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A two-stage design approach is proposed to address the sparse antenna array design for multiple-input multiple-output radar. In
the first stage, the cyclic algorithm (CA) is used to establish a covariance matrix that satisfies the beam pattern approximation
for a full array. In the second stage, a sparse antenna array with a beam pattern is designed to approximate the desired beam
pattern. This paper focuses on the second stage. The optimization problem for the sparse antenna array design aimed at beam
pattern synthesis is formulated, where the peak side lobe (PSL) is weakly constrained by the mean squared error. To solve this
optimization problem, the differential evolution (DE) algorithm with multistrategy is introduced and PSL suppression is treated
as an inequality constraint. However, in doing so, a new multiobjective optimization problem is created. To address this new
problem, amultiobjective differential evolution algorithmbased on Pareto technique is proposed. Numerical examples are provided
to demonstrate the advantages of the proposed approach over state-of-the-art methods, including DE and genetic algorithm.

1. Introduction

By exploiting the diverse waveform from its multiple anten-
nas, multiple-inputmultiple-output (MIMO) radar transmits
a probing waveform that can be chosen at will to maximize
the power around areas of interest or approximate a desired
beam pattern [1]. The transmitting beam pattern design
for MIMO radar has become a popular research topic in
recent years [2, 3]. This topic has been extensively investi-
gated, and numerical algorithms that involve synthesizing the
covariance matrix and waveform design have been proposed.
One popular and very effective approach for processing a
desired beam pattern is based on the convex optimization
(CVX) principle and solved by the semidefinite quadratic
programming (SQP) question [3]. Another approach is the
cyclic algorithm (CA), which optimallymatches the designed
and desired beam patterns via iteration [4].

Sparse antenna array has several advantages in the high-
resolution thinned configurations for phased array radar [5–
7]. MIMO radar also uses such array to obtain additional
degrees of freedom [4, 8–10]. However, because of array thin-
ning, the side lobe level increases and subsequently leads to

the grating lobe. In this case, maintaining the approximation
performance and preventing the grating lobe present two
major challenges for a MIMO radar with sparse antenna
arrays. Roberts applied CA in the sparse antenna array design
for a MIMO radar to approximate a desired beam pattern
[4]. However, unlike other beam pattern synthesis methods,
this algorithm only synthesizes the beam pattern for a single
target location [2, 3]. For wide beam pattern synthesis, an
integrated optimization of beam pattern synthesis and sparse
antenna array design called CVXGA is proposed in our
previous work [10]. This method uses SQP for wide beam
pattern synthesis and applies the genetic algorithm (GA)
for the sparse array design. However, given the convergence
rate of GA and the high peak side lobe (PSL) of its results,
CVXGA is not desirable for the sparse antenna array design of
MIMO radar. Compared with GA, the differential evolution
(DE) algorithm fastens the convergence rate and solves the
optimization problems using several techniques, including
mutation, selection, and crossover. DE has been utilized in
the antenna array synthesis of phased array radar but is
yet to be applied for MIMO radar [11–13]. To prevent high
PSL, the sparse antenna array design for MIMO radar must

Hindawi Publishing Corporation
International Journal of Antennas and Propagation
Volume 2016, Article ID 1747843, 12 pages
http://dx.doi.org/10.1155/2016/1747843



2 International Journal of Antennas and Propagation

be formulated as a constrained optimization problem where
PSL suppression is considered an inequality constraint. Both
GA and DE are single-objective evolutionary algorithms that
cannot synthesize beam pattern and suppress PSL simulta-
neously. To solve this constrained optimization problem, a
penalty method is applied by using a fitness function that
is modified based on the penalty function [14]. However,
most penalty methods require highly complex dependent
parameters that result in a performance decline.

According to [15], the optimization problem with
inequality constraint can be transformed into a multiob-
jective optimization problem that can be solved using the
multiobjective differential evolution (MODE) algorithm.
This work attempts to optimize the sparse antenna array
design of MIMO radar based on this idea. Specifically, DE
is applied to the sparse array design aimed at beam pattern
synthesis, while MODE based on Pareto optimal solutions
is applied to the sparse array design aimed at both beam
pattern synthesis and PSL suppression. The performances of
GA in [10], DE, andMODE are then compared via numerical
simulations.

The rest of this paper is organized as follows. In Section 2,
the signal model for beam pattern synthesis and the sparse
antenna array design problem are introduced. In Section 3,
two evolution algorithms, namely, DE and MODE, are
presented to solve the optimization problem of the sparse
antenna array design. Numerical simulations are presented
in Section 4, while the conclusions are presented in Section 5.

