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We addressed the problem of two-dimensional (2D) direction-of-arrival (DOA) elevation and azimuth angles estimation for
multiple uncorrelated signals using L-shaped antenna array configuration.The key points of the proposedmethod are the following:
(1) it obtains azimuth and elevation angles through construction of three cross-correlation matrices from the collected data of the
received signals; this implies that the noise reduces significantly in the reconstructed data matrices; (2) it derives a parallel factor
analysis (PARAFAC) model and applies trilinear least squares method to avoid pair matching problem between 2D DOA azimuth
and elevation angles for multiple sources; (3) it does not require spectral peak searching; and (4) it has better 2D DOA estimation
compared with signal parameters via rotational invariance technique and fourth-order signal parameters via rotational invariance
technique. Simulation results demonstrate the estimation accuracy and the effectiveness of the proposed method.

1. Introduction

The problem of estimating the two-dimensional direction-
of-arrival (2D DOA) azimuth and elevation (𝜙, 𝜃) angles of
multiple incident sources plays an important role in many
practical applications in the fields of wireless communication
and signal processing such as radar, sonar, and multiple-
input-multiple-output (MIMO) systems. Several 2D DOA
estimationmethods have been proposed in the literature con-
sidering different geometries of the antenna arrays such as
circular array [1], parallel uniform linear array [2], uniform
rectangular array [3], and L-shaped array [4, 5]. In particular,
the L-shaped array which is composed of two orthogonal
uniform linear arrays with one placed on the 𝑥-axis and the
other on the 𝑧-axis has received considerable attention due
to its geometric configuration, ease of implementation, use
of less number of antennas, and higher estimation accuracy
compared with other geometrical arrays.

Conventional methods of DOA estimation rely on the
decomposition of the observation space into a signal sub-
space and a noise subspace. Two widely used subspace tech-
niques, MUSIC [6] and ESPRIT [7], are computationally
complex as they require either eigenvalue decomposition
(EVD) of the sample covariance matrix or the singular value

decomposition (SVD) of the received data matrix. Improved
techniques which are simpler and less complex have been
reported in the literature [6–11] which do not rely on either
EVD or SVD. However, some of these methods [6, 7] suffer
from heavy losses of the array aperture and encounter an
estimation failure problem. To avoid aperture loss problem
many cumulant-based methods [12–17] have been proposed.
But these methods are computationally intensive and require
parameter pairing.

The 2D DOA methods using L-shaped array [3, 4] fail
to resolve the pair matching problem for multiple incident
sources which result in incorrect 2D estimation of azimuth
and elevation (𝜙, 𝜃) angles and hence severe performance
degradation. Many schemes have been proposed to solve the
problem of pair matching [11, 18–21]. These pair matching
techniques have high computational cost and complexity and
they do not always provide accurate pairing results.

A parallel factor analysis (PARAFAC) [22] model is a
method that transfers low rank matrix decomposition to
three-way arrays (TWAs); it was first introduced in psy-
chometrics and flow injection analysis. It has been widely
used in subspace domain in array signal processing and
wireless communication areas [23, 24]. Several methods
have applied PARAFAC model to alleviate the problem of
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Figure 1: Configuration of array geometry for 2D DOA azimuth and elevation angles.

parameter pairing (or pair matching) for 2D DOA estima-
tion for azimuth and elevation angles [25–29]. A trilinear
decomposition-based blind 2D DOA estimation algorithm
employing PARAFAC data model for parallel shaped array
has been proposed in [17] to achieve automatic pairmatching.
One drawback of this method is that it requires high number
of snapshots and has high computational complexity.

In this paper, we propose a novel 2D DOA estimation
method that employs an L-shaped uniform antenna array
based on a new computationally efficient cross-correlation
with automatic pair matching based on PARAFAC data
model. The constructed data consists of three cross-corre-
lation matrices which contain information about azimuth
and elevation angles of multiple uncorrelated signals that are
spatially independent; this implies that the noise significantly
reduces in the constructed data matrices. Further, we derive
a PARAFAC model and apply trilinear least squares method
to avoid pair matching problem. Compared with existing
methods, the proposed method works with less than a
hundred snapshots and has very accurate estimation and has
lower computational complexity.

