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A highly efficient and robust scheme is proposed for analyzing electromagnetic scattering from electrically large arbitrary shaped
conductors in a half space.This scheme is based on the electric field integral equation (EFIE) with a half-space Green’s function.The
precorrected fast Fourier transform (p-FFT) is first extended to a half space for general three-dimensional scattering problems. A
novel enhanced dual threshold incomplete LU factorization (ILUT) is then constructed as an effective preconditioner to improve the
convergence of the half-space EFIE. Inspired by the idea of the improved electric field integral operator (IEFIO), the geometrical-
optics current/principle value term of the magnetic field integral equation is used as a physical perturbation to stabilize the
traditional ILUT perconditioning matrix. The high accuracy of EFIE is maintained, yet good calculating efficiency comparable
to the combined field integral equation (CFIE) can be achieved. Furthermore, this approach can be applied to arbitrary geometrical
structures including open surfaces and requires no extra types of Sommerfeld integrals needed in the half-space CFIE. Numerical
examples are presented to demonstrate the high performance of the proposed solver among several other approaches in typical
half-space problems.

1. Introduction

The efficient analysis of electromagnetic scattering by elec-
trically large and arbitrary shaped perfect electrically con-
ducting (PEC) objects in a half space plays an important role
in lots of applications. One of the most popular approaches
is to formulate the surface integral equation (SIE) with the
kernel of a half-spaceGreen’s function tomake the unknowns
only relate to the boundary of the object [1]. The effect of
the inhomogeneous background is therefore included in the
dyadic half-space Green’s function, which is expressed in
terms of the Sommerfeld integrals (SIs) [1–3].The SIE is then
converted into a matrix equation by the method of moments
(MoM) and solved algebraically.

Electric field integral equation (EFIE) is commonly ap-
plied due to its great accuracy and versatility [2].However, the
conditioning of the matrix that resulted from the discretiza-
tion of EFIE is usually poor, especially for electrically large or
denselymeshed geometries. To speed up the convergence, the

magnetic field integral equation (MFIE) is usually adopted
to form a well-conditioned combined field integral equation
(CFIE) in the free space, at the expense of losing some
accuracy and/or versatility (not easily applicable to open
or sharp surfaces for instance). In a half space, however,
this expense could be even higher due to the complication
of the half-space Green’s function; much more components
of the computationally expensive Sommerfeld integrals are
required in the magnetic-type integral operators [3, 4]. To
overcome this difficulty, a well-conditioned improved EFIE
(referred to as IEFIE) developed in [5] can be utilized and
extended to the half-space problems. In this method, the
geometrical-optics current of the MFIE operator is added
into the EFIE operator in an iterative way and thus totally
gets rid of the magnetic-type Green’s functions. However, the
performance of the IEFIE is not always stable.

On the other hand, SIE with global coupling leads to
a dense impedance matrix, which requires huge memory
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and CPU resources, scaling as 𝑂(𝑁2). For the solution of
such a dense matrix system, an integral equation based fast
algorithm is always required. A number of techniques for
free space can be extended to a half-space or layered-medium
background, after necessary manipulations or approxima-
tions [4, 6–8]. By splitting the dyadic Green’s function into
terms that are in either convolution or correlation forms, we
extend the p-FFT method [9] to model the electromagnetic
scattering of general three-dimensional (3D) objects in a half
space. Again, unlike the free space, the half-space CFIE with
the p-FFT implementation requiresmorememory to store FFT
propagation matrices, compared with its EFIE counterpart.

Considering all these factors, EFIE is definitely more
efficient to be implemented in the half space, if the condition-
ing issue can be addressed properly. There are many efforts
to improve the conditioning issue by employing precondi-
tioners. Simple preconditioners like the block-diagonal (BD)
preconditioners [10] or symmetric successive overrelaxation
(SSOR) preconditioner [11] are effective only when the
matrix has some degree of diagonal dominance. However,
they are ineffective for the EFIE matrix due to the weaker
diagonal dominance and indefiniteness of EFIE [12]. By
exploiting the self-regularizing property of the EFIE, the
Caldern multiplicative preconditioner (CMP) gives rise to
matrices that are well conditioned [2]. However, the BC basis
functions involved usually make the construction cost of
CMP higher than other candidates. Multiresolution (MR)
preconditioner [13] with the hierarchic MR basis allows a
simple diagonal preconditioner to improve the spectrum
of the MoM matrix and also allows the use of different
preconditioning schemes on different scales [12, 14]. Both
incomplete LU (ILU) preconditioners [15–20] and sparse
approximate inverse (SAI) preconditioners [21] have been
successfully used in nonsymmetric dense systems. Even
though ILU methods are inherently sequential while SAI
preconditioners are easy to implement parallel computing, it
is well known that SAI is not as successful as ILU with the
same amount of memory [22].