2. Signal Model and Problem Statement

Consider a uniform linear array (ULA) composed of 𝑁
antennas with a length of (𝑁 − 1) × 𝑑, where 𝑑 refers to
the separation between transmitting antennas. The steering
vector is expressed as follows:

a (𝜃) = [1, 𝑒𝑗2𝜋𝑑 sin(𝜃)/𝜆, . . . , 𝑒𝑗2𝜋𝑑(𝑁−1) sin(𝜃)/𝜆]𝑇 , (1)

where𝜆 denotes thewavelength of the narrowbandwaveform
and 𝑑 = 𝜆/2. Let the angular scanning grid be spanned by
{𝜃𝑘}𝐾𝑘=1; then the set of steering vectors can be collected into
the steering matrix A ∈ C𝑁×𝐾

A = [a (𝜃1) a (𝜃2) ⋅ ⋅ ⋅ a (𝜃𝐾)] . (2)

2.1. Beam Pattern Synthesis. Let k(𝑙) ∈ C𝑁×1 denote the
𝑙th transmitted signal pulse. The covariance matrix of the
transmitted waveforms is computed as follows:

R = 𝐸 {k (𝑙) k𝐻 (𝑙)} , (3)

where R ∈ C𝑁×𝑁 and 𝐸{⋅} denotes the expectation operator.
The transmitting beampattern at 𝜃𝑘 can be defined as follows:

𝑝 (𝜃𝑘) = a𝐻 (𝜃𝑘)Ra (𝜃𝑘) . (4)

Therefore, the transmitting beam pattern for each angle
{𝜃𝑘}𝐾𝑘−1 can be collected in its vector form as follows:

p = [𝑝 (𝜃1) ⋅ ⋅ ⋅ 𝑝 (𝜃𝑘)]𝑇 = diag [A𝐻RA] , (5)

where diag(⋅) is a diagonal matrix that is formed from the
elements of some square matrix. Similar to (5), a desired
transmitting beam pattern is defined as follows:

p𝑑 = [𝜙 (𝜃1) , . . . , 𝜙 (𝜃𝐾)]𝑇 , (6)

where 𝜙(𝜃) is the desired beam pattern at angle 𝜃. The
optimization problem of beam pattern approximation can be
formulated as follows:

min
R

󵄩󵄩󵄩󵄩󵄩diag (A𝐻RA) − p𝑑
󵄩󵄩󵄩󵄩󵄩
2 ,

s.t. a𝐻 (𝜃𝑐)Ra (𝜃𝑐) = 1
R ≥ 0,

(7)

where ‖ ⋅ ‖ refers to the Frobenius norm operation for the
matrix. As shown in (7), beam pattern synthesis aims to
design a matching beam pattern to approximate the desired
transmitting beam pattern in the whole area. The mean
squared error (MSE) between the designed and desired beam
pattern must be maintained as low as possible to evaluate the
approximation performance. The MSE can be computed as
follows:

MSE = 󵄩󵄩󵄩󵄩p − p𝑑
󵄩󵄩󵄩󵄩2 . (8)

According to [4, 16], the optimum R for beam pattern
synthesis can be obtained using SQP and CA.

2.2. Sparse Antenna Array Design for MIMO Radar. For the
sparse antenna array design, only the 𝑀 < 𝑁 antennas
are assumed to be available in 𝑁 candidate positions of the
transmitter. The pattern p can be defined as follows:

p = a𝐻𝑆 (𝜃𝑘)Ra𝑆 (𝜃𝑘) , (9)

where a𝑆 ∈ C𝑁×1 denotes the steering vector of the sparse
antenna array. The main purpose of the sparse antenna array
design is to determine a set of 𝑀 antenna positions in the
𝑁 candidate position. Following [4], the steering vector of
sparse array a𝑆 can be treated as a vector that contains only
the element of a that corresponds to the chosen locations
of 𝑁 antennas. The vector p𝑆 is introduced to represent the
antenna position as a set of binary codes containing the values
of 0 and 1, where 1 indicates that the antenna element with an
index corresponding to the location of 1 in p𝑆 belongs to the
sparse antenna array while 0 indicates otherwise. The vector
a𝑆 is obtained as follows based on the relationship between a
and p𝑆:

a𝑆 = p𝑆 ⊙ a, (10)

where ⊙ denotes the Hadamard elementwise product. The
steering matrix of the sparse antenna array can be expressed
as follows:

