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The all spectrum absorption efficiency appears in the physical bounds on antennas expressed in the polarizability dyadics. Here,
it is shown that this generalized absorption efficiency is close to 1/2 for small idealized dipole antennas and for antennas with a
dominant resonance in their absorption. Also, the usefulness of this parameter is analyzed for estimation of antenna performance.
The results are illustrated with numerical data for several antennas.

1. Introduction

A new set of physical bounds on antennas was introduced in
[1–5]. These bounds relate the performance of the antenna
to the electro- and magnetostatic polarizability dyadics of
a circumscribing geometry. This generalizes the classical
bounds by Chu [6] for spherical geometries to geometries
of arbitrary shape. The new bounds are valid for lossless
and linearly polarized [1–4] and elliptically polarized [5]
antennas. Moreover, the approach can be used to estimate the
performances of many small antennas if the polarizabilities
of the antennas are used instead of the circumscribing
geometries [2–4].

The only parameter in the bound that depends on the
dynamic properties of the antenna is the generalized (or all
spectrum) absorption efficiency, η. This is the generalization
of the frequency-dependent absorption efficiency analyzed
in [7] given by integration of the absorbed and total power,
independently, over all wavelengths.

In [1–4], it is demonstrated that η is close to 1/2 for
many small antennas that are connected to a frequency inde-
pendent resistive load and matched at their first resonance.
This is motivated by the minimum scattering property that
small-matched antennas often possess, that is, they scatter
as much power as they absorb at the resonance frequency
giving an absorption efficiency of 1/2 at the resonance
frequency [7, 8]. Here, it is shown that small idealized dipole
antennas with a dominant first single resonance have an all

spectrum absorption efficiency η � 1/2. The region around
the resonance is minimum scattering but the contributions
from regions away from the resonance scatter slightly more
power than is absorbed giving a generalized (all spectrum)
absorption efficiency close to but less than 1/2.

Minimum scattering is a property that many non
electrically small resonant antennas also possess. Numerical
simulation results of common antennas, both electrically
small and not small, verify the theoretical results.

2. Absorption Efficiency

The physical bounds analyzed in [1–4] are derived for single
port, linearly polarized, reciprocal, and lossless antennas
with the reflection coefficient Γ(k) and the directivity

D(k; ̂k, ê), where k denotes the free-space wavenumber, ̂k
the direction, and ê the electric polarization. The forward
scattering sum rule [1] gives the antenna identity

∫∞

0

(

1− |Γ(k)|2
)

D
(

k; ̂k, ê
)

k4
dk

= η

2

(

ê · γe · ê +
(

̂k× ê
)

· γm ·
(

̂k× ê
))

,

(1)

where γe and γm are the electro- and magnetostatic polariz-
ability dyadics, respectively. The integral (1) is bounded in
various ways to produce bounds for different applications,
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for example, resonant and constant partial-realized gain in
[1, 3, 4] and ultra-wide band cases in [2]. The resonant
case is applicable for antennas with a dominant first single
resonance [3]. It is given by

D
(

k; ̂k, ê
)

Q
≤ ηk3

0

2π

(

ê · γe · ê +
(

̂k× ê
)

· γm ·
(

̂k× ê
))

,

(2)

where k0 is the resonance wavenumber and Q denotes the
Q-factor at the resonance, that is, it has the half-power
fractional bandwidth B ≈ 2/Q.

The polarizability dyadics in the right-hand sides of (1)
and (2) are easily determined for the antenna or, as an
upper bound, for an arbitrary circumscribing geometry (
http://www.mathworks.fr/matlabcentral/fileexchange/
26806-antennaq) by the solution of the corresponding
electro- and magnetostatic equations [1–4]. This leaves the
generalized absorption efficiency, η, as the only quantity in
the right-hand sides of (1) and (2) that depends on the
dynamic properties of the antenna. It is an all spectrum
measure of the absorption and scattering properties of the
object, that is defined by