It is known that the dual threshold incomplete LU factor-
ization (ILUT(𝜏, 𝑝)) scheme proposed by Saad [16] is quite
powerful and robust in nonsymmetric dense systems. How-
ever, when the object is electrically large or densely meshed,
the factors 𝐿 and 𝑈 are often ill-conditioned due to the large
condition number of the original matrix system, resulting in
the ILUT solver to be unstable. Several techniques can help to
improve the quality of the preconditioner, such as reordering,
scaling, diagonal shifting, pivoting, and condition estimators
[17–20]. Unfortunately, none of them is stable or robust all
the way, since no physical information is carried in these
operations. For example, the shift is difficult to predict, and
the pivoting may completely destroy the symmetry of the
matrix system [18].

In this paper, we will construct a robust diagonal per-
turbed incomplete ILUT (DP-ILUT) preconditioner based
on a robust shifting formula for the efficient solution of
EFIE with a half-space kernel. The geometrical-optics cur-
rent/principle value term of the magnetic field integral
equation is implemented as a physical perturbation for
constructing a well-conditioned preconditioner matrix. This
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Figure 1: The geometry of a 3D PEC object above the half space.

method makes the LU factors more diagonally dominant,
which increases the robustness of LU decomposition. It
should be noted that a similar idea was proposed in the
ILU(0) for free-space problems [15]; however, we would like
to emphasize that the method benefits more when extended
to ILUT in a half-space problem. Numerical tests will be
presented to validate our method.

2. Background: Integral Equations and Fast
Iterative Solver

2.1. Integral Equations in Half-Space Problems. Consider a 3D
PEC object of arbitrary shape located above a lossy half space
as illustrated in Figure 1. Define 𝜖

𝑘
and 𝜇

𝑘
as the permittivity

and permeability of layer𝑚 (𝑚 = 0, 1), where possible loss is
included. By imposing the PEC boundary condition for the
electric field and magnetic field, the EFIE and MFIE can be
derived as

EFIE : n̂ × n̂ ×L
𝐸
(r, r󸀠) ⋅ J (r󸀠) = −n̂ × n̂ × Einc

,

MFIE : [−0.5 ⋅I + n̂ ×K
𝐻
(r, r󸀠)] ⋅ J (r󸀠)

= −n̂ ×Hinc
,

(1)

where I denotes the unit tensor or identity matrix, which
comes from the geometrical-optics current term of the MFIE
operator, n̂ stands for the outward pointing unit normal
vector, r is the observation point, and r󸀠 is the source point.
The operatorsL

𝐸
andK

𝐻
are defined as [23]

L
𝐸
(r, r󸀠)

= −𝑗𝜔𝜇
0
∫𝑑r󸀠 [G𝐴𝐽 (r, r󸀠) + ∇

𝑘
2

0

𝐺
𝑉𝐽
(r, r󸀠)] ,

K
𝐻
(r, r󸀠) = P.V. ∫ 𝑑r󸀠G𝐻𝐽 (r, r󸀠) ,

(2)

where P.V. stands for the Cauchy principal value integration
and

G𝐴𝐽 = x̂x̂G𝑎𝑗
𝑥𝑥
+ x̂ẑG𝑎𝑗

𝑥𝑧
+ ŷŷG𝑎𝑗

𝑦𝑦
+ ŷẑG𝑎𝑗

𝑦𝑧
+ ẑx̂G𝑎𝑗

𝑧𝑥

+ ẑŷG𝑎𝑗
𝑧𝑦
+ ẑẑG𝑎𝑗

𝑧𝑧
,

G𝐻𝐽 = ∇ × G𝐴𝐽,

(3)
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whereG𝐴𝐽,G𝐻𝐽, and𝐺𝑉𝐽 are the half-space dyadic and scalar
Green’s functions [24] and the vectors r = 𝜌𝜌̂ + 𝑧ẑ and
r󸀠 = 𝜌󸀠𝜌̂+𝑧󸀠ẑ denote field and source points in the cylindrical
system. The CFIE is then obtained by linearly combining
the EFIE and MFIE. In analogy with the CFIE, the IEFIE is
constructed by adding the residue term of MFIE to EFIE as
[5]

IEFIE : EFIE + 0.5𝛼𝜂
0
⋅I, (4)

where 𝛼 is the combination coefficient varying between 0 and
1 and 𝜂

0
is the wave impedance in free space.