A𝑆 = [a𝑆 (𝜃1) a𝑆 (𝜃2) ⋅ ⋅ ⋅ a𝑆 (𝜃𝐾)] . (11)

2.3. Problem Statement of the Sparse Antenna Array Design
for MIMO Radar. For the beam pattern synthesis [16],
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Figure 1: Results of the sparse antenna array using CA+CA,𝑀 = 15, and𝑁 = 20.The desired beam pattern is represented by the blue dashed
line.

directional wide beam pattern and multimain lobes with a
highly complex covariancematrixR are adopted for aMIMO
radar. As shown in [4], the CA is applied repeatedly to solve
the optimization problem in the two-stage design. To prevent
confusion, this approach is represented as CA+CA in the rest
of this paper. In the first stage, a weighted matrix W that
satisfies the beam pattern approximation for a full array is
synthesized. Equation (7) can be decomposed as follows:

min
W

󵄩󵄩󵄩󵄩󵄩W𝐻A − U󵄩󵄩󵄩󵄩󵄩
s.t. diag (U𝐻U) = p𝑑,

W ≥ 0,

(12)

where W = R1/2. In the second stage, using the W and
candidate positions provided by a full array, the element
positions of the sparse antenna array are optimized to
maintain the beam pattern approximation performance as
much as possible. The sparse antenna array design can be
expressed with givenW as follows:

min
p𝑆

󵄩󵄩󵄩󵄩󵄩W𝐻A𝑆 − U󵄩󵄩󵄩󵄩󵄩
s.t. diag (U𝐻U) = pd

a𝑆 = p𝑆 ⊙ a.

(13)

Given its initial position, p𝑆 is optimized to match a
desired transmitting beam pattern via random perturbation.
CA is applied for the sparse antenna array design aimed
at beam pattern synthesis, and the results are presented in
Figure 1.

The simulation results show that CA+CA can generate
a sparse antenna array with a matching beam pattern. This

array can be regarded as a𝑁 − 1 dimensional ULA with one
antenna element located at the maximum aperture as shown
in Figure 1(a). Therefore, despite its excellent approximation
performance, CA+CA is unsuitable for the sparse antenna
array design for MIMO radar.

3. Sparse Antenna Array Design
for MIMO Radar

Anew formula for the sparse antenna array design forMIMO
radar aimed at beam pattern synthesis is proposed. Given
its waveform diversity, the optimization problem for beam
pattern synthesis cannot be solved in the process of sparse
antenna array design, which is unlike the phased array radar.
Following [4, 10], a two-stage design approach is adopted for
the sparse antenna array design for MIMO radar. In the first
stage, the covariance matrix R is synthesized to generate a
matching beam pattern for a full array with an 𝑁 antenna
element. As mentioned above, CA and SQP are two highly
effective algorithms, but a different algorithm for sparse
antenna array design must be selected. In the second stage,
the element positions of the full array are treated as candidate
positions that are chosen by a sparse antenna array with 𝑀
antenna elements. Accordingly, this work only focuses on the
latter stage.

To control the designed beam pattern, the optimization
problem for a sparse antenna array design aimed at beam
pattern synthesis can be written as follows:

min
𝑥

𝑓 (𝑥)
s.t. p𝑆 (1) = 1,

p𝑆 (𝑁) = 1,
(14)
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where p𝑆(1) = 1 and p𝑆(𝑁) = 1 constrain the same antenna
aperture as the full array in the first stage, while the objective
function 𝑓(𝑥) is expressed as follows:

𝑓 (𝑥) = 1
𝐾
𝐾

∑
𝑘=1

[𝜙 (𝜃𝑘) − diag (a𝐻𝑆 (𝜃𝑘)Ra𝑆 (𝜃𝑘))]
2 , (15)

where R is obtained from the first stage and 𝑓(𝑥) represents
the MSE between the beam pattern of a sparse antenna
array and the desired beam pattern. The above function
weakly constrains the PSL in the whole area. To avoid
the local optimum as shown in Figure 1 and to achieve
faster convergence with respect to GA as shown in [10],
DE with multistrategy is introduced to solve this single-
objective optimization problem and 𝑓(𝑥) is treated as the
fitness function. The goal of the optimization is to minimize
the fitness value or 𝑓(𝑥) by finding the optimum element
positions.

3.1. Sparse Antenna Array Using DE with Multistrategy. DE
is a powerful stochastic algorithm that evolves a population
of 𝑁𝑃- and 𝑁-dimensional individuals toward the global
optimum [13, 17]. Previous studies have mostly synthesized
a sparse antenna array for a phased array radar [10, 13, 14].
This work promotes the application of DE in MIMO radar
and exploits its constraint optimization ability.

