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A fast and accurate technique for the compensation of the probe positioning errors in the near-field/far-field transformation with
helicoidal scanning is proposed in this paper. It relies on a nonredundant sampling representation using a spherical modelling
of the antenna under test and employs an iterative scheme to evaluate the near-field data at the points fixed by the helicoidal
nonredundant representation from the acquired irregularly distributed ones. Once these helicoidal data have been recovered,
those required by a classical cylindrical near-field/far-field transformation are efficiently determined by using an optimal sampling
interpolation algorithm. Some numerical tests assessing the effectiveness of the proposed approach and its stability with respect to

random errors affecting the near-field data are shown.

1. Introduction

As well-known, far-field (FF) range size limitations, trans-
portation, and mounting problems can make impossible or
impractical the measurement of antenna radiation patterns
on a conventional FF range. In these cases, it is convenient
to exploit near-field (NF) measurements and recover the FF
patterns by using NF-FF transformation techniques [1-3].
In addition, the NF measurements may be performed in
a controlled environment, as an anechoic chamber, thus
overcoming those drawbacks that cannot be eliminated in FF
outdoor measurements. In this framework, the reduction of
the time needed for acquiring the NF data is assuming an ever
growing relevance for the antenna measurement community,
since this time is currently very much greater than that
required to perform the corresponding NF-FF transforma-
tion. Such a reduction can be achieved by decreasing the
number of the NF data to be collected and/or by making
faster the acquisition of each NF value. A significant reduc-
tion of the number of required NF data has been obtained
for all the conventional scannings [4-8] by applying the

nonredundant sampling representations of electromagnetic
(EM) fields and the optimal sampling interpolation (OSI)
expansions [9], whereas, the use of the modulated scattering
technique employing arrays of scattering probes has been
proposed in [10] to realize a very fast electronic scanning.
However, antenna testing NF facilities based on such a tech-
nique are not very flexible as those employing mechanical
scans. These last can be made faster by exploiting innovative
spiral scannings which use, as suggested by Yaccarino et al.
in [11], continuous and synchronized movements of the
positioning systems of the probe and antenna under test
(AUT). In particular, accurate, stable, and efficient NE-FF
transformations using the helicoidal scanning, the planar
and spherical spiral scannings have been developed [12—
19]. They are based on the aforementioned nonredundant
representations and reconstruct the NF data needed by
the NF-FF transformation with the corresponding classical
scanning by interpolating, via appropriate OSI formulas,
the nonredundant samples acquired on the spiral. The
required two-dimensional algorithm has been obtained (a)
by assuming the AUT enclosed in a proper convex domain



bounded by a surface ¥ with rotational symmetry; (b) by
developing a nonredundant sampling representation of the
voltage acquired by the probe on the spiral; (c) by choosing
the spiral step equal to the spacing needed to interpolate the
data along a meridian curve. In particular, the AUT has been
assumed to be enclosed in the smallest sphere able to contain
it in [12-15], whereas more effective AUT modellings, that
allow a further reduction of required NF data when dealing
with antennas having one or two predominant dimensions,
have been adopted in [16-18] by properly applying the
unified theory of spiral scannings for nonspherical antennas
[19]. This last has been obtained by heuristically extending
the rigorous approach for spherical antennas [15]. It is worth
noting that these effective modellings allow one to consider
measurement cylinders (planes) with a radius (distance)
smaller than one half the antenna maximum size, thus
reducing the error related to the truncation of the scanning
zone.

Unfortunately, it may be impossible to get regularly
distributed NF data due to an inaccurate control of the posi-
tioning systems, but the measurements points position can
be accurately read by optical devices. In addition, the finite
resolution of the positioning systems and their imprecise
synchronization do not allow one to exactly locate the probe
at the points fixed by the sampling representation. In the light
of the above considerations, the development of an accurate
and stable reconstruction procedure from irregularly spaced
data becomes relevant. In this context, an approach based
on the conjugate gradient iteration method and using the
unequally spaced fast Fourier transform [20, 21] has been
proposed in the planar [22] and spherical [23] classical
scannings. However, such an approach is not tailored for
scannings exploiting the nonredundant sampling represen-
tations of EM fields, wherein the “a priori” information on
the AUT and proper sampling interpolations are employed to
recover the NF data required by the corresponding standard
NF-FF transformation technique. The interpolation from
nonuniform samples has been well investigated in the one-
dimensional case of bandlimited functions defined over the
real axis. Several sufficient conditions assuring the possibility
of reconstructing a function from its nonuniform samples
have been stated in [24]. The stability in a nonuniform
sampling algorithm; that is, the requirement that small
errors affecting the samples give rise to small errors in the
reconstructed functions, has been exhaustively investigated
in [25, 26], wherein it has been shown that a stable sampling
cannot be accomplished at an “average” rate lower than
the Nyquist one. Some closed-form expressions for the
interpolation of bandlimited functions from nonuniform
samples have been developed in [27]. However, they are
valid only for particular sampling points arrangements,
are cumbersome and not user friendly. Moreover, they
become more and more unstable as the sampling points
distribution deviates from the uniform one. The two-
dimensional nonuniform sampling has not attracted an
equal consideration. In any case, it has been shown [28] that,
again, a stable sampling cannot be performed at a rate lower
than the Nyquist one. As it has been clearly stressed in [29],
wherein a more exhaustive discussion on this topic can be
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found, a nonuniform sampling algorithm useful for practical
applications must be computationally manageable, accurate,
and stable. Accordingly, it is more convenient to recover the
uniform samples from the irregularly distributed ones than
to resort to a direct interpolation formula. In fact, once the
uniform samples have been determined, the value at any
point of the scanning surface can be recovered by an accurate
and stable OSI expansion.