By discretizing the surface of the PEC object into tri-
angular patches, the current density on the surface can
be expanded by using the RWG basis functions [25]. The
implementation of the standardMoM to the above equations
renders a matrix system of the following form:

Z ⋅ I = Vinc. (5)

The linear algebraic equation of IEFIE is then given in the
following iterative way:

ZIEFIE
⋅ I
𝑖+1

= (ZEFIE
+ 𝛼𝜂
0
ZIO

) ⋅ I
𝑖+1

≈ VEFIE
+ 𝛼𝜂
0
ZIO

⋅ I
𝑖
,

(6)

where

ZIO
𝑚𝑛

= ⟨𝑓
𝑚
(𝑟) , 𝑓
𝑛
(𝑟
󸀠
)⟩ = ∫𝑓

𝑚
(𝑟) ⋅ 𝑓

𝑛
(𝑟
󸀠
) 𝑑r󸀠. (7)

The integral is nonzero only when the supports of the test
function 𝑓

𝑚
(𝑟) and basis function 𝑓

𝑛
(𝑟
󸀠
) are overlapped.

Thus, the total element number of ZIO is no more than 5𝑁,
where 𝑁 is the total number of RWG basis functions. Due
to the introduction of the identity operator (IO) originated
from MFIE, the eigenvalues of the IEFIE system are shifted
away from the origin. Consequently, the condition number
of IEFIE is much lower than that of EFIE, making it well
conditioned [5].

2.2. The P-FFT Procedure for Half-Space Problems. In the
half-space problems, each component of dyadic Green’s
function (DGF) can be separated into the primary term
(direct interaction in a homogeneous environment) and
the secondary term (reflection and transmission due to the
interface) [23, 24]. As a result, the corresponding dyadic half-
space Green’s function can be termed as

G (
󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨 , 𝑧, 𝑧
󸀠
) = G (

󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨 , 𝑧 − 𝑧

󸀠
) + G (

󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨 , 𝑧 + 𝑧

󸀠
) , (8)

where |𝜌| is the horizontal distance between field and source
points. The primary term, which is a function of (𝑧 − 𝑧󸀠), is

G (
󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨 , 𝑧 − 𝑧

󸀠
) = (I + ∇∇

𝑘
2

0

)
𝑒
−𝑗𝑘0|r−r󸀠|

4𝜋
󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨

. (9)

The secondary term, a function of (𝑧 + 𝑧
󸀠
), unfortunately,

however, consists of many oscillatory and slowly conver-
gent Sommerfeld integrals [1]. In our implementation, even

though the singularity subtraction [26], the Weighted Aver-
ages Algorithm [27], and interpolation are used to accelerate
the evaluation of each Sommerfeld integral, it is still compu-
tationally expensive.

Similar to the classical p-FFT for structures in free space,
the p-FFT for half space introduces an auxiliary regular grid
that encloses the structure of interest.Thematrix-vectormul-
tiplication (MVM) Z ⋅ I is then split into two parts: the near-
field interactions (NFIs) ZFFI and far-field interactions (FFIs)
ZNFI. The latter are accelerated by FFTs, while the former
are a “precorrected” matrix which is calculated directly with
precorrections [9]:

Z ⋅ I ≈ ZNFI ⋅ I + ZFFT-FFI ⋅ I,

with ZFFT-FFI = Λ
†GgridΛ,

(10)

where Λ and Λ† represent the projection and interpolation
operators, respectively. The FFT procedure of the primary
term is the same as the classical one in free space, whereGgrid

is a three-level block-Toeplitz structure matrix G𝑇. For the
secondary term, however, Ggrid (denoted as G𝐻) has only
Hankel-two-level block-Toeplitz structure because the half-
spaceGreen’s functions are not translationally invariant in the
stratification direction [4]. Since each convolution/Hankel
form of DGF could be converted into Toeplitz one by using a
simple block antidiagonal permutation matrix P, GgridΛ can
still be efficiently multiplied with vector I using 3D FFTs.
Overall, we have

GgridΛI = IDFT [DFT (G𝑇) ⋅ DFT (ΛI)

+ DFT (G𝐻P) ⋅ DFT (P−1ΛI)] ,
(11)

where DFT is the discrete Fourier transform and IDFT is the
inverse transform. Therefore, the MVM of the whole system
can be accelerated using the common four-stage procedure of
p-FFT [9] in the iterative solvers.