Initialization. Given that the antenna element is placed at
both ends of the array, only 𝐷 = 𝑁 − 2 variables in the
individual need to be evolved. Assuming that Max Iteration
is the maximum iteration number of the evolution process,
the initial value of the 𝑗 parameter in the 𝑖th population at
generation 𝐺 can be written as follows:

𝑥𝑗𝑖,𝐺 = rand (0, 1) ⋅ (𝑥𝑗max − 𝑥𝑗min) + 𝑥𝑗min,
𝑖 = 1, . . . , 𝑁𝑃, 𝑗 = 1, . . . , 𝐷,

(16)

where 𝐷 = 𝑁 − 2, 𝐺 ∈ [1, . . . ,Max Iteration], and rand(0, 1)
denotes a uniformly distributed random variable within the
range [0, 1] and𝑥𝑗max and𝑥𝑗min are the lower andupper bounds
of the 𝑗th variable parameter, respectively. The individual in
the 𝑖th population at generation 𝐺 can be expressed in its
vector form as follows:

x𝑖,𝐺 = [𝑥1𝑖,𝐺, 𝑥2𝑖,𝐺, . . . , 𝑥𝐷𝑖,𝐺] ,
𝑖 = 1, . . . , 𝑁𝑃, 𝑗 = 1, . . . , 𝐷.

(17)

Coding. To locate the array element in p𝑆, the real variable
must be converted into a binary coded variable. Therefore,
the initial value of the antenna position is set as the partition
points of a specified antenna aperture. The random pertur-
bation is dominated by x𝑖,𝐺, which is binary coded in p𝑆 as
follows:

p𝑆 (𝑛) = binary sort (x (𝑛))𝑇 , 𝑛 = 2, . . . , 𝑁 − 1, (18)

where binary sort(⋅) denotes the real variables that are sorted
by size as integer variables converted into binary codes. In this

case, p𝑆(1) is equal to 1, p𝑆(𝑁) is equal to 1, and p𝑆(2 : 𝑁 − 1)
is presented by (18). The sum of 1 in the vector p𝑆 is equal to𝑀 for the predefined number antenna elements of a sparse
antenna array.

Mutation. The mutation operator produces a mutant vector
u𝑖,𝐺 = (𝑢1𝑖,𝐺, 𝑢2𝑖,𝐺, . . . , 𝑢𝐷𝑖,𝐺) with respect to each individual x𝑖,𝐺
at the generation 𝐺. The following mutation strategies are
often applied in traditional DE [18]:

(1) DE/rand/1.bin: u𝑖,𝐺 = x𝑟1,𝐺 + 𝐹 ⋅ (x𝑟2,𝐺 − x𝑟3,𝐺),
(2) DE/best/1.bin: u𝑖,𝐺 = xBest,𝐺 + 𝐹 ⋅ (x𝑟1,𝐺 − x𝑟2,𝐺),
(3) DE/rand-to-best/1: u𝑖,𝐺 = x𝑖,𝐺 +𝐹 ⋅ (xBest,𝐺 − x𝑖,𝐺) + 𝐹 ⋅(x𝑟1,𝐺 − x𝑟2,𝐺),
(4) DE/best/2: u𝑖,𝐺 = xBest,𝐺+𝐹 ⋅ (x𝑟1,𝐺−x𝑟2,𝐺)+𝐹 ⋅ (x3,𝐺−

x4,𝐺),
(5) DE/rand/2: u𝑖,𝐺 = x𝑟1,𝐺 +𝐹 ⋅ (x𝑟2,𝐺 − x𝑟3,𝐺) +𝐹 ⋅ (x4,𝐺 −

x5,𝐺),
where 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 ∈ [1,𝑁𝑃], 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑟4 ̸= 𝑟5 ̸= 𝑖,
and xBest,𝐺 is the individual with theminimumfitness value in
the population at generation 𝐺. The scaling factor 𝐹 ∈ [0, 2]
is constant.

Crossover. A trial vector is produced by vector x𝑖,𝐺 and
its corresponding mutant vector k𝑖,𝐺. The basic crossover
strategy is defined as follows:

V𝑗𝑖,𝐺 =
{
{
{
𝑢𝑗𝑖,𝐺 if rand (0, 1) ≤ CR or 𝑗 = 𝑗rand
𝑥𝑗𝑖,𝐺 otherwise.