The rest of the paper is structured as follows. The signal
model and proposed method are presented and developed in
Section 2. Analysis of computational complexity is presented
in Section 3. Simulation results are presented in Section 4.
Conclusions are drawn in Section 5.

2. Signal Model and Proposed Method

The geometry of the proposed L-shaped array is shown in
Figure 1. The distance between adjacent antenna elements is𝑑 where 𝑑 = 𝜆/2 with 𝜆 being the wavelength of the incident
waveform. The arrays are divided into four subarrays: x, y,
z, and w. Each linear subarray consists of (𝑁 − 1) antenna
elements. The element located at point (0, 0, 0) is considered
as a reference element. Hence, the total number of antenna
elements in both 𝑧-axis and 𝑥-axis is (2𝑁 − 1). Consider 𝐾
narrowband noncoherent sources in far-field of the antenna
array.

(𝑁−1)×1 collected signal vectors received at x, y, z, and
w subarrays are defined as follows:

x (𝑡) = [𝑥1 (𝑡) 𝑥2 (𝑡) ⋅ ⋅ ⋅ 𝑥𝑁−1 (𝑡)]𝑇 ,
y (𝑡) = [𝑦2 (𝑡) 𝑦3 (𝑡) ⋅ ⋅ ⋅ 𝑦𝑁 (𝑡)]𝑇 ,
z (𝑡) = [𝑧1 (𝑡) 𝑧2 (𝑡) ⋅ ⋅ ⋅ 𝑧𝑁−1 (𝑡)]𝑇 ,
w (𝑡) = [𝑤2 (𝑡) 𝑤3 (𝑡) ⋅ ⋅ ⋅ 𝑤𝑁 (𝑡)]𝑇 ,

(1)

where 𝑡 represents the snapshot index and superscript 𝑇
represents the transpose operation. The received (𝑁 − 1) × 1
signal vectors in (1) can be represented as follows:

x (𝑡) = A𝑧 (𝜃) s (𝑡) + n𝑥 (𝑡) , (2)

y (𝑡) = A𝑧 (𝜃)Φ𝑧 (𝜃) s (𝑡) + n𝑦 (𝑡) , (3)

z (𝑡) = A𝑥 (𝜃, 𝜙) s (𝑡) + n𝑧 (𝑡) , (4)

w (𝑡) = A𝑥 (𝜃, 𝜙)Φ𝑥 (𝜃, 𝜙) s (𝑡) + n𝑤 (𝑡) , (5)

A𝑧 (𝜃) = [a𝑧 (𝜃1) a𝑧 (𝜃2) ⋅ ⋅ ⋅ a𝑧 (𝜃𝐾)] , (6)

A𝑥 (𝜃, 𝜙) = [a𝑥 (𝜃1, 𝜙1) a𝑥 (𝜃2, 𝜙2) ⋅ ⋅ ⋅ a𝑥 (𝜃𝐾, 𝜙𝐾)] , (7)

s (𝑡) = [𝑠1 (𝑡) 𝑠2 (𝑡) ⋅ ⋅ ⋅ 𝑠𝐾 (𝑡)]𝑇 , (8)

where the array manifold vector for 𝑘th source a𝑧(𝜃𝑘) =[1 𝑒−𝑗𝛼𝑘 ⋅ ⋅ ⋅ 𝑒−𝑗(𝑁−1)𝛼𝑘],𝛼𝑘 = 2𝜋𝑑 cos 𝜃𝑘/𝜆, and a𝑥(𝜃𝑘, 𝜙𝑘) =
[1 𝑒−𝑗𝛽𝑘 ⋅ ⋅ ⋅ 𝑒−𝑗(𝑁−1)𝛽𝑘]𝑇, 𝛽𝑘 = 2𝜋𝑑 sin 𝜃𝑘 cos𝜙𝑘/𝜆. 𝑠(𝑡) is
the complex envelope vector of 𝑘 incident sources and at
snapshot 𝑡, n𝑥(𝑡),n𝑦(𝑡),n𝑧(𝑡), and n𝑤(𝑡) are the Gaussian
white noise vectors of zero mean and variance 𝜎2. A𝑧(𝜃) and
A𝑥(𝜃, 𝜙) are array manifold matrices.