After simplifying DGF in half space by recombining
the asymptotic terms, CFIE in the p-FFT implementation
for half space requires almost two times memory request
compared with EFIE. More importantly, CFIE also needs
much more time-consuming Sommerfeld integrals for the
G𝐻𝐽 evaluations in filling the impedancematrix. Considering
all these factors, EFIE is more efficient to be implemented, if
the conditioning issue can be addressed. In the next section,
we will propose an efficient preconditioner to improve the
convergence property of the EFIE in a half space.

3. Diagonal Perturbed ILUT Preconditioner

In addition to being indefinite and non-Hermitian, some of
the nonstored far-field interactions of EFIE matrices may be
stronger than the NFIs [18]. This causes EFIE system much
more difficult to solve than CFIE. For closed targets, the CFIE
formulation typically converges in 𝑂(𝑁

0.25
) iterations in

Krylov subspace methods while EFIE formulation converges
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in𝑂(𝑁0.5) iterations [20]. Due to the large condition number
of EFIE system, the iterative solver may even diverge in
many cases. Therefore, a robust preconditioner should be
constructed for EFIE.

The ILU-class preconditioners are an effective precon-
ditioning technique for solving integral equation systems.
Defining the right preconditioner matrixM as a nonsingular
approximation ofZ, theMVMcan be written in the following
form:

Z ⋅M−1 ⋅ u = V,

I = M−1 ⋅ u.
(12)

In ILU-class preconditioners, the matrix M is written in the
form ofM = L ⋅ U, where L and U are approximations of the
L andU factors of the standard triangular LU decomposition
of matrix Z [28]. Among such ILU-class preconditioners,
ILUT(𝜏, 𝑝) proposed by Saad is known to yieldmore accurate
factorizations than the other level-of-fill methods with the
same amount of fill-in [16]. Since ZFFT-FFI is not numerically
available, the preconditioner for p-FFT is always constructed
based on ZNFI. Hence, the preconditioning matrix is con-
structed as

M−1 = ILUT (ZEFIE
NFI ) . (13)

However, ILUT(𝜏, 𝑝) preconditionermay encounter diffi-
culties in solving EFIE matrix. This is because small diagonal
entries in EFIEmatrixmay increase the possibility of encoun-
tering zero pivots during the LU factorization, decreasing the
stability and accuracy of the factorization results [19]. Lots of
studies show that the small diagonal entries are responsible
for increasing the instability of the LU factorization of matrix
ZEFIE
NFI . The diagonal shifting formula for ZEFIE

NFI can be written
as [19]

M ≈ Z̃EFIE
NFI = ZEFIE

NFI + C, (14)

where Z̃EFIE
NFI is the matrix after shifting and C is the amount

of shifts for the diagonal entries. Unfortunately, however, it is
difficult to select suitable shift parameters C. A small shifting
value may result in a seemingly more accurate but unstable
LU factorization; on the other hand, large perturbations may
introduce too much inaccuracy in the preconditioner [19].

Based on the investigation of the IEFIE structure in (6)
and the eigenvalue distributions shown in [5], it seems that
ZIO in (7) could filter out those small eigenvalues in EFIE.
Thus, ZIO could be naturally used as the diagonal entries and
result in a Z̃EFIE

NFI matrix with a better condition number. The
diagonal shifting matrix C = ZIO is diagonally dominant
and very sparse, whose nonzero elements are near-field
interactions. More importantly, the IO term is the residue
term of MFIE, which corresponds to the geometrical-optics
current and carries the information of basis functions. The
magnitudes of the elements of ZIO are comparable with those
in the EFIE matrix system ZEFIE. Hence, such preconditioner

system is stable and physical system. By substituting (14)
into (13), the diagonal perturbed ILUT preconditioner can be
written as

M−1 ≈ ILUT (Z̃EFIE
NFI ) = ILUT (ZEFIE

NFI + 𝛼𝜂0Z
IO
) . (15)

This diagonal perturbation makes the system diagonally
dominant and is more physical and stable than other shift
parameters used in [18–20]. It therefore increases the robust-
ness of ILUT(𝜏, 𝑝) for EFIE systems. A similar idea has also
been proposed in [15] for free-space case; however, ILUTused
in our paper is better than the ILU(0) preconditioner used in
[15]. The reason is that ILUT contains more information of
near-field interactions than ILU(0) [28]. In the next section,
robustness and efficiency of the employed preconditioner for
half-space applications are demonstrated over a bunch of
numerical examples.