(19)

The crossover factor CR is a user-specified constant that
satisfies CR ∈ [0, 1] and controls the fraction of parameter
values copied from the mutant vector.

Selection. The objective function value of each trial vector
𝑓(k𝑖,𝐺) is compared with that of its corresponding target
vector 𝑓(x𝑖,𝐺). The vector with the smaller fitness value will
be retained in the next generation. The operation can be
expressed as follows:

k𝑖,𝐺+1 =
{
{
{
k𝑖,𝐺 if 𝑓 (k𝑖,𝐺) < 𝑓 (x𝑖,𝐺)
x𝑖,𝐺 otherwise. (20)

Afterward,we calculate the fitness function and repeat the
selection, crossover, and mutation processes per generation
until a specific stopping criterion is satisfied. Algorithm 1
presents the DE algorithm implementation steps in detail.

3.2. Sparse Antenna Array Design Using MODE. To obtain
the desired PSL and improve the robustness of DE for the
sparse antenna array design, PSL suppression is regarded
as an inequality constraint in the optimization problem as
defined in (14) [18]. PSL level (PSLL) indicates the amplitude
of the highest PSL outside of the desired beam pattern [11, 19].
The optimization problem for the sparse antenna array design
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Input: R, 𝜙(𝜃),𝑁𝑃,𝑀,𝑁, Max Iteration.
Step 1. Initialization: x𝑖,𝐺 is generated by (17);
Step 2. Coding: p𝑆 is generated by (18) for each individual in𝑁𝑃 population;
Step 3. Calculate fitness value with respect to 𝑓(𝑥);
For G← 1 to Max Iteration do

Step 4. Mutation (mutation strategies (1–5));
Step 5. Crossover;
Step 6. Selection;

end
Step 7. Best individual reservation. Save the best fitness value and corresponding
individuals, the best individual is denoted by p𝑆,Best.
Output: p𝑆,Best → A𝑆 → p = A𝐻𝑆 RA𝑆.

Algorithm 1: Sparse antenna array design using DE algorithm with multistrategy.

aimed at both beam pattern synthesis and PSL suppression
can be formulated as follows:

min
𝑥

𝑓 (𝑥)
s.t. p𝑆 (1) = 1,

p𝑆 (𝑁) = 1
PSLL − 𝛿 < 0,

(21)

where 𝛿 is the tolerance value for PSLLs. Following the idea
of multiobjective optimization, the inequality constraint can
be regarded as another objective function in the evolution
process [20]. This constraint can be optimized in the parallel
implementation as follows:

min
𝑥

(𝑓1 (𝑥) , 𝑓2 (𝑥))
s.t. p𝑆 (1) = 1,

p𝑆 (𝑁) = 1,
(22)

where 𝑓1(x) is defined in (15) and 𝑓2(x) = PSLL. This
optimization problem can be easily solved using MODE,
which is designed to handle a multiple set of solutions in a
single iteration.

In the multiobjective domain, the evolutionary algorithm
aims to identify a set of Pareto optimal solutions to operate
the selection of the best individual for mutation [20]. At the
end of the evolutionary search, the nondominated solution
archive passes through a Pareto dominance to yield the global
near-Pareto optimal frontier.

Definition 1 (opposition-based learning). Opposition-based
learning is used to generate opposite solutions in the ini-
tialization to increase the chances of starting with the fittest
solution [21], which can be expressed as follows:

𝑦𝑗𝑖 = (𝑥𝑗max + 𝑥𝑗min) − 𝑥𝑗𝑖 ,
𝑖 = 1, . . . , 𝑁𝑃, 𝑗 = 1, . . . , 𝐷.

(23)

Definition 2 (Pareto dominance). A solution 𝑥1 is said to
dominate another solution𝑥2 under the following conditions:

(1) ∀𝑚 ∈ (1, . . . ,𝑀obj) : 𝑓𝑚(𝑥1) ≤ 𝑓𝑚(𝑥2),
(2) ∃𝑚 ∈ (1, . . . ,𝑀obj) : 𝑓𝑚(𝑥1) < 𝑓𝑚(𝑥2),

where 𝑀obj is the number of objective functions and 𝑓𝑚(⋅)
is the corresponding fitness function. Any individual that is
not dominated by any other member is considered nondom-
inated.

Definition 3 (fast nondominated sorting). Assume a Pareto
optimal set denoted by 𝑆. 𝑛𝑝 denotes the number of domi-
nated solutions, while 𝑆𝑝 is a set of solutions dominated by
the solution 𝑝 [21].