η =
∫∞

0 σa(k)/k2dk
∫∞

0 σext(k)/k2dk
=
∫∞

0 σa(2π/λ)dλ
∫∞

0 σext(2π/λ)dλ
, (3)

where σext = σa + σs, σa, and σs denote the extinction,
absorption, and scattering cross sections, respectively, and
λ = 2π/k is the wavelength. It is clear that 0 ≤ η < 1 for
all objects as σa ≥ 0 and σs ≥ 0. In [3, 4], it is observed
that η ≈ 1/2 for many small antennas that are matched at
a dominant first resonance k0. This is partly explained by
the fact that the absorption efficiency σa(k0)/σext(k0) = 1/2
for minimum scattering antennas, that is, small single mode
antennas absorb and scatter the same amount of power at
the resonance frequency [7, 8]. The weighting factor, k−2,
in (3) emphasizes the dynamics of the antenna for low
wavenumbers. Thus, the lower the resonance frequency, the
closer η is to 1/2 as the resonance region will dominate
the integrals. As a consequence, the theory derived here is
useful if the analyzed resonance has the lowest frequency. The
contributions to η in (3) away from the resonance are small
due to the fact that scattering dominates the behavior of the
antenna in the regions where the mismatch is high.

Here, the case with an idealized lossless antenna that
radiates an electric dipole mode is considered to explicitly
determine η and illustrate how σext(k) and σa(k) depend on
the wavenumber around the resonance. A spherical dipole
mode at the radius a has the impedance [6] ZTM = 1/(jωC) +
jωL/(1 + jωL/η0), where L = μ0a, C = ε0a, ω = kc0, the
time convention ejωt is used, and ε0, μ0, c0, and η0 denote
the free space permittivity, permeability, speed of light, and
impedance, respectively. The impedance is modified by the
antenna. We consider an antenna with the input impedance
obtained from the impedance of the dipole mode, ZTM,
tuned to be resonant at ω = ω0 with a lumped inductance
L1, that is,

Z(ω) = jωL1 +
1

jωC
+

jωL
1 + jωL/R1

. (4)
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Figure 1: The reflection coefficient of the idealized dipole antenna
(4) for k0a = 1/2 and k0a = 1/4 with C = ε0a, L = μ0a and R1 = η0

as function of the normalized wavelength λ/a = 2πc0/(ωa).

The inductance L1 is given by L1 = 1/(ω2
0C) − L/(1 +

ω2
0L

2/η2
0), and the radiation resistance at the resonance

frequency is R0 = Z(ω0) = ω2
0L

2R1/(R2
1 + ω2

0L
2), and R1 =

η0, L = μ0a, and C = ε0a in the idealized dipole case.
The corresponding Q-factor at ω = ω0 is determined to
Q = 1/(C2LR1ω

3
0) + R1/(Lω0) and the reflection coefficient,

Γ(ω) = (Z(ω)− R0)/(Z(ω) + R0) has a single resonance with
Γ(ω0) = 0, see Figure 1. The absorption cross section (or
effective antenna aperture) for lossless antennas is given by
[9]

σa(k) =
D(k)

(

1− |Γ(kc0)|2
)

π

k2
, (5)

where D(k) = 3/2 in the horizontal plane for the considered
dipole mode.

Evaluation of η in (3) requires a model of the extinction
cross section, σext(k), that is consistent with (4). Consider
a single port antenna with incoming signal u and outgoing
signal v. The electromagnetic field is expanded in incoming
and outgoing spherical modes with coefficients a and b,
respectively. This gives the scattering matrix [10]

(

Γ R
T S

)(

u
a

)

=
(

v
b

)

, (6)

where Γ is the reflection coefficient, R is an 1×∞matrix with
elements Rn, T is an∞× 1 matrix with elements Tn, and S is
an∞×∞matrix with elements Smn.