The matrices Φ𝑧(𝜃) in (3) and Φ𝑥(𝜃, 𝜙) in (5) are 𝐾 × 𝐾
diagonal matrices containing information about the azimuth
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angle 𝜙𝑘 and elevation angle 𝜃𝑘 which can be presented as
follows:

Φ𝑧 (𝜃) = diag [𝑒−𝑖𝛼1 𝑒−𝑖𝛼2 ⋅ ⋅ ⋅ 𝑒−𝑖𝛼𝐾] ,
Φ𝑥 (𝜃, 𝜙) = diag [𝑒−𝑖𝛽1 𝑒−𝑖𝛽2 ⋅ ⋅ ⋅ 𝑒−𝑖𝛽𝐾] . (9)

In the proposed method, we first construct three cross-
correlation matrices (z subarray, x subarray), (w subarray, x
subarray), and (z subarray, y subarray) as follows:

R𝑧𝑥 = 𝐸 [z (𝑡) x (𝑡)𝐻]
= A𝑥 (𝜃, 𝜙) 𝐸 [s (𝑡) s𝐻 (𝑡)]A𝐻𝑧 (𝜃)
+ 𝐸 [n𝑧 (𝑡)n𝐻𝑥 (𝑡)]

= A𝑥 (𝜃, 𝜙)R𝑠A𝐻𝑧 (𝜃) + N𝑧𝑥,

where N𝑧𝑥 =
[[[[[[[
[

𝜎2 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0
... ... d

...
0 0 ⋅ ⋅ ⋅ 0

]]]]]]]
]
∈ C
(𝑁−1)×(𝑁−1),

R𝑤𝑥 = 𝐸 [w (𝑡) x (𝑡)𝐻]
= A𝑥 (𝜃, 𝜙)Φ𝑥 (𝜃, 𝜙) 𝐸 [s (𝑡) s𝐻 (𝑡)]A𝐻𝑧 (𝜃)
+ 𝐸 [n𝑤 (𝑡)n𝐻𝑥 (𝑡)]

= A𝑥 (𝜃, 𝜙)Φ𝑥 (𝜃, 𝜙)R𝑠A𝐻𝑧 (𝜃) + N𝑤𝑥,
R𝑧𝑦 = 𝐸 [z (𝑡) y (𝑡)𝐻]

= A𝑥 (𝜃, 𝜙) 𝐸 [s (𝑡) s𝐻 (𝑡)]Φ𝐻𝑧 (𝜃)A𝐻𝑧 (𝜃)
+ 𝐸 [n𝑧 (𝑡)n𝐻𝑦 (𝑡)]

= A𝑥 (𝜃, 𝜙)R𝑠Φ𝐻𝑧 (𝜃)A𝐻𝑧 (𝜃)
= A𝑥 (𝜃, 𝜙)Φ𝐻𝑧 (𝜃)R𝑠A𝐻𝑧 (𝜃) + N𝑧𝑦,

(10)

where the superscript 𝐻 represents the conjugate and trans-
pose operations. Note that {n𝑤(𝑡),n𝑥(𝑡)} and {n𝑤(𝑡),n𝑥(𝑡)}
are spatially independent of each other. Therefore, N𝑤𝑥 =𝐸[n𝑤(𝑡)n𝐻𝑥 (𝑡)] = 0 and N𝑧𝑦 = 𝐸[n𝑧(𝑡)n𝐻𝑦 (𝑡)] = 0, where 0
matrix has a dimension of (𝑁 − 1) × (𝑁 − 1) with all entries
zero. Additive noises are not correlated with incident signals.
For uncorrelated sources s(𝑡) = [𝑠1(𝑡) 𝑠2(𝑡) ⋅ ⋅ ⋅ 𝑠𝐾(𝑡)]𝑇,{z(𝑡), x(𝑡)}, {w(𝑡), x(𝑡)} and {z(𝑡), y(𝑡)} are wide-sense station-
ary sequences. As a consequence, the correlationmatrix of the
signal sources R𝑠 = 𝐸[s(𝑡)s𝐻(𝑡)] is a diagonal matrix where
its entries represent the power of signal sources.Thematrices{R𝑠Φ𝐻𝑧 (𝜃)} = {Φ𝐻𝑧 (𝜃)R𝑠} since both matrices R𝑠 and Φ𝐻𝑧 (𝜃)
are diagonal.