For every solution 𝑝 in 𝑆, both 𝑛𝑝 and 𝑆𝑝 are calculated.
All solutions in the first nondominated front 𝐹1 clear their
domination count to zero. Afterward, when 𝑛𝑝 = 0, each
solution 𝑝 visits each member 𝑞 of its set 𝑆𝑝 and 𝑛𝑝 =
𝑛𝑝 − 1. Any member 𝑞 is saved in a separate list 𝑃. These
members belong to the second nondominated front 𝐹2. Each
member of𝑃 and the third front𝐹3 are identified.This process
continues until all fronts have been identified.

In our approach, 𝑀obj = 2, and fast nondominated
sorting is applied to guarantee that the population maintains
its original size and that the nondominated solutions in
the population are identified at each generation of the
evolutionary process. The nondominated solutions are saved
in the advanced population that corresponds to the feasible
solution [22]. Otherwise, the infeasible solution is reserved
in the current population. Some steps in MODE are applied
similarly as those in DE, including coding and crossover.
Therefore, the steps of MODE for the sparse antenna array
design are presented in Algorithm 2.

4. Numerical Example

Several numerical examples are provided to validate the
effectiveness of the proposedmethod. For each example,𝑀 =
15 antenna elements of 𝑁 = 20 candidate positions (with
a total aperture length of 20 × 𝑑 = 10 𝜆 and sparse rate of
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Input: R, 𝜙(𝜃),𝑁𝑃,𝑀,𝑁, Max Iteration.
Step 1. Initialization: Generate𝑁𝑃 random solutions using (16), and generate𝑁𝑃 opposite solutions using opposition-based
learning.
Step 2. Coding: p𝑆 is generated using (18) for each solutions in these 2𝑁𝑃 solutions;
Step 3. Calculate fitness value: 𝑓1(𝑥) is defined by (15), 𝑓2(𝑥) = PSLL(𝑥), evaluate the fitness value at these 2𝑁𝑃 solutions, select the
𝑁𝑃 fittest solution via fast non-dominated sorting,
𝐹𝐸𝑆 = 𝑁𝑃, and store the solutions in the current population pop 𝑐.
For 𝐹𝐸𝑆 ← 1 to Max Iteration do

For 𝑖 ← 1 to𝑁𝑃 do
Step 4. Mutation: Randomly select three distinct individuals, x𝑟1, x𝑟2, and x𝑟3,
who are all different from the target individual. x𝑡𝑏,𝐺 denotes the best
individuals among the three which is mean that the one has best
fitness function value. Generate a perturbed individual u𝑖 as follows:

u𝑖,𝐺+1 = x𝑡𝑏,𝐺 + 𝐹 (x𝑟2,𝐺 + x𝑟3,𝐺)
Step 5. Crossover: 𝐹𝐸𝑆 = 𝐹𝐸𝑆 + 1;
Step 6. Pareto dominance

if (k𝑖 dominates x𝑖)
replace x𝑖 by k𝑖 in the current population pop 𝑐, and then add x𝑖 to the
advanced population pop 𝑎.

else
add k𝑖 to the advanced population pop 𝑎.

End
End
Step 7. Select the𝑁𝑃 fittest solutions via fast non-dominated sorting and save
them in the pop 𝑐; p𝑆,Best denotes the best individual with respect to 𝑓1(𝑥).;

End
Output: p𝑆,Best → A𝑆 → p = A𝐻𝑆 RA𝑆.

Algorithm 2: Sparse antenna array design using MODE.

75%) are used. The entire angle area is (−90∘, 90∘) with a 0.1∘
angular spacing (in this case, 𝐾 = 1801). To highlight the
approximation performance, the central angle of the desired
beam pattern is expressed as 𝜃𝑐 = [−40∘ 0∘ 40∘], and the
beam width is expressed as Δ = 10∘

𝜙 (𝜃) = {{
{
1, 𝜃 ∈ [𝜃𝑐 − Δ

2 , 𝜃𝑐 +
Δ
2 ]

0, otherwise.
(24)

For clarity, the chosen antennas are shown along with
the ULA (𝑁 = 20). The parameters are defined and applied
uniformly as follows:

(1) population size:𝑁𝑃 = 100,
(2) initial range: 𝑥max = 1, 𝑥min = 0,
(3) mutation probability: 𝐹 = 0.8,
(4) crossover probability: CR = 0.3,
(5) maximum number of iterations: Max Iteration =

200.
4.1. Example 1: Algorithm Selection for Beam Pattern Synthesis
in the First Stage. In this example, two effective algorithms
(CVX and CA) for evaluating beam pattern approximation
performance are compared, and the suitable algorithm is
selected to establish the covariance matrixR in the first stage.
For this purpose, a sparse antenna array is generated in the

second stage by applying GA under the simulation condition.
This approach is represented as SQP+GA in the remaining
parts of this paper.