In this context, two different approaches have been
proposed [29-31]. The former [29, 30] is based on an
iterative technique which has been found convergent only
if there exists a one-to-one correspondence associating at
each uniform sampling point the nearest nonuniform one.
The latter [31] exploits the singular value decomposition
(SVD) method [32] and has been applied when the two-
dimensional problem can be reduced to the research of the
solution of two independent one-dimensional ones. This,
fi., occurs in a cylindrical near-field facility, wherein the
nonuniformly distributed data can be realistically assumed
to lie on not regularly spaced rings when the measurements
are made by rings [31]. Such a hypothesis is no longer valid in
the helicoidal scanning. Accordingly, the iterative technique
will be here applied for reconstructing the uniformly spaced
helicoidal samples from the acquired irregularly distributed
data. Obviously, the SVD-based approach could be general-
ized to such an intrinsically two-dimensional problem, but
the dimension of the involved matrix would become too
large, thus requiring a huge computational effort.

In the following, the helicoidal scanning based on the
spherical AUT modelling will be considered since it is more
simple and general than those using modellings tailored for
elongated antennas.

2. Nonredundant Sampling
Representation on a Cylinder

Let us consider an AUT and a nondirective probe scanning
a helix with constant angular step lying on a cylinder of
radius d (Figure 1) and adopt the spherical coordinate system
(7,9, ¢) to denote an observation point P in the NF region.
Since, as shown in [33], the voltage measured by such a
kind of probe has the same effective spatial bandwidth of
the AUT field, the nonredundant sampling representations of
EM fields [9] can be applied to it. Accordingly, by assuming
the AUT as enclosed in the smallest sphere of radius a able
to contain it and describing the helix by a proper analytical
parameterization r = r(&), it is possible to consider the
“reduced voltage”

V(E) = V(§)er®, (1)

where p(£) is an optimal phase function to be determined.
The error, occurring when V' is approximated by a spatially
bandlimited function, becomes negligible as the bandwidth
exceeds a critical value Wy [9], so that it can be effectively
controlled by choosing a bandwidth equal to ' W, where
X is an enlargement factor, slightly greater than unity for
electrically large antennas.
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FIGURE 1: Geometry of the problem.

The parametric equation of the helix, when imposing its
passage through a fixed point Py of the generatrix at ¢ = 0,
are

x = dcos(¢ — ¢s),

y = dsin(¢ — @), (2)
z = dcot 0,

where ¢ is the angular parameter describing the helix, ¢
is the value of ¢ at Py, and 8 = k¢. Such a helix can
be constructed as intersection of the cylinder with the line
from the origin to a point moving on a spiral which wraps
the sphere enclosing the AUT. In order to allow the two-
dimensional interpolation, the helix step A6 (Figure 1) must
be equal to the spacing required for the voltage interpolation
along a generatrix [6]. Therefore, the parameter k is such that
the angular step, determined by the consecutive intersections
of the helix with a generatrix, is A8 = 27/(2N"" + 1), with
N =Int(yN')+1and N' = Int(y'a)+1. Accordingly, being
A6 = 27k, it results that k = 1/(2N”" + 1) . The function
Int(x) denotes the integer part of x, § is the wavenumber,
and y > 1 is an oversampling factor needed for controlling
the truncation error [9].