For simplicity, order the modes such that the idealized
dipole antenna radiates the first mode, that is, Rn = Tn = 0
for n > 1. Conservation of energy shows that the amplitudes
of the reflection coefficient and the scattering coefficient, S11,
are identical in this case, that is,

|Γ(kc0)| = |S11(k)|, (7)

for k ∈ R. Moreover, the scattering matrix is noncausal, that
is, it increases as e2jka as k → ∞ with | arg(jk)| < π/2 − α,
for some α > 0, where a denotes the radius of the smallest
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circumscribing sphere, see [11, 12]. As the amplitude of S11

is determined by the reflection coefficient (7) they can only
differ by a function that has unit magnitude for k ∈ R. Using
rational functions, that is, Blaschke products [12], gives the
model

S11(k) = e2jka Z(kc0)− R0

Z(kc0) + R0

∏

n

kn − k

k∗n − k
, (8)

where kn denote the zeros of S11 in Re{jk} > 0.
The extinction cross section is often expressed in the

transition matrix. It is related to the S-matrix in (6), S, via
Tmn = (Smn − 1)/2. Consider an idealized dipole antenna
that is resonant for k0a 	 1. The scattering from higher-
order modes is negligible for k0a	 1 so the extinction cross
section is well approximated with the dipole mode in this
region. The extinction cross section from the dipole mode
is hence approximated by

σext(k) ≈ −6π Re{T11(k)}
k2

, σs(k) ≈ 6π|T11(k)|2
k2

, (9)

where T11 denotes the diagonal dipole element of the
transition matrix [12]. Consider the simplest possible case
with a single zero k1. The value of k1 is determined by
(8) and (9) inserted into the low-frequency expansions [13]
σext(k) = O(k2) and σs(k) = O(k4) as k → 0. This shows
that k1 = j/(a− CR0c0), giving the model

S11(k) = e2jka Z(kc0)− R0

Z(kc0) + R0

1− jk(a− CR0c0)
1 + jk(a− CR0c0)

. (10)

The cross sections σext, σa, and σs are depicted in Figure 2 for
the same cases as in Figure 1. It is observed that the areas
under the curves are concentrated to the resonances and
that σa(k) ≈ σs(k) around the resonances for k0a = 0.25.
For minimum scattering, Re{T11(k)} = −1/2 in (9), we
obtain the envelope σext(k)/a2 ≈ 3π/k2a2 = 3λ2/4πa2, also
plotted in Figure 2. The more dominant a resonance, the
closer the obtained value of the extinction cross section is to
this envelope at the resonance frequency.

The generalized (all spectrum) absorption efficiency (3)
for the idealized dipole is finally determined by

η=
∫∞

0

((

1−|Γ(k)|2
)

Dπ/k4
)

dk
∫∞

0 (σext(k)/k2)dk
≈

∫∞
0

(

1−|Γ(k)|2/k4
)

dk

−4
∫∞

0 (Re{T11(k)}/k4)dk
.

(11)

The generalized absorption efficiency η is evaluated for the
idealized dipole model (4) and (10) as well as various other
parameter values on C, L, and R1 in Figure 3. It is observed
that η � 1/2 for k0a 	 1. The deviation from 1/2 is due to
the region with small σs but negligible σa for λ/a < 8 as seen
in Figure 2.

The particular impedance (4) is not crucial for this result.
It is sufficient that the contributions to the integrals in
(3) are dominated by the region around the resonance k0

and that σa and σext have similar bandwidths and shapes.
It is common to assume antennas with a single resonance
structure [14] to relate the bandwidth with the antenna Q.
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Figure 2: The extinction, σext, absorption, σa, and scattering, σs,
cross sections for the idealized dipole antenna (4), depicted in
Figure 1, and (10) as function of the normalized wavelength λ/a =
2π/(ka).
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Figure 3: The generalized absorption efficiency for the idealized
dipole antenna (4) and (10) and various values of C, L, and R1 as
function of the normalized resonance wavenumber k0a.