4. Numerical Results

In our experiments, starting with the zero initial guess,
the restarted version of the generalized minimal residual
(GMRES) is used as the iterative method. The CPU times
reported in this section are obtained on a 64-bit server
configured by Intel Xeon CPU with 3.47GHz and 128GB of
memory. For ILUT, we set the drop tolerance 𝜏 as 10−4 and
set 𝑝 to be the average number of nonzero elements in a row
of the near-field matrix.

Six methods are studied and compared in the context of
a half space and accelerated by the half-space p-FFT; they are
(1) EFIE-NO, EFIE with no preconditioner; (2) EFIE-MILU0,
EFIE with modified ILU0 proposed in [15]; (3) EFIE-ILUT,
EFIE with conventional ILUT(𝜏, 𝑝); (4) EFIE-ILUTP5, EFIE
with the common used ILUTP, where 0.5 is used as diagonal
entries [16, 18]; (5) EFIE-DP-ILUT, EFIE with the proposed
diagonal perturbations ILUT(𝜏, 𝑝); and (6) CFIE with no
preconditioner as the reference. In all cases, the convergence
threshold of GMRES is set at 0.001, and the combination
factor 𝛼 of the diagonal perturbations ZIO is set as 0.3.

It is noted that a strong indicator of the instability quality
of the ILUT preconditioner is an estimate of ‖([𝐿][𝑈])−1‖,
called “condest” [18]. This condition estimate is defined as

condest = 󵄩󵄩󵄩󵄩󵄩([𝐿] [𝑈])
−1
⋅ [𝑒]

󵄩󵄩󵄩󵄩󵄩∞
, [𝑒] = [1, . . . , 1]

𝑇 (16)

which can be easily computed by using a forward substitution
followed by a backward substitution.

4.1. Eigenspectrum Distribution. This section analyzes the
eigenspectrum distribution and the condition number of the
preconditioned linear system for a simple case. A 9-inch
almondwith 2,883 unknowns is located 0.02m above the half
space with the bottom layer of relative permittivity 𝜀

𝑟
= 4.

The plane wave is incident from 𝜃inc = 80
∘ and 𝜂inc =

90
∘ at 3GHz. In Figure 2, we compare the eigenspectrum

distribution of the preconditioned linear system equation (12)
obtained with different ILUT preconditioners. Table 1 shows
the condition number which is defined as the ratio between
the highest norm of the eigenvalue 𝜆max and the lowest
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Figure 2: Eigenvalue distribution of the linear systems resulting from the preconditioned linear system equation (12) obtained with (a) EFIE-
NO; (b) EFIE-ILUTP5; (c) EFIE-ILUT; and (d) EFIE-DP-ILUT. The red solid circle is the shifted-unit-circle.

Table 1: Condest, condition number, and iteration number of
different preconditioned linear systems equation (12).

EFIE-NO EFIE-ILUTP5 EFIE-ILUT EFIE-DP-ILUT
Condest — 2 109,938 4,105
Condition
number 4,914 4,885 121 36

Iterative
number 229 224 53 31

norm of the eigenvalue 𝜆min; that is, 𝜎 = 𝜆max/𝜆min. A
spectrum clustered away from the origin always implies a
rapid convergence of Krylov subspace methods. As shown
in Figure 2, both ILUT and DP-ILUT (that we proposed
in this paper) move the eigenvalues of the preconditioned

system towards (1,0) and thus avoid a possible eigenvalue
cluster close to zero. However, ILUTP5 has less effect in
shifting the eigenvalues. It is also shown that the eigenvalues
are more concentrated in the shifted-unit-circle for our DP-
ILUTpreconditioner. It should be emphasized that the reason
for the failure of the ILUTP5 preconditioner is that the
large perturbation 0.5 introduces too much inaccuracy in
the preconditioner. This graphical observation is supported
by the condition number of the linear system equation
(12). Indeed, when DP-ILUT preconditioner is used, the
condition number and the required number of matrix-vector
products to reach convergence are smaller than those of other
preconditioners. Table 2 lists the number of “condests” for
different ILU preconditioners. It can be seen that the small
diagonal entries sre responsible for increasing the stability of
the LU factorization of matrix.
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Table 2: Condest, of different preconditioned linear systems equa-
tion (12) for 3D scattering example.