The cross-correlationmatrices in (10) are concatenated to
form a new data matrix R as follows:

R = [[
[
R𝑧𝑥
R𝑧𝑦
R𝑤𝑥

]]
]

= [[[
[

A𝑥 (𝜃, 𝜙)R𝑠A𝐻𝑧 (𝜃)
A𝑥 (𝜃, 𝜙)Φ𝑧 (𝜃)R𝑠A𝐻𝑧 (𝜃)

A𝑥 (𝜃, 𝜙)Φ𝐻𝑥 (𝜃, 𝜙)R𝑠A𝐻𝑧 (𝜃)
]]]
]
+ [[
[
N𝑧𝑥
N𝑧𝑦
N𝑤𝑥

]]
]
.

(11)

Parallel factor (PARAFAC)model is applied on the data in (11)
along with trilinear least squares method to jointly estimate
the correct pair of azimuth 𝜙𝑘 and elevation 𝜃𝑘 angles for each
signal source.

Using the definition of PARAFAC model, the outer
product (a ∘ b ∘ c) of the three vectors a ∈ C𝐼×1, b ∈ C𝐽×1

and c ∈ C𝐾×1 can be expressed in a third-order tensor form
as Q ∈ C𝐼×𝐽×𝐾 with typical elements defined as 𝑞𝑖𝑗𝑘 = 𝑎𝑖𝑏𝑗𝑐𝑘.
Q can be expressed as a sum of tensor product:

Q = 𝑈∑
𝑢=1

(a𝑢 ∘ b𝑢 ∘ c𝑢) , (12)

where a𝑢, b𝑢, and c𝑢 are 𝑢th columns of the following load
matrices A, B, and C. These matrices for a given PARAFAC
model can be defined as follows:

A = [a1 a2 ⋅ ⋅ ⋅ a𝑈] , A ∈ C
𝐼×𝑈,

B = [b1 b2 ⋅ ⋅ ⋅ b𝑈] , B ∈ C
𝐽×𝑈,

C = [c1 c2 ⋅ ⋅ ⋅ c𝑈] , C ∈ C
𝐾×𝑈.

(13)

The PARAFAC decomposition in (12) can also be rep-
resented in another matrix form of 3D tensor matrix Q ∈
C𝐼×𝐽×𝐾 and can be represented using three slicematricesQ(1),
Q(2),Q(3) as follows:

Q(1) = (A ⊙ B)C𝑇,
Q(2) = (B ⊙ C)A𝑇,
Q(3) = (C ⊙ A)B𝑇,

(14)

where (A⊙B) = [a1 ⊗ b1 a2 ⊗ b2 ⋅ ⋅ ⋅ a𝑈 ⊗ b𝑈] is theKhatri-
Rao product based on column wise Kronecker products and⊗ is Kronecker product.

The PARAFAC decomposition in (14) is considered to be
essentially unique to arbitrary permutation and scaling under
the condition ([31, 32]):

𝜅𝐴 + 𝜅𝐵 + 𝜅𝐶 ≥ 2𝐾 + 1, (15)

where 𝜅𝐴, 𝜅𝐵, 𝜅𝐶 denote the maximum number of arbitrary
linearly independent columns of matrices A, B, and C,
respectively. The arbitrary permutation and scaling implies
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that there exists a triplet matrix (Ã, B̃, C̃) related to (A,B,C)
as follows:

A = ÃΠΔ1,
B = B̃ΠΔ2,
C = C̃ΠΔ3,

(16)

where Π is a permutation matrix and {Δ1,Δ2,Δ3} are arbi-
trary diagonal matrices satisfying Δ1Δ2Δ3 = I.