A nonredundant sampling representation of the voltage
on the helix can be obtained by using the following
expressions for the phase function and parameterization [15]

- /SJ: Hdr' = ﬁm— Bacos™! (g))
E= B[ i i ag'

As can be seen, the optimal parameter & is proportional
to the curvilinear abscissa along the spiral wrapping the
sphere modelling the AUT. Since such a spiral is a closed
curve, it is convenient to choose the bandwidth W; such that

3)

& covers a 27 range when the whole curve on the AUT sphere
is described. Therefore,

QN +1)m
we - B j Jk? + sinkgy dg'. (4)

T Jo

In the light of these results, the reduced voltage at any
point of the helix can be reconstructed via the OSI expansion:

mo+p

S VED)ME ~EDDw (E &), (5)

m=mniy—p+1

V() =

where m = Int[(§—&)/A&] is the index of the sample nearest
(on the left) to the output point, 2p is the number of retained

samples V(&,), and

2nm
5m=f(¢s)+mA5:fs+m (6)
with M7 = Int(yM’) + 1, M’ = Int(y We) + 1, and M =

M'" — M'. Moreover,
_ sin((2M"” +1)&/2)

Dy (§) = M" +1)sin(£/2)’ @)

_ 2

Ta|2(cos(é/2)/cos(&E/2)) —1

Qu(&) = [ ( ( >> ] (8)

Ty [2/cos2 (2/2) — 1]

are the Dirichlet and Tschebyscheff Sampling functions,
respectively, Ty (-) being the Tschebyscheff polynomial of
degree M and & = pA¢.

The OSI expansion (5) can be used to evaluate the
“intermediate samples”; that is, the reduced voltage values at
the intersection points between the helix and the generatrix
passing through P. Once these samples have been evaluated,
the reduced voltage at P can be recovered via the following
OSI formula:

no+q

> V(9,)Dy (9 - 9.)0x(9— 9,),  (9)

n=ng—q+1

V(9,9) =

where 1y = Int[(9 — 9)/A9], N = N — N’, V(9,) are the

intermediate samples
9 =9,(9) = 9(¢s) + ko +nAd = 9 + nA9 (10)

and the other symbols have the same meaning as in (5). It is
so possible to recover the NF data required to perform the
standard NF-FF transformation with cylindrical scanning
[34], whose key steps are reported in the next section for
reader’s convenience.

3. Probe Compensated NF-FF Transformation

As rigorously demonstrated in [34], the modal coefficients
a, and b, of the cylindrical wave expansion of the field
radiated by the AUT are related to (a) the two-dimensional
Fourier transforms I, and I, of the output voltage of the
probe for two independent sets of measurements (the probe



is rotated 90° about its longitudinal axis in the second set);
(b) the coefficients ¢, d, and c),,, d;, of the cylindrical wave
expansion of the field radiated by the probe and the rotated
probe, respectively, when used as transmitting antennas. In
particular,

ﬁZ

P = 5 A

—n)H3, (Ad)

—n)Hﬁ?m(Ad)}

1) Hitn(Ad)

< |0 3 enl-

m=—oo

L) S c;n(—mHiiln(Ad)],

T

L(n) = J V(p,z)e "?edg dz,

=J J V' (9, z)e e dg dz,

A(n) = 3 cm(=n)Hyom(Ad) > dy, (=) HyD(Ad)
= 2 HEAD) Y dw () Hiin(Ad),

B - (11)

where A = ,/B*>— 73, Hﬁz)(-) is the Hankel function of

second kind and order v, and V, V' represent the output
voltage of the probe and the rotated probe at the point of
cylindrical coordinates (d, ¢, z).

Once the modal coefficients have been determined,
the FF components of the electric field in the spherical
coordinate system (R,®,®) can be evaluated by

JBR
sin @ Z b, (Bcos®)e/?,

y=—00

aAp€
E@ —]2/3

(12)
sin® > j"a,(Bcos®)e/.

y=—00

e’]ﬁR
Eo = 28

4. Uniform Samples Reconstruction

Let us now suppose that the samples are irregularly dis-
tributed (Figure 1) and denote with (9;,9,) the nonuniform
sampling point corresponding to the nearest uniform one &;
lying on the helix. By expressing the reduced voltage at each
nonuniform sampling point as a function of the unknown
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FiGure 2: Amplitude of the probe voltage V on the generatrix at
¢ = 90°. Solid line: exact. Crosses: recovered from irregularly spaced
NF data at the iteration 0.

values at the nearest uniform ones via the following two-
dimensional OSI formula (obtained by properly merging
expansions (5) and (9)), it results in

V(9,9
fl0+q

>

n=ny—q+1

[DN,, (8- ,) (5 - 8,

m=my—p+1

mo+p
Z V(fm)QM(E(Sn)_Em)DM”(E(Sn)_Em)]

i=12..,Q
(13)

where Q is the number of samples. The system (13) can be
recast in the matrix form

Ax=1b, (14)

where A is a Q X Q sparse banded matrix whose elements are
given by

Aim = Dy (91‘ - 9n)QN (91‘ - 9n>
X DM”(E(SVI) - gm)QM(E(Sn) - Em))

where b is the vector of the collected nonuniform data, and x
is the vector of the unknown uniform samples.