ILUT ILUTP5 MILU0 DP-ILUT
Almond 1.14𝐸 + 11 2.5 693,098 1,956,402
Open cavity 133 3.4 3.5 2.7
Aircraft model 1050 3.5 21.3 23.6
Tank model 1467 5.6 125 163
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FEKO-EFIE
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Figure 3:TheH-polarized bistatic RCS patterns of an almond shape
above the half space in the 𝜃 = 80∘ cut at 9GHz.

4.2. Accuracy and Convergence Test. To demonstrate the
accuracy and efficiency of the proposed scheme, the bistatic
RCS of two benchmark targets is calculated. They consist
of an almond with 43,743 unknowns at 9GHz and an open
elliptical cavity with 119,600 unknowns at 0.3 GHz. Both are
situated above the half space with the bottom layer of relative
permittivity 𝜀

𝑟
= 6.38 − 𝑗0.663.

A 9-inch almond is located 0.02m above the interface.
The plane wave is incident from 𝜃inc = 80

∘ and 𝜂inc = 90
∘ at

9GHz. Figure 3 shows the bistatic RCS patterns of the almond
by different methods. The results are further compared with
the one calculated by FEKO. All of them agree well, except for
CFIE,which is less accurate.This is because EFIE can produce
numerical results with much higher accuracy than CFIE for
irregular structures. Figure 4 shows the convergence history
of the GMRES algorithm. It can be observed that EFIE-ILUT
is counteracted in this example due to the ill-conditioned
factors of the ILUT preconditioning matrix. Thanks to the
diagonal perturbations, both EFIE-MILU0 and EFIE-DP-
ILUT have better convergence than EFIE-NO. However, due
to the use of 0.5 as the diagonal entries, ILUTP5 has no
positive effect. It shows that the stability of LU factorization
is an important factor for ILU-class preconditioners; at the
same time, the accuracy of the diagonal shifting formula is
also very important.

The open elliptical cavity, which is located 0.33𝜆 above
the interface, has a side length, major axis, and minor axis of

EFIE-MILU0 [15]
EFIE-NO
EFIE-ILUT
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EFIE-ILUTP5

1E − 3

0.01

0.1

1

10

Re
sid

ua
l n

or
m

10 1001
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Figure 4: The convergence history of GMRES algorithms with
different integral operators and preconditioners in the almond
example.
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Figure 5: The convergence history of GMRES algorithms with
different integral operators and preconditioners in the open elliptical
cavity example. Both the top view and the front view of the open
elliptical cavity are illustrated.

10m, 10m, and 0.5m, respectively.The plane wave is incident
from 𝜃inc = 80

∘, 𝜙inc = 0
∘ at 300MHz. Results from different

methods are investigated, where the FEKO simulation is also
taken as the reference. As shown in Figure 5 and Table 3,
the EFIE-DP-ILUT is as efficient as the conventional EFIE-
ILUTP5 preconditioner.

4.3. Large-Scale Application. Next, the validation of the pro-
posed scheme for large-scale computation is demonstrated by
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Table 3: Comparison of different integral operators and preconditioners for 3D scattering.

Unknowns 𝑝 (ILUT) EFIE-DP-ILUT EFIE-ILUT EFIE-ILUTP5 CFIE
𝑁iter 𝑇sol (sec) 𝑁iter 𝑇sol (sec) 𝑁iter 𝑇sol (sec) 𝑁iter 𝑇sol (sec)

Almond 43,743 200 53 2,034 800+ 5000+ 742 5,028 49 2,239
Open cavity 120,105 55 84 12,126 180 13,859 80 11,926 — —
Aircraft model 69,534 100 276 8,752 800+ 37,000+ 800+ 37,000+ 134 8,372
Tank model 701,262 80 351 60,392 800+ 130,000+ 773 121,857 123 74,562

CFIE
EFIE-DP-ILUT
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Figure 6:TheV-polarized bistatic RCSpatterns of the aircraftmodel
above the half space in the 𝜃 = 80

