi, 〠

N
2

i=1
Φi −Φi+N

2
sin φi

T

= 〠
N

i=1
Φicos φi, 〠

N

i=1
Φisin φi

T

19

By letting b̂1 + jb̂2 =Ψs 1 / 2π , we get that (12) and (13)
are equivalent to (12) in [2].

Moreover, when the number of antennas is odd, the least
square estimation in [2] can be reformulated by N terms
instead of (N− l) terms, where l denotes n in [2], that is,
(14a) in [2] which can be rewritten as

w = w1,1+l w2,2+l ⋯ wN−l,N ⋯ wN ,l
T , 20

A =

cos φ1 − cos φ1+l sin φ1 − sin φ1+l

cos φ2 − cos φ2+l sin φ2 − sin φ2+l

⋮ ⋮

cos φN−l − cos φN sin φN−l − sin φN

⋮ ⋮

cos φN − cos φl sin φN − sin φl

21

Then (17) in [2] is the same as (12) and (13). It is worth
noting that if the number of terms in the least square estima-
tion is equal to that of antennas, the solutions to the least
square are the same and are irrelevant to the choice of l.

3. Ambiguity Resolution

It is well known that high AOA estimation accuracy can be
obtained for large apertures. However, when ρ0 > λ/2, the
phase range may exceed 2π, while the measurement of
phase difference, that is, (16), can only be made modulo
2π, which leads to an ambiguity in determining the direc-
tion of the incident wave. The angle estimation exploited
the centrosymmetry and periodicity of the circular aperture,
and in this section, we continue to adopt the particular
properties of the circular aperture and Fourier transform
for ambiguity resolution.

The phases measured at each antenna can be written as

Φi =Φ′˜i − 2πmi, Φ′˜i ∈ −π, π , 22

where mi is an integer and recognized as the ambiguous
number. Because Φ0 is irrelevant to the solution of 2-D
AOAs, we let Φ0 be equal 0. Substitution of (8) into
(22) yields

kρsin θs cos φs − φi =Φi′ − 2πmi, i = 1, 2,… ,N 23

Discrete Fourier transform of both sides gives

Ψ n = 〠
N

i=1
kρ sin θs cos φs − φi e

jnφi = 〠
N

i=1
Φi′ejnφi − 2π〠

N

i=1
nie

jnφi

=Ψ′ n − 2πΨAN n , n = −
N
2 ,… , N

2 − 1,

24

where x denotes the integer part of x and

Ψ′ n = 〠
N

i=1
Φi′e−jnφi , 25

ΨAN n = 〠
N

i=1
mie

−jnφi 26

are the DFTs of ambiguous phases and ambiguity numbers,
respectively. Equation (25) implies that mi is the inverse
discrete Fourier transform of ΨAN n . Noticing Ψ n is
nonzero only when n = ±1, and comparing the coefficients
of DFT, we have

n = 1,ΨAN 1 = 1
2π Ψ′ 1 −Ψ 1 ,

n = −1,ΨAN −1 = 1
2π Ψ′ −1 −Ψ −1 ,

n = others,ΨAN n = 1
2πΨ

′ n

27

Provided that Ψ′ n is obtained from the phase mea-
surement, Ψ 1 and Ψ −1 are unknown, and ΨAN 1
and ΨAN −1 are to be determined. After ΨAN n is all
determined, the estimation of mi can be calculated by
the inverse discrete Fourier transform, namely,

mi′ =
1
N

〠
N/2 −1

n=− N/2
ΨAN n e−jnφi 28

Let the magnitude and phase of ΨAN 1 be in the
complex form, for example,

ΨAN 1 = pejq, 29

where p ∈ 0, πkρ sin θmax , q ∈ −π, π , and θmax is the
maximum elevation angle. Combining (27), (28), and (29),
we get the estimation of mi, namely,

mi′ =
1
N

Ψ′ −
N
2 e−j

N
2 φi +⋯ + pe−jqe−jφi +Ψ′ 0

+ pejqejφi +⋯ +Ψ′ N
2 − 1 ej N/2 −1 φi

30

Furthermore, because the ambiguous numbers are
integers, the real part of mi′ is an integer and the imaginary
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part of mi′ is zero. Considering phases noises, the following
cost function approximates to zero:

t = 〠
N

i=1
real mi′ − int real mi′

2
+ imag mi′

2
,

31
where real x and imag x are the real and imaginary part of
x, respectively, and int x is the nearest integer of x.