Similarly, assume that the transition matrix element T11(k)
has a single resonance at k0 and is minimum scattering, that
is, S11(k0) = 0 implying T11(k0) = −1/2. The resonance
model has complex valued poles at k ≈ ±k0 and the shape
of the classical Lorentz or resonance circuit [12, 14] around
the resonance, that is,

T11(k) = −1/2
1 +

(

j/ν
)

(k/k0 − k0/k)
= −jνk/(2k0)

1− k2/k2
0 + jνk/k0

,

(12)

with 0 < ν 	 1. It satisfies

−Re{T11(k)} = 1/2

1 + (1/ν2)(k/k0 − k0/k)2 = 2|T11(k)|2,

(13)
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Figure 4: Geometry of the two arm spherical helix with circum-
scribing sphere radius a =62 mm and wire radius Rw =2 mm.
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Figure 5: Input impedance of the spherical helix depicted in
Figure 4.

for all k ∈ R showing that σext(k) = 2σs(k) = 2σa(k)
around the resonance wavenumber; see the k0a = 1/4 case
in Figure 2. For antennas with negligible σa away from the
resonance, for example, the dipole model (4), the σext ≈ σs

contribution to the integral (3) away from the resonance
gives η � 1/2.

3. Numerical Examples

The above theoretical results have been analyzed for a num-
ber of geometries by numerical simulations; the numerical
results show very good agreement with the theory. For each
of the examples the approach was the same; first we started
with the design and simulation of a radiating structure
using the Method of Moments (MoM) simulator in Efield.
(www.efieldsolutions.com) Then the radiation resistance at
the first resonance was used as a load at the feeding point
in a forward scattering simulation, performed using the
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Figure 6: Extinction, absorption, and scattering cross sections of
the spherical helix depicted in Figure 4.

same software. The results of the antenna and scattering
simulations have been used to numerically compute the
theoretical parameters using Matlab. Note that not all the
available digits are presented in the text as the numerical
accuracy does not justify them. However, the formulas are
computed without truncation.

3.1. Folded Spherical Helix—D = 1.5, k0a = 0.38. We
first describe the results for the folded spherical helix [15]
depicted in Figure 4. It comprises a closed loop of perfectly
electric conducting wire of radius Rw =2 mm that is folded
on the surface of a sphere of radius 58 mm thus obtaining
a structure with the radius of the smallest circumscribing
sphere a = 62 mm. The structure has two arms of equal
length (approximately la = 646 mm) symmetric with respect
to the z axis.

The first step in the analysis is to simulate this structure
with Efield. The antenna parameters are determined with an
ideal voltage source connected at point F (see Figure 4). The
resulting input impedance is plotted in Figure 5. The first
interesting resonance from a practical point of view appears
around 294 MHz with a radiation resistance of 17Ω. It is
this resonance that is used to illustrate the physical bounds
in [1–4]. At this frequency the antenna radiates a z dipole
type pattern. First we compute the D/(Qk3

0a
3) value using

the simulation data from Efield and the method proposed in
[14, 16] to approximate the Q factor. The computed values
D = 1.5, Q = 43, and k0a = 0.38 result in the quotient
D/(Qk3

0a
3) = 0.63.

The second step is to evaluate the right-hand side in (2).
Here, the polarizability dyadics reduce to the high-contrast
polarizability dyadic of the perfect electric conductor which
is computed using a MoM algorithm (see, e.g., [4]) that
solves the electrostatic problem associated with the wire
geometry. With ê = ẑ and only high-contrast electric

material present ê · γe · ê + (̂k× ê) · γm · (̂k× ê) evaluates to

ẑ · γ∞ · ẑ = 2 · 10−3 m3. (14)
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Figure 7: Extinction, absorption, and scattering cross sections of
the spherical helix depicted in Figure 4 as function of wavelength,
λ = 2π/k = c0/ f .

The generalized absorption efficiency is computed from
the Efield simulation data with (3) and the definitions
of absorption and extinction cross sections from [3, 17].
After an integration of 5999 absorption and extinction cross
sections samples taken equidistantly between 1 MHz and
3 GHz (see Figure 6) we obtain η ≈ 0.51 and write

D

Qk3
0a3

≈ 0.63 ≤ 0.67 ≈ η

2πa3

(

ẑ · γ∞ · ẑ
)

. (15)

This is a true relation showing that the antenna performs
close to the D/Q bound of the wire structure.