On the basis of PARAFAC theorem, three-way array
(TWA) (𝑁 − 1) × (𝑁− 1) × 3 can be constructed using (11) as
follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
R (: , : , 1)
R (: , : , 2)
R (: , : , 3)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
R𝑧𝑥
R𝑧𝑦
R𝑤𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= [[[
[

A𝑥 (𝜃, 𝜙)R𝑠A𝐻𝑧 (𝜃)
A𝑥 (𝜃, 𝜙)Φ𝑧 (𝜃)R𝑠A𝐻𝑧 (𝜃)

A𝑥 (𝜃, 𝜙)Φ𝐻𝑥 (𝜃, 𝜙)R𝑠A𝐻𝑧 (𝜃)
]]]
]

+ [[
[
N𝑧𝑥
N𝑧𝑦
N𝑤𝑥

]]
]
.

(17)

Let C = A𝐻𝑧 (𝜃); according to the definition of Khatri-Rao
product the matrix in (17) can be transformed as follows:

R(1) = (A𝑥 ⊙ C𝑇)D𝑇, (18)

R(2) = (C𝑇 ⊙D)A𝑇𝑥 , (19)

R(3) = (D ⊙ A𝑥)C, (20)

D = [[
[
d1
d2
d3

]]
]
= [[[
[

Λ−1 (R𝑠)
Λ−1 (Φ𝑧 (𝜃)R𝑠)
Λ−1 (Φ𝑥 (𝜃, Φ)R𝑠)

]]]
]
, (21)

where Λ−1(R𝑠) represents the row vector data built from the
diagonal elements of the diagonal matrix R𝑠. The uniqueness
of (18), (19), and (20) will be guaranteed if the following
inequality holds:

rank (D) + rank (A) + rank (C) ≥ 2𝐾 + 2. (22)

For different DOAs and independent sources C and A𝑥
have Vandermonde structure with minimum rank equal to
the number of sources, and D also is a nonsingular matrix
whose rank equals the number of incident sources. This
implies that the minimum rank of rank(D) + rank(A) +
rank(C) = 3𝐾; for multiple incident sources 𝐾 ≥ 2 and,
therefore, (22) will be always guaranteed.

One of the methods of solving PARAFAC model in (18),
(19), and (20) is trilinear alternative least squares (TALS)
approach [24, 31–33]. TALS method can be applied to solve

the matrices D,C, and A𝑥 and then estimate the azimuth
and elevation angles.There are three basic steps behind TALS
method: (a) update one of the matrices D,C, and A𝑥 each
time using least squares (LS) method, (b) continue updating
the remaining matrices based on the LS results from the
previous estimation step, and (c) repeat previous steps (a) and
(b) until convergence of the LS cost function. The detailed
procedure of estimating D,C, and A𝑥 using TALS is as
follows.

Define the cost functions for finding the matrices D,C,
and A𝑥 as

𝐹1 (D,C,A𝑥;R(1)) = 󵄩󵄩󵄩󵄩󵄩R(1) − (A𝑥 ⊙ C𝑇)D𝑇󵄩󵄩󵄩󵄩󵄩𝐹 , (23)

𝐹2 (D,C,A𝑥;R(2)) = 󵄩󵄩󵄩󵄩󵄩R(2) − (C𝑇 ⊙D)A𝑇𝑥󵄩󵄩󵄩󵄩󵄩𝐹 , (24)

𝐹3 (D,C,A𝑥;R(3)) = 󵄩󵄩󵄩󵄩󵄩R(3) − (D ⊙ A𝑥)C󵄩󵄩󵄩󵄩󵄩𝐹 , (25)

where ‖ ⋅ ‖𝐹 stands for Frobenius norm. Given the estimation
of matrices Ĉ and Â𝑥, the matrix D can be found from (23)
as follows:

D𝑇 = argmin
(D)

󵄩󵄩󵄩󵄩󵄩R(3) − (A𝑥 ⊙ C𝑇)D𝑇󵄩󵄩󵄩󵄩󵄩2𝐹 , (26)

D̂ = [(Â𝑥 ⊙ Ĉ)† R(3)]𝑇 , (27)

where (J)† represents the pseudoinverse of matrix J. A𝑥 can
be also obtained by minimizing the cost function in (24) and
keeping Ĉ and D̂ fixed.