Therefore, the minimum value of t can be found by grid
search of p and q. The ambiguous numbers are estimated
by (28), and due to noises in measured phases, mi′ is not an
integer; then we take

mi = int mi′ 32

After successful phase ambiguity resolution, unambigu-
ous phase is calculated adopting (22), and enhanced AOA
estimation accuracy can be obtained based on (12) and (13).

In ambiguity resolution, the information of every
antenna is involved, and hence, the ambiguity resolution by
IDFT of spectrum and integer search is robust.

4. Simulation Results

First, a UCA with N = 11 antennas and a radius ρ0 = λ/4 was
exemplified. The incident angle of the source is θs = 30° and
φs = 120°. The number of snapshots was 500. Corruption of
signal samples was considered as AWGN. 1000 independent
trials were run for calculating 2-D AOAs by (12) and (13).
The root mean square errors (RMSEs) of elevation and
azimuth angles against SNR are shown in Figure 2. The
results of the generalized algorithm [2] with n = 5 and n = 6
were also shown for comparison. It is noticed that the

proposed algorithm performs better than the generalized
algorithm, because the RMSEs of the proposed method are
lower than those of the generalized algorithm.

Next, a UCA with N = 15 antennas and a radius ρ0 = 15λ
was exemplified for ambiguity resolution. An incident wave
impinged from the angle θs = 50° and φs = 80°. Equivalent
phase noises were considered as normal distribution with
zero mean and variance of 5° 2. The phases were measured
with reference to the first antenna, and the ambiguous phases
are listed in Table 1. The ambiguous numbers were calculated
employing (30), (31), and (32), and then the unambiguous
phases were calculated using (22). At last, the elevation angle
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Figure 2: RMSEs of angle estimation. (a) Elevation angle. (b) Azimuth angle.

Table 1: Ambiguous phase, ambiguous number, and unambiguous
phase.

Antenna
number, i

Ambiguous
phase, Φ′̃i

Ambiguous
number, mi

Unambiguous
phase, Φi

2 153.9 −4 1593.9

3 −83.5 −8 2796.5

4 130.1 −9 3370.1

5 20.1 −9 3260.1

6 −63.8 −7 2456.2

7 16.7 −3 1096.7

8 139.1 2 −580.9
9 −111.5 6 −2271.5
10 −100.2 10 −3700.2
11 75.5 13 −4604.5
12 −170.3 13 −4850.3
13 −48.2 12 −4368.2
14 −25.8 9 −3265.8
15 81.5 5 −1718.5
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and azimuth angle were estimated utilizing (12) and (13),
respectively. The estimated elevation angle and azimuth
angle were θs = 50 027° and φs = 79 98°, respectively.

5. Conclusions

An analytical algorithm for accurate 2-D AOA estimation of
a single source with UCAs has been proposed in this paper.
2-D AOAs are estimated in the Fourier domain. The algo-
rithm has provided explicit and algebraic formulations for
accurate azimuth and elevation angle estimations based on
phase measurement by an arbitrary number of antennas no
less than three. Moreover, a signal model for phase extraction
has been addressed from signal samples contaminated by
AWGN. Ambiguity resolution has also been realized in the
Fourier domain and by integer search. Simulation results
demonstrate the effectiveness and appealing performance of
the proposed algorithm. However, the integer search process
for ambiguity resolution can be further optimized.
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