As described in [10], selected R is modeled as an SQP
and solved by a SeDuMi solver [23]. GA is then applied to
the sparse antenna array design. We present the results along
with the ULA (𝑁 = 15) to show that the additional degrees
of freedom provided by a sparse antenna array can indeed
benefit a MIMO radar.

Figure 2 shows the sparse antenna array and transmitting
beam pattern that are obtained using GA with R provided by
SQP. The transmitting beam pattern obtained using GA has
a lower approximation performance than that obtained using
CA (Figure 1) for a full array.Therefore, a poor approximation
performance for the sparse antenna array is obtained, and
the grating lobes are formed outside of the desired beam
pattern. In other words, SQP+GA cannot provide a sparse
antenna array with a sufficient approximate beam pattern
for MIMO radar because its high PSLLs will result in beam
pattern degradation.

CA is then used to provide the optimum covariance
matrix R for GA (CA+GA). Figure 3 presents the results.

Figure 3 shows that the transmitting beam pattern
obtained using CA+GA with 𝑀 = 15 has a much bet-
ter approximation performance than that obtained using
SQP+GA because the CA offers advantages in high-
resolution beam pattern synthesis based on alternating pro-
jection. To analyze the performance of these two algorithms,
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Figure 2: Results of SQP+GA in [8, 9].
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Figure 3: Results of CA+GA.

we compare MSE with PSLL in Table 1 and then list the
iterations needed for the convergence and runtime for GA.

Table 1 shows that CA+GA outperforms SQP+GA in
both MSE and PSLL. Therefore, CA is used to establish the
covariance matrix R in the following simulations. GA still
converges to the result after more than 100 iterations.

These results also prove that the beam pattern of the
sparse antenna array improves the approximation perfor-
mance of ULA with the same array elements (ULA with
𝑁 = 15) by expanding the antenna aperture, but such
performance remains inferior to that of ULA with the same
antenna aperture (ULA with𝑁 = 20) because of the missing
antenna element.

4.2. Example 2: Sparse Antenna Array Design Using DE in
the Second Stage. In this example, DE with multistrategy
is applied to optimize the sparse antenna array for MIMO
radar. CA is reapplied to establish the optimum covariance
matrix R, and the evolution process continues until the
maximum number of iterations for testing convergence has
been reached.

Figures 4–8 show the chosen antenna positions and the
designed beam pattern. The sparse antenna array obtained
using DE with multistrategy can maintain the beam pattern
approximation performance. However, the beam pattern in
the area of the main lobes and the PSLLs outside of the
beam pattern are balanced. The PSLLs increase as the match
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Table 1: Comparison of SQP and CA.

Algorithm Performance
MSE PSLLs Iterations Runtime (min/s)

CA for ULA with𝑁 = 15 0.1355 0.0405 / /
CA for ULA with𝑁 = 20 0.0831 0.0232 / /
SQP for ULA with𝑁 = 15 0.2617 0.1863 / /
SQP for ULA with𝑁 = 20 0.1927 0.1803 / /
SQP+GA 0.4867 0.4326 98 7/04
CA+GA 0.0920 0.0245 102 7/08
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Figure 4: Results of DE with mutation strategy 1.
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Figure 5: Results of DE with mutation strategy 2.
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Figure 6: Results of DE with mutation strategy 3.
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Figure 7: Results of DE with mutation strategy 4.

between the designed and desired beam patterns in the area
of the main lobes reaches perfection. The restriction for
the transmitting beam pattern here is to maintain the best
approximation in the whole area while keeping the side lobe
level as flat as possible as shown in Figures 5, 6, and 8. The
violated beam patterns can be found in Figures 4 and 7.

To investigate the capability and efficiency of DE algo-
rithms with different mutation strategies for sparse antenna
array design, we compare the five strategies in terms of their

MSE, PSLL, iterations needed for convergence, and runtime
in Table 2.

Except for the DE with strategy 1, all of the above
algorithms can converge to the final result (MSE = 0.0920)
after no more than 10 iterations. Although all of these
algorithms obtain nearly similar MSE values, their PSLLs
greatly differ. To verify their reliability, these algorithms are
tested in 10 independent runs. Table 3 presents the PSLLs of
each algorithm in 10 runs.
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Figure 8: Results of DE with mutation strategy 5.