Â𝑥 = [(C𝑇 ⊙D)† R(2)]𝑇 . (28)

Similarly, an estimation of matrix Ĉ can be obtained as

Ĉ = (D̂ ⊙ Â𝑥)† R(1). (29)

The process in (27), (28), and (29) will continue until
matrices D̂, Ĉ, and Â𝑥 converge. PARAFAC along with TALS
method can be initialized to speed up the convergence by
exploiting an ESPRIT method idea on the concatenated data
formed in (11).

The estimated matrix D̂ in (27) will be sufficient for
2D DOA estimation of azimuth and elevation angles. The
TALS method guarantees the convergence but it is slow. For
fast implementation of alternative least squares method to
solve PARAFAC model in (23), (24), and (25), the COMFAC
algorithm is employed which speeds up the least square
fitting by utilizing a compressed version of the three-way data
into smaller matrix dimensions. COMFAC MATLAB func-
tion will be used to estimate the matrices D̂, Ĉ, and Â𝑥
(as described in [24]) as follows:

[D A𝑥 C 𝑖] = comfac (R, 𝐾) , (30)

where R is the input data, 𝐾 is the number of sources, 𝑖
represents the number of iterations, and [D A𝑥 C] are the
output identification matrices.
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Now the diagonal matrices Φ𝑧(𝜃) in (3) and Φ𝑥(𝜃, 𝜙) are
estimated from the identificationmatrix D̂ = [d̂1 d̂2 d̂3]𝑇as
follows:

𝜑̂𝑧 (𝑘) = d̂2 (𝑘)
d̂1 (𝑘) , (31)

where 𝜑̂𝑧(𝑘) is the estimated 𝑘th entry of the diagonal
matrix Φ̂𝑧(𝜃). Similarly, 𝑘th diagonal entry of Φ̂𝑥(𝜃, 𝜙) can
be obtained as follows:

𝜑̂𝑥 (𝑘) = d̂3 (𝑘)
d̂1 (𝑘) . (32)

The azimuth angle 𝜙̂𝑘 and elevation angle 𝜃̂𝑘 for 𝑘th
source can be estimated as follows:

𝜃̂𝑘 = cos−1 [∠𝜑̂𝑧 (𝑘) × 𝜆2𝜋𝑑 ] ,
𝜙̂𝑘 = cos−1 [ ∠𝜑̂𝑥 (𝑘) × 𝜆2𝜋𝑑 sin (𝜃̂𝑘)] .

(33)

The estimated azimuth and elevation angles in (33) are for𝑘th source. In case of multiple sources, the following pairs
are obtained: (𝜃̂1, 𝜙̂1), (𝜃̂2, 𝜙̂2), . . . , (𝜃̂𝐾, 𝜙̂𝐾). The estimated
matrices D̂, Ĉ, and Â𝑥 have the same column permutation
matrix. This implies automatic pair matching since 𝑘th
column of the steering matrixA𝑥 corresponds to 𝑘th column
of matrix D̂.

The procedure of the 2D DOA proposed method is
summarized as follows.

Step 1. Construct x, y, z, and w subarrays according to (2),
(3), (4), and (5) from multiple snapshots of the array data{𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) 𝑤(𝑡)}, for 𝑡 = 1, . . . , 𝐿.
Step 2. Estimate the cross-correlation matrices R̂𝑧𝑥, R̂𝑤𝑥, and
R̂𝑧𝑦 from multiple snapshots in (10) as follows:

R̂𝑧𝑥 = 1𝐿
𝐿∑
𝑡=1

z (𝑡) x𝐻 (𝑡) ,

R̂𝑤𝑥 = 1𝐿
𝐿∑
𝑡=1

w (𝑡) x𝐻 (𝑡) ,

R̂𝑧𝑦 = 1𝐿
𝐿∑
𝑡=1

z (𝑡) y𝐻 (𝑡) .