∘ cut at 400MHz with EFIE-DP-
ILUT and CFIE.

analyzing electromagnetic scattering from two complex 3D
structures: aircraft and a tank model. Both are located above
the half space with the bottom layer of relative permittivity
𝜀
𝑟
= 6.5 − 𝑗0.6.
The length, width, and height of the aircraft model are

12.5, 7, and 3m, respectively, as shown in Figure 6. It is located
0.3m above the interface, and the plane wave is incident from
𝜃inc = 60

∘ and 𝜙inc = 0
∘. The frequency is 400MHz and

the corresponding electrical size is 16.7𝜆, resulting in 69,534
unknowns. Figure 6 shows the bistatic RCS in the vertical
polarization. It is shown that the proposed EFIE-DP-ILUT
agrees well with the result from CFIE. The convergence is
shown in Figure 7, where all the other methods behave worse
than the proposed ILUT-DP. This example also shows the
instability of EFIE-ILUTP5 preconditioner.

The tank model is 7 × 2 × 1.9m3. It is located above
the interface, and the incidence plane wave in 1.5 GHz is
fixed at 𝜃inc = 60

∘ and 𝜙inc = 0
∘. The surface of the

model is discretized with ∼𝜆
0
/10 average edge length result-

ing in 702,483 unknowns. The bistatic RCS in the vertical
polarization is computed using proposed EFIE-DP-ILUT and
compared with the one from conventional CFIE code. As is
shown in Figure 8, EFIE-DP-ILUT agrees well with CFIE.
Figure 9 shows that all the other methods EFIE-MILU0,

EFIE-MILU0 [15]
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Figure 7: The convergence history of GMRES algorithms with
different integral operators and preconditioners in the aircraftmodel
example.
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Figure 8: The V-polarized bistatic RCS patterns of the tank model
above the half space in the 𝜃 = 80

∘ cut at 1.5 GHz with EFIE-DP-
ILUT and CFIE.
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Table 4: Comparison of memory requirement of EFIE-DP-ILUT
and CFIE for 3D scattering.

Almond Open cavity Aircraft Tank
EFIE-DP-ILUT (MB) 593 760 1,434 15,100
CFIE (MB) 623 — 2,106 21,585

EFIE-MILU0 [15]
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Figure 9: The convergence history of GMRES algorithms with
different integral operators and preconditioners in the tank model
example.

EFIE-NO, EFIE-ILUT, and EFIE-ILUTP5 cannot converge to
the threshold after 700 iterations.

To further demonstrate the advantage of the present
method, Table 3 summarizes the number of iterations and
the solving CPU time with different integral operators and
preconditioners for the aforementioned 3D structures. All the
four examples show that the proposed DP-ILUT is definitely
more robust than other preconditioners. Although CFIEmay
require fewer iterations, it needs more CPU time for the
evaluation of 𝐺𝐻𝐽 in filling Green function interpolation
tables and also for the MFIE part of the p-FFT four-stage
procedure. As shown in Table 4, the total CPU time of
EFIE-DP-ILUT is comparable with CFIE, but the memory
requirement is less than CFIE. In the large-scale applica-
tion, the traditional EFIE-ILUT, EFIE-ILUTP5, and EFIE-
MILU0 proposed by [15] do not converge in 700 iterations,
while EFIE-DP-ILUT converges rapidly. It is worth pointing
out that even though EFIE-ILUTP5 yields a more smaller
“condest” value compared to EFIE-DP-ILUT, the ILUTP5
preconditioner is not always stable. More specifically, when
sharp surfaces are involved in the geometricalmodel, ourDP-
ILUTmethod is more stable than the common used ILUTP5.

5. Conclusion
In this paper, the EFIE with half-space dyadic Green’s func-
tion is presented to analyze the scattering from PEC targets

of arbitrarily shape in a half space. Inspired by the idea of
IEFIE, a novel diagonal perturbation of ILUT preconditioner
is presented and investigated. It increases the robustness of
LU decomposition and is more stable and physical than other
existing diagonal shifting formulae. The proposed robust
preconditioner is simple to be combined with the extended
3D p-FFT,making the EFIE formulation applicable in solving
complex and electrically large problems in a half space.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported partly by the National Science
Foundation ofChina underGrants no. 61271033, no. 61231001,
and no. 61201002, National Excellent Youth Fund by NSFC
no. 61425010, and the Programme of Introducing Talents of
Discipline to Universities under Grant no. b07046.