Table 2: Comparison of different strategies.

Algorithm Performance
MSE PSLLs Iterations Runtime (min/s)

DE with strategy 1 0.0930 0.2291 7 6/59
DE with strategy 2 0.0920 0.0296 6 6/50
DE with strategy 3 0.0920 0.0719 7 6/52
DE with strategy 4 0.0920 0.1196 8 6/54
DE with strategy 5 0.0920 0.0417 10 6/51

Table 3: PSLLs in 10 runs.

Algorithm Index of runs
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

DE with strategy 1 0.228 0.063 0.165 0.095 0.048 0.105 0.024 0.323 0.166 0.089
DE with strategy 2 0.021 0.112 0.133 0.051 0.014 0.078 0.051 0.058 0.206 0.118
DE with strategy 3 0.092 0.053 0.027 0.065 0.037 0.058 0.088 0.029 0.0815 0.125
DE with strategy 4 0.120 0.143 0.047 0.084 0.080 0.085 0.111 0.313 0.109 0.076
DE with strategy 5 0.042 0.063 0.039 0.161 0.322 0.142 0.097 0.072 0.058 0.067

The PSLLs are unstable, uncertain, and random in the
repeated operation, which suggests that changing mutation
strategy cannot keep PSLL as a restriction because the PSLLs
of the sparse antenna array design must not be directly
constrained. Moreover, the weak constraint of MSE cannot
guarantee the suppression of PSLLs at a specific region.

4.3. Example 3: Sparse Antenna Array Design Using MODE in
the Second Stage. As mentioned in Section 3.2, the MODE
algorithm is applied for sparse antenna array design. The
results are shown in Figure 9.

The red asterisks in Figure 9 represent the infeasible
solution set, while the black diamonds represent the feasible

solution set. To achieve the best approximation performance,
we choose the minimum value of MSE (MSE = 0.0920) in
the feasible solution set. The PSLLs obtained using MODE
outperform those obtained using DE or GA, while the best
matching performance is maintained with respect to the
lowest MSE values. Figure 10 shows the corresponding sparse
antenna array and beam pattern. Obviously, we can see that
this beam pattern is satisfied with our restriction and reflects
the performance in Figure 9. Ten independent runs are also
conducted in this example.

Table 4 summarizes the results of MODE after 10 runs.
The highest PSLL is below 0.02, while all PSLLs slightly
fluctuate around 0.0085, which suggests that the PSLLs
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Table 4: Performance of MODE in 10 runs.

Algorithm: MODE Index of runs
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

MSE 0.092 0.092 0.092 0.0928 0.092 0.092 0.092 0.092 0.0920 0.0920
PSLLs 0.0085 0.0085 0.0108 0.0097 0.0085 0.0085 0.0085 0.0085 0.0085 0.0108
Iterations 27 27 27 27 27 27 28 25 28 26
Runtime 6/00 6/05 7/57 6/20 6/25 7/23 6/12 7/00 6/37 6/28
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Figure 9: Pareto fronts produced by MODE.

0 2 4 6 8 10 12 14 16 18 20

Ty
pe

s o
f a

nt
en

na

Sparse
ULA

Position (𝜆/2)

(a) Position of antenna

Be
am

 p
at

te
rn

Sparse
ULA
Desired

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
−80 −60 −40 −20 0 20 40 60 80

Degrees (𝜃)

(b) Transmitting beam pattern

Figure 10: Results of MODE.

obtained using MODE are more stable than those obtained
using DE. MODE has almost the same running time as DE
even though the former adds a constraint to the optimization
problem.Moreover,MODEhas a simpler algorithm structure
than DE.These arguments justify our effort to prevent PSLLs.

5. Conclusions

A novel two-stage design approach for the sparse antenna
array design of MIMO radar is proposed in this work. CA
is applied in the first stage, and two evolution algorithms for
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sparse antenna arrays with different purposes are proposed in
the second stage. DE is introduced to design a sparse antenna
array aimed at beam pattern synthesis. DE can generate a
sparse antenna array for MIMO radar that satisfies beam
pattern approximation without producing grating lobes. As
a single-objective optimization algorithm, DE faces some
challenges in controlling PSLLs. To overcome this drawback,
MODE based on Pareto technique is proposed, and PSLL
suppression is presented as another objective function to be
optimized. The simulation results reveal that MODE outper-
forms both DE and GA in terms of PSLL while maintaining
the same approximation performance and almost the same
runtime.
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