(34)

Step 3. Concatenate the estimated cross-correlation matrices{R̂𝑧𝑥, R̂𝑤𝑥, R̂𝑧𝑦} according to (34).
Step 4. Construct the three-way array (TWA) (𝑁− 1) × (𝑁−1) × 3 according to (17).
Step 5. Apply alternative least squares method to estimate D̂,
Ĉ, and Â𝑥 whichminimize the cost function in (23), (24), and
(25).

Step 6. Repeat Step 5 until convergence.

Step 7. Obtain the estimated diagonal matrices 𝜑̂𝑧(𝑘) and𝜑̂𝑥(𝑘) from the identification matrix D̂.

Step 8. Estimate the 2D DOA azimuth and elevation angles
according to (33).

3. Analysis of the Computational Complexity
of the Proposed Method

The computational complexity of the proposed method is
compared with that of 2D DOA fourth-order cumulant
method [17] and novel 2DDOAwith L-shaped array [30]. For𝐿 total snapshots,𝑁 number of antenna elements, 𝑛 number
of iterations, and 𝐾 number of sources, considering major
processing operations like forming the sample covariance or
cross-correlation matrices and applying the alternative least
squares method, the total computational complexity of the
proposed method is in the order of 𝑂(3(𝑁 − 1)𝐿 + 𝑛(3𝐾3) +9(𝑁 − 1)2𝐾). The complexity of the novel L-shaped array
method is in the order of𝑂(4(𝑁−1)𝐿+𝑛(3𝐾3)+12(𝑁−1)2𝐾)
and the complexity of the fourth-order cumulant method is
in the order of 𝑂(21(2𝑁 + 1)2𝐿 + 𝑛(3𝐾3) + 12(2𝑁 + 1)2𝐾).
Upon comparison, it can be seen that the proposed method
requires slightly less computational complexity compared
to the method in [17] and significantly less computational
complexity compared with the method in [30].

4. Simulation Results

The performance of the proposed method is presented in the
section and compared with the novel L-shaped method in
[30] and cumulant-based method in [17]. The performance
is measured in terms of root mean square error (RMSE) for
the azimuth and elevation angles estimation. We consider 21
antenna elements in total for the first three experiments. The
distance between the adjacent elements is taken to be half
the wave length of the incoming signal, and the number of
uncorrelated sources is taken as (𝐾 = 1, 𝐾 = 2 and 𝐾 =4). Several simulation experiments have been conducted to
evaluate the performance of the proposedmethod.TheRMSE
for the joint 2D DOA estimation azimuth and elevation
angles is defined as follows:

RMSE = √𝐸 [(𝜃̂𝑖 − 𝜃𝑖) + (𝜙̂𝑖 − 𝜙𝑖)], (35)

where 𝑖 represents the source index, 𝐸[𝑄󸀠] represents the
expectation value of a random variable𝑄󸀠, and (𝜃̂𝑖, 𝜙̂𝑖) are the
pair of the estimated elevation and azimuth angles.

In the first experiment, we consider two uncorrelated
sources with direction-of-arrival azimuth and elevation
angles (𝜃, 𝜙) = (75∘, 60∘) and (80∘, 70∘), SNR range is set
from−5 to 30 dB, and the number of snapshots is 200.Monte-
Carlo trials of 500 are used. The RMSE values for source 1
and source 2 are shown in Figures 2 and 3 versus SNR for
both novel L-shaped and cumulant methods and compared
with the proposed method. We observe that the proposed
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Figure 2: Comparison of RMSE of joint azimuth-elevation versus
SNR for source 1 located at (75∘, 60∘) using proposed method, novel
L-shaped, and cumulant method.
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Figure 3: Comparison of RMSE of joint azimuth-elevation versus
SNR for source 2 located at (80∘, 70∘) using proposed method, novel
L-shaped, and cumulant method.