By splitting A in its diagonal and nondiagonal parts, A
and A, respectively, multiplying both members of (14) by
Al and rearranging the terms, it results in

(15)

D
-1
A'b—AJA x (16)
The following iterative scheme is so obtained:
— A" lp A (v=1) — _ Al (r=1)
=Ab-A AXT = AjAx"",  (17)
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where x) is the vector of the uniform samples estimated
at the vth step. Necessary conditions for the convergence of
such a scheme [29, 30] are that A;; # 0, for all 4, and |A;;| >
|[Ajn|, for all m #i. These conditions are surely verified in
the assumed hypothesis of biunique correspondence between
each uniform sampling point and the “nearest” nonuniform
one.
By straightforward evaluations from (17), it results

VOl&)

I
= Aﬁ{"(&aﬁbi)

n0+q
-5 [QN (8- 9,)Dx (8- 9,)
n=ng—q+1
mo+p N
S VOVE) QuEd,) - &)
m:mg—pﬂ
m#i

XD (£(9,) — sm)} } i=1,2...,Q
(18)
where
Aii = Dy (9; = 9, ) (95 - 91,

X DM” (E(Sn) - gm)QM(E(Sn) - Em)

(19)

n; = Nint[(9; — 99)/A9] being the index of the intermediate
sampling point nearest to the uniform one &;.

5. Numerical Results

The effectiveness and robustness of the proposed algorithm
for compensating the probe positioning errors in the NF-FF
transformation with helicoidal scanning have been assessed
by many numerical tests. The reported simulations refer to a
uniform circular array lying on the plane y = 0 (see Figure 1),
symmetric with respect to the plane z = 0 and having radius
a = 16 A, A being the wavelength. Its elements are elementary
Huygens sources polarized along the z axis and are radially
and azimuthally spaced of A/2. An open-ended WR-90
rectangular waveguide, operating at the frequency of 10 GHz,
is chosen as probe. The considered helix wraps a cylinder
with radius d = 20\ and height 2h = 140 A. The irregularly
distributed samples have been generated by imposing that
the distances in & and 9 between the position of each
nonuniform sample and the associate uniform one are
random variables uniformly distributed in (—0.3A¢, 0.3A&)
and (—0.3A9, 0.3A9). Note that this represents a pessimistic
occurrence in a real scanning procedure.

Figures 2 and 3 show a representative reconstruction
example of the output voltage V' (the most significant one)
on the generatrix at ¢ = 90°, obtained by 0 and 8
iterations, respectively. As it can be seen, only 8 iterations are
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FiGure 3: Amplitude of the probe voltage V on the generatrix at
¢ = 90°. Solid line: exact. Crosses: recovered from irregularly spaced
NF data at the iteration 8.
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uniform helicoidal samples.

enough to get a very good reconstruction. The evaluation of
the maximum and mean-square errors (normalized to the
maximum value of the output voltage V on the cylinder)
in the reconstruction of the uniform samples assesses more
quantitatively the effectiveness of the proposed algorithm.
They have been obtained by comparing the reconstructed
uniform samples and the exact ones. As can be seen
(Figures 4 and 5), on increasing the number of iterations, the
errors decrease quickly until a constant saturation value is
reached. Such a value decreases on increasing the retained
samples number. Even better results are to be expected
when the distances between the nonuniform samples and
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the uniform ones are smaller. Moreover, Figure 6 shows
the normalized maximum and mean-square errors in the
reconstruction of the NF data needed to carry out the NF-FF
transformation [34] both when using the directly collected
nonuniform samples and the recovered uniform helicoidal
ones. As can be seen, in this last case an increased accuracy of
about 60 dB can be obtained.

The robustness of the algorithm has been assessed (see
Figure 7) by corrupting the exact samples with random
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errors. Both a background noise (bounded to Aa in ampli-
tude and with arbitrary phase) and uncertainties on the
data of +Aa, in amplitude and A« in phase have been
simulated.

At last, Figures 8 and 9 show the antenna FF pattern in the
principal planes E and H reconstructed from the irregularly
distributed helicoidal samples. As can be seen, the exact
and recovered patterns are practically indistinguishable, thus
providing an overall assessment of the proposed iterative
technique.

It is worth noting that the number of employed samples
(guard samples included) for reconstructing the NF data on
the considered cylinder is 26 817, significantly less than that
(71 680) required by the standard cylindrical scanning and
by the helicoidal scanning technique [35].
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