Moreover, the integrated extinction cross section is
related to the polarizability of the structure, as stated in [17]
that is,

2
π

∫∞

0

σext(k)
k2

dk = 1
π2

∫∞

0
σext(λ)dλ ≈ 1.99 · 10−3 m3, (16)

which is approximately 1% away from the polarizability
determined from the MoM simulation. This deviation can be
attributed to the high frequencies (low wavelengths) which
are missing in Figure 7. The cross sections should show one
dominant resonance and asymptotically tend to 0 for low
frequencies.

The physical bounds in (2) create a link between
the dynamic properties of the radiating structure and its
static properties described by the electric and magnetic
polarizability dyadics. Because many common antennas have
a generalized absorption efficiency of approximately 1/2
obtaining the bounds for an antenna reduces to a static
problem of computing the polarizability dyadics for the
geometry, which is easily solved using a Method of Moments
algorithm.

It is very important to distinguish the geometry of the
radiating structure from its smallest circumscribing sphere.
The antenna can be optimized in the limit given by its
own polarizability, for example, the smallest circumscribing
sphere of the helix in Figure 4 has the radius a = 62 mm,
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F

Figure 8: Two-element array of folded dipoles with l = 492.9 mm
and d = 470 mm.

which gives ẑ · γ∞ · ẑ = 4πa3 ≈ 3 · 10−3 m3. Thus
the maximum attainable value for the D/Q quotient is
D/(Qk3

0a
3) ≤ 1 whereas the wire structure simulated here

has a maximum attainable value D/(Qk3
0a

3) ≤ 0.67. The
presence of the (k0a)3 term allows radiating structures to
be directly compared even though they do not have the
same size. It can be stated that the wire structure of the
helix in Figure 4 can only reach 67% of the best attainable
performance of an antenna circumscribed by a sphere with
equal radius. Hence, it is necessary to use a structure with
high polarizability to improve the performance, for example,
the polarizability of the spherical helix increases with the
number of arms and with the wire radius.

3.2. Folded Dipole Array—D = 2.6, k0a = 1.7. The second
considered structure is a folded dipole array [18]. The
dimensions in Figure 8 are the following: l = 492.9 mm,
d = 470 mm, h = 40 mm, and s = 65.8 mm. The structure
is assumed to be fed at point F with an ideal voltage source.
All wires have a radius of Rw = 4 mm thus simulating one
possible realization of a simple and common array design
using the same type of conductor for all the elements. The
smallest circumscribing sphere has the radius a = 347 mm.

First we simulate the structure in transmission in order
to obtain the impedance behavior in the frequency range
of interest, see Figure 9. The first resonance with practical
relevance is close to 233 MHz and, at this frequency the
antenna has an input impedance of 59Ω. We shall illustrate
the bounds using the characteristics of the structure at this
frequency. The far field radiation pattern at this resonance
consists of two linearly polarized (x̂-direction) pencil beams
in the broad sides, with a maximum directivity D = 2.6. The
quality factor of this resonance is Q = 4.2 and with k0a = 1.7
we obtain the quotient D/(Qk3

0a
3) = 0.13.

The high-contrast polarizability for ê = x̂ polarization
has the value γ∞,11 = 67.4 · 10−3 m3. We note here that the
structure is also highly polarizable on the ŷ-direction but the
ŷ-polarization does not contribute to the radiation because
of the choice of feeding.

We now turn to the analysis of the cross sections and use
5999 absorption and extinction cross-section samples from
equidistantly spaced frequencies between 1 MHz and 3 GHz.
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Table 1: Numerical results of the antennas in Section 3.3.