method has better performance which is indicated through
lower RMSE especially at low SNR. For a given RMSE value
of 0.15 degrees for source 1 and 0.25 degrees for source 2, it is
clear that the proposed method is 5 dB better compared with
novel L-shaped for source 1 and around 2.5 dB for source 2.
It is also 7.5 and 8 dB better when compared with cumulant
method for source 1 and source 2, respectively. We observe
also that proposedmethod has better performance compared
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Figure 4: Scatter plot for azimuth and elevation for four uncorre-
lated sources at (65∘, 60∘), (80∘, 75∘), (90∘, 80∘), and (100∘, 90∘) at SNR
= 10 dB using proposed method.
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Figure 5: Scatter plot for azimuth and elevation for four uncorre-
lated sources at (65∘, 60∘), (80∘, 75∘), (90∘, 80∘), and (100∘, 90∘) at SNR
= 10 dB using novel L-shaped method [30].

with [17, 30] even at low SNR. It can be deduced from Figures
2 and 3 that the performance of the proposed method will be
affected due to noise. For example, for the proposed method
the RMSE at SNR of −5 dB for source 1 is about 1.3 degrees
and for source 2 is about 1.5 degrees.

In the second experiment, four uncorrelated sources
with DOAs at (𝜃, 𝜙) = (65∘, 60∘), (80∘, 75∘), (90∘, 80∘), and
(100∘, 90∘) are considered and the number of snapshots is
set to 200. Monte-Carlo trials of 200 are conducted. SNR
is set to 10 dB. Figures 4, 5, and 6 illustrate joint azimuth
and elevation scatter diagrams of 2D DOA estimation for the
proposed method, novel L-shaped, and cumulant method,
respectively. It is shown that the four incoming sources can
be clearly observed by all methods. The proposed method
in Figure 4 gives better and precise estimation compared to
the other two methods in [17, 30]. It is also observed that
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Figure 7: RMSE of azimuth-elevation versus number of snapshots
at SNR = 10 dB for source 1 located at (45∘, 50∘) using proposed
method, novel L-shaped, and cumulant method.

the cumulant method in Figure 6 has the worst azimuth and
elevation estimation for the four sources.

In the third experiment, the effect of the number of
snapshots on the performance of the proposed method is
evaluated. We consider two uncorrelated sources with DOAs
at (𝜃, 𝜙) = (45∘, 50∘) and (65∘, 80∘), SNR is set to 10 dB, and
the number of snapshots 𝐿 range is set from 100 to 600.
Monte-Carlo trials of 500 are used. The average RMSE of
azimuth and elevation angles estimation versus the number
of snapshots for the two sources is shown in Figures 7 and 8.
From these figures, we observe that RMSE of joint azimuth
and elevation angles for source 1 and source 2 decrease with
increasing number of snapshots. We can also clearly see
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Figure 8: RMSE of azimuth-elevation versus number of snapshots
at SNR = 10 dB for source 2 located at (65∘, 80∘) using proposed
method, novel L-shaped, and cumulant method.
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Figure 9: RMSE of azimuth-elevation versus number of antennas
at SNR = 6 dB for single source located at (65∘, 72∘) using proposed
method, novel L-shaped, and cumulant method.

that the proposed method has higher estimation accuracy
compared to the methods in [17, 30].

In the fourth experiment, the effect of the number of
antennas on the performance of the proposed method is
evaluated. We consider a single source located at (𝜃, 𝜙) =(65∘, 72∘), SNR set to 6 dB, and the number of snapshots set
to 300.Monte-Carlo trials of 400 are used.The average RMSE
of azimuth and elevation angles estimation versus the number
of antennas is shown in Figure 9. From the figure, we observe
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that RMSE of joint azimuth and elevation angles decrease
with increasing number of antennas. We can also clearly see
that the proposed method has better performance compared
to the methods in [17, 30].

5. Conclusions

We have proposed a new method for 2D DOA azimuth
and elevation angles estimation using L-shaped array. The
proposed method has lower complexity and better perfor-
mance compared with existing methods since constructed
data matrices from cross-correlation are almost free of noise.
PARAFAC model is derived for automatic pair matching of
azimuth and elevation angles for multiple incident sources.
In addition, the proposed method does not require spectral
peak searching.
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