References

[1] W. C. Chew, Waves and Fields in Inhomogeneous Media, Van
Nostrand Reinhold, 1990, Reprinted by IEEE Press, 1995.

[2] Y. P. Chen, L. Jiang, S. Sun, W. C. Chew, and J. Hu, “Calderón
preconditioned PMCHWT equations for analyzing penetrable
objects in layeredmedium,” IEEE Transactions on Antennas and
Propagation, vol. 62, no. 11, pp. 5619–5629, 2014.

[3] K. A. Michalski and J. R. Mosig, “Multilayered media Green’s
functions in integral equation formulations,” IEEE Transactions
on Antennas and Propagation, vol. 45, no. 3, pp. 508–519, 1997.

[4] K. Yang and A. E. Yilmaz, “A three-dimensional adaptive
integral method for scattering from structures embedded in
layered media,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 50, no. 4, pp. 1130–1139, 2012.

[5] J. Hu and Z. P. Nie, “Improved electric field integral equation
(IEFIE) for analysis of scattering from 3-D conducting struc-
tures,” IEEE Transactions on Electromagnetic Compatibility, vol.
49, no. 3, pp. 644–648, 2007.

[6] X. Millard and Q. H. Liu, “Simulation of near-surface detection
of objects in layered media by the BCGS-FFT method,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 42, no. 2,
pp. 327–334, 2004.

[7] W. Luo, Z. Nie, and Y. P. Chen, “A hybrid method for analyzing
scattering from PEC bodies straddling a half-space interface,”
IEEE Antennas and Wireless Propagation Letters, vol. 14, pp.
474–477, 2015.

[8] V. Okhmatovski, M. T. Yuan, I. Jeffrey, and R. Phelps, “A three-
dimensional precorrected FFT algorithm for fast method of
moments solutions of the mixed-potential integral equation in
layered media,” IEEE Transactions on Microwave Theory and
Techniques, vol. 57, no. 12, pp. 3505–3517, 2009.

[9] X.-C. Nie, N. Yuan, and L.-W. Li, “Precorrected-FFT algorithm
for solving combined field integral equations in electromagnetic
scattering,” Journal of Electromagnetic Waves and Applications,
vol. 16, no. 8, pp. 1171–1187, 2002.

[10] J. Song, C. C. Lu, and W. C. Chew, “Multilevel fast multipole
algorithm for electromagnetic scattering by large complex



International Journal of Antennas and Propagation 9

objects,” IEEE Transactions on Antennas and Propagation, vol.
45, no. 10, pp. 1488–1493, 1997.

[11] J. Q. Chen, Z. W. Liu, N. Cao, and B. Yong, “Shifted SSOR
preconditioning technique for improved electric field integral
equations,” Microwave and Optical Technology Letters, vol. 55,
no. 2, pp. 304–308, 2013.

[12] D. Z. Ding, G. M. Li, Y. Y. An, and R. S. Chen, “Application
of hierarchical two-level spectral preconditioning method for
electromagnetic scattering from the rough surface,” Interna-
tional Journal of Antennas and Propagation, vol. 2014, Article
ID 752418, 10 pages, 2014.

[13] H. Chen, D. Z. Ding, R. S. Chen, D. X. Wang, and E. K. N.
Yung, “Application ofmultiresolution preconditioner technique
for scattering problem in a half space,” in Proceedings of the
International Conference on Microwave and Millimeter Wave
Technology (ICMMT ’08), vol. 2, pp. 975–977, Nanjing, China,
April 2008.

[14] F. Vipiana, M. A. Francavilla, and G. Vecchi, “EFIE modeling
of high-definition multiscale structures,” IEEE Transactions on
Antennas and Propagation, vol. 58, no. 7, pp. 2362–2374, 2010.

[15] P. L. Rui, R. S. Chen, Z. H. Fan, J. Hu, and Z. P. Nie,
“Perturbed incomplete ILU preconditioner for efficient solution
of electric field integral equations,” IET Microwaves, Antennas
and Propagation, vol. 1, no. 5, pp. 1059–1063, 2007.

[16] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for
Industrial and Applied Mathematics, Philadelphia, Pa, USA,
2nd edition, 2003.

[17] Y. Saad, “Multilevel ILU with reorderings for diagonal domi-
nance,” SIAM Journal on Scientific Computing, vol. 27, no. 3, pp.
1032–1057, 2005.
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