D Q k0a D/Qk3
0a

3 ηγ/2πa3 η γ/a3

1.64 8 1.51 0.056 0.058 0.51 0.705

1.64 6 1.49 0.078 0.079 0.52 0.962

1.63 6 1.43 0.088 0.090 0.52 1.087

1.64 3 1.44 0.173 0.155 0.50 1.944

1.55 18 0.72 0.231 0.244 0.52 2.972

1.54 57 0.48 0.246 0.287 0.54 3.309

2.23 5 1.31 0.211 0.200 0.52 2.429

3.04 5 1.92 0.095 0.089 0.51 1.085

1.50 43 0.38 0.631 0.728 0.51 9.339

2.63 4 1.69 0.130 0.130 0.48 1.698

6.15 20 3.84 0.005 0.008 0.42 0.116

6.30 7 4.08 0.013 0.013 0.41 0.194

3.21 17 1.72 0.036 0.042 0.14 1.897

The first and dominating resonance is shown in Figure 10.
The array has a two-band behavior; in either of the two
bands it approximately absorbs as much energy as it scatters.
Besides these two resonances there is another scattering
resonance which contributes to the generalized absorption
efficiency. By comparing Figure 6 with Figure 10 we expect
to have differences between the two generalized absorption
efficiencies but in fact η ≈ 0.48. The reason for the small
deviation is the presence of the second resonance very close
to the first one, and with comparable values of the radiation
resistance.

Gathering the results, we rewrite (2) in numbers as
0.13 ≤ 0.13, thus making this array a structure that is
close to the optimal D/Q performance of the wire structure.
The perfect matching is explained by the deviation of the
structure from the assumed models for the Q factor (Q
 1)
and the first single and dominant resonance. Compared with
a smallest circumscribing sphere, the array only reaches 13%
of its D/Q performance. For evaluating the reliability of the
generalized absorption efficiency we integrate the extinction
cross section over the wavelength and obtain the value 66.8 ·
10−3 m3 which is less than 1% from the previous γ∞,11 =
67.4 · 10−3 m3; so the frequency interval is well chosen as to
not significantly deviate the resulted η from its correct value.

3.3. Other Structures. A number of other structures have
been analyzed and the results are gathered in Table 1. The
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Figure 9: Input impedance of the array depicted in Figure 8.

first eight rows in the table correspond to planar geometries
circumscribed by different l1 × l2 rectangles with l1/l2,
respectively, equal to: 500, 100, 25, 9, 3.6, 2, 1, and 0.5.
The polarization is always directed along l1. There are two
meander-type antennas which differ by their aspect ratios
and feeding structure. The ninth and tenth rows correspond
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Figure 10: Extinction, absorption, and scattering cross sections of
the array depicted in Figure 8.

to the structures described, respectively, in Sections 3.1 and
3.2.

The eleventh and twelfth rows correspond to four-
element arrays fed in phase to obtain two broadside pencil-
shaped lobes. For the first one the elements are represented
by simple dipoles of length l = 500 mm spaced at d =
500 mm and wire radius Rw = 1 mm and for the second
the elements are folded dipoles with length l = 502 mm and
height h = 6 mm spaced at d = 470 mm and wire radius
Rw = 2 mm. Both structures are fed through transmission
lines made from the same wire as the radiating elements.

The last line corresponds to a two element array, each
element being a Yagi antenna with a reflector (lr = 510 mm),
driven element (lf = 500 mm), and director (ld = 420 mm)
spaced at ls = 200 mm. The distance between the elements in
the array is d = 470 mm and the wire radius is Rw = 5 mm.
Feeding is realized with a transmission line made from the
same wire as the elements.

4. Conclusions

We demonstrate that η � 1/2 for small, k0a 	 1, idealized
dipole antennas and for minimum scattering antennas with
a dominant first single resonance. As observed in [3, 4] this
is also valid for several antennas that are of the order k0a ≈ 1.
Here, it is important to realize that the identity (1) is not
restricted to electrically small antennas and that η in general
cannot be replaced by 1/2. Many antennas, for example, Yagi-
Uda and reflector antennas have η 	 1/2 and some, for
example, the spiral antenna in [2], have η > 1